首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) blocking therapy has become a major pillar of cancer immunotherapy. Compared with antibodies targeting, small-molecule checkpoint inhibitors which have favorable pharmacokinetics are urgently needed. Here we identified berberine (BBR), a proven anti-inflammation drug, as a negative regulator of PD-L1 from a set of traditional Chinese medicine (TCM) chemical monomers. BBR enhanced the sensitivity of tumour cells to co-cultured T-cells by decreasing the level of PD-L1 in cancer cells. In addition, BBR exerted its antitumor effect in Lewis tumor xenograft mice through enhancing tumor-infiltrating T-cell immunity and attenuating the activation of immunosuppressive myeloid-derived suppressor cells (MDSCs) and regulatory T-cells (Tregs). BBR triggered PD-L1 degradation through ubiquitin (Ub)/proteasome-dependent pathway. Remarkably, BBR selectively bound to the glutamic acid 76 of constitutive photomorphogenic-9 signalosome 5 (CSN5) and inhibited PD-1/PD-L1 axis through its deubiquitination activity, resulting in ubiquitination and degradation of PD-L1. Our data reveals a previously unrecognized antitumor mechanism of BBR, suggesting BBR is small-molecule immune checkpoint inhibitor for cancer treatment.  相似文献   

2.
《药学学报(英文版)》2020,10(5):723-733
Immunotherapy strategies targeting the programmed cell death ligand 1 (PD-L1)/programmed cell death 1 (PD-1) pathway in clinical treatments have achieved remarkable success in treating multiple types of cancer. However, owing to the heterogeneity of tumors and individual immune systems, PD-L1/PD-1 blockade still shows slow response rates in controlling malignancies in many patients. Accumulating evidence has shown that an effective response to anti-PD-L1/anti-PD-1 therapy requires establishing an integrated immune cycle. Damage in any step of the immune cycle is one of the most important causes of immunotherapy failure. Impairments in the immune cycle can be restored by epigenetic modification, including reprogramming the environment of tumor-associated immunity, eliciting an immune response by increasing the presentation of tumor antigens, and by regulating T cell trafficking and reactivation. Thus, a rational combination of PD-L1/PD-1 blockade and epigenetic agents may offer great potential to retrain the immune system and to improve clinical outcomes of checkpoint blockade therapy.  相似文献   

3.
4.
Antibody therapy based on PD-1/PD-L1 blocking or ADCC effector has produced significant clinical benefit for cancer patients. We generated a novel anti-B7-H3 antibody (07B) and engineered the Fc fragment to enhance ADCC. To improve efficacy and tumor selectivity, we developed anti-B7-H3/PD-1 bispecific fusion proteins that simultaneously engaged tumor associate marker B7-H3 and immune suppressing ligand PD-L1 as well as enhanced ADCC to promote potent and highly selective tumor killing. Fusion proteins were designed by fusing human PD-1 extra domain to 07B in four different formats and showed good binding capacity to both targets. Indeed, the affinity of fusion proteins to B7-H3 is over 10,000 fold higher compared to that of the analogous PD-L1 and the blocking of fusion proteins to PD-L1 was worse but it greatly enhanced when bound to B7-H3, thus achieving directly PD-L1-blockade to B7-H3-expressing tumor cells. Importantly, IL-2 production was enhanced by fusion proteins from staphylococcal enterotoxin B (SEB) stimulated PBMC. Similarly, cytokines induced by fusion proteins was enhanced when co-cultured with stimulated CD8+ T cells and B7-H3/PD-L1 transfected raji cells. Additionally, fusion proteins improved activation to CD16a by Fc modification and delivered selective cytotoxicity to B7-H3 expressing tumor cells. In conclusion, fusion proteins blocked the PD-1/PD-L1 signal pathway and significantly increased potency of ADCC in a B7-H3-directed manner, thereby selectively activating CD8+ T cells and enhancing natural killing towards tumor. This novel fusion protein with its unique targeting preference may be useful to enhance efficacy and safety of immunotherapy for B7-H3-overexpressing malignancies.  相似文献   

5.
BackgroundProgrammed death-ligand-1 (PD-L1) is a well-known predictive biomarker in non-small cell lung cancer (NSCLC) patients, however, its accuracy remains controversial. Here, we investigated the correlation between PD-L1 expression level and efficacy of its inhibitors, and hence assessed the predictive effect of PD-L1 expression.MethodsStudies that evaluated the efficacy of programmed death-1 (PD-1)/ PD-L1 inhibitors in advanced NSCLC patients according to tumor PD-L1 expression levels were searched for on Medline, Cochrane Library, and Embase. The pooled risk ratio (RR) and 95% confidence intervals (95% CIs) were calculated for the objective response rate (ORR) with overall survival (OS) and progression-free survival (PFS) were measured in terms of hazard ratio (HR) and the corresponding 95% CIs.Results1432 NSCLC patients from six randomized controlled trials (RCTs) were included and three PD-1/PD-L1 inhibitors (atezolizumab, nivolumab, and pembrolizumab) were used to treat the patients. A significantly higher ORR was observed in the high PD-L1 expression group compared to the low expression group (0.35 [95% CI, 0.30–0.40] vs 0.11 [95% CI, 0.09–0.14]). The results of the subgroup analysis, grouped by the type of drugs and antibodies which assess immune checkpoint inhibitors were identical with the pooled result. However, our study showed that PD-L1 expression was neither prognostic nor predictive of overall survival (OS) or progression-free survival (PFS) in patients treated with PD-1/PD-L1 inhibitors compared to chemotherapy.ConclusionsPD-L1 can be a predictive biomarker for ORR. Nevertheless, PD-L1 expression is not a good predictive tool for OS and PFS.  相似文献   

6.
Many studies have shown a special interaction between LAG3 and PD-1 in T cell inhibition, while the co-expression and effect of LAG3 and PD-1 on T cells in breast cancer patients are still not very clear. Here, with strict exclusion criteria, 88 patients with breast cancer and 18 healthy controls were enrolled. The percentages of LAG3+PD-1+ T cells in their peripheral blood (PBL) and tumor infiltrating T cells (TIL) were analyzed by flow cytometry, which showed an increase in TILs but no difference in PBLs and presented differences in TILs in different molecular subtypes (P < 0.05). In triple-negative breast cancer (TNBC), the highest percentages were observed, while in ER+/PR+ breast cancer, the lowest percentages were observed; however, these percentages were not different in different clinical stages (P > 0.05). Immunohistochemical staining showed that the expression of their ligands, PD-L1, MHC class II molecular and FGL1, was inconsistent in different molecular subtypes and clinical stages. Analysis of the functions of T cells with different phenotypes showed that the proliferation and secretion capacity of LAG3+PD-1+ T cells was obviously exhausted, with more than a two-fold of decrease compared with the groups of single positive LAG3 or PD-1 (P < 0.05). Finally, in a mouse model of TNBC, the dual blockade of LAG3 and PD-1 was indicated to achieve a better anti-tumour effect than either one alone (P < 0.05), which may provide a new strategy for the immunoregulatory treatment of patients with TNBC in the future.  相似文献   

7.
Platycodin D (PTD) is an oleanane-type terpenoid saponin, isolated from the plant Platycodon grandiflorus. PTD displays multiple pharmacological effects, notably significant anticancer activities in vitro and in vivo. Recently, PTD was shown to trigger the extracellular release of the immunologic checkpoint glycoprotein PD-L1. The reduction of PD-L1 expression at the surface of cancer cells leads to interleukin-2 secretion and T cells activation. In the present review, we have analyzed the potential origin of this atypical PTD-induced PD-L1 release to propose a mechanistic explanation. For that, we considered all published scientific information, as well as the physicochemical characteristics of the natural product (a modeling analysis of PTD and the related saponin β -escin is provided). On this basis, we raise the hypothesis that the capacity of PTD to induce PD-L1 extracellular release derives from two main mechanisms: (i) a drug-promoted shedding of membrane PD-L1 by metalloproteases or more likely, (ii) a cholesterol binding-related effect, that would lead to perturbation of membrane raft domains, limiting the recruitment of proteins like TLR4. The drug-induced membrane effects (frequently observed with saponin drugs), associated with a production of interferon-γ,can favor the release of proteins like PD-L1 into membrane vesicles. Our analysis supports the hypothesis that PTD is a cholesterol-dependent lipid raft-modulating agent able to promote the formation of PD-L1 containing extracellular vesicles. The anticancer potential of PTD and its capacity to modulate the functioning of the PD-1/PD-L1 checkpoint should be further considered.  相似文献   

8.
Artemisinin and its derivatives (ARTs) were reported to display heme-dependent antitumor activity. On the other hand, histone deacetylase inhibitors (HDACi) were known to be able to promote heme synthesis in erythroid cells. Nevertheless, the effect of HDACi on heme homeostasis in non-erythrocytes remains unknown. We envisioned that the combination of HDACi and artesunate (ARS) might have synergistic antitumor activity through modulating heme synthesis. In vitro studies revealed that combination of ARS and HDACi exerted synergistic tumor inhibition by inducing cell death. Moreover, this combination exhibited more effective antitumor activity than either ARS or HDACi monotherapy in xenograft models without apparent toxicity. Importantly, mechanistic studies revealed that HDACi coordinated with ARS to increase 5-aminolevulinate synthase (ALAS1) expression, and subsequent heme production, leading to enhanced cytotoxicity of ARS. Notably, knocking down ALAS1 significantly blunted the synergistic effect of ARS and HDACi on tumor inhibition, indicating a critical role of ALAS1 upregulation in mediating ARS cytotoxicity. Collectively, our study revealed the mechanism of synergistic antitumor action of ARS and HDACi. This finding indicates that modulation of heme synthesis pathway by the combination based on ARTs and other heme synthesis modulators represents a promising therapeutic approach to solid tumors.  相似文献   

9.
《药学学报(英文版)》2020,10(7):1294-1308
A great challenge in multi-targeting drug discovery is to identify drug-like lead compounds with therapeutic advantages over single target inhibitors and drug combinations. Inspired by our previous efforts in designing antitumor evodiamine derivatives, herein selective histone deacetylase 1 (HDAC1) and topoisomerase 2 (TOP2) dual inhibitors were successfully identified, which showed potent in vitro and in vivo antitumor potency. Particularly, compound 30a was orally active and possessed excellent in vivo antitumor activity in the HCT116 xenograft model (TGI = 75.2%, 150 mg/kg, p.o.) without significant toxicity, which was more potent than HDAC inhibitor vorinostat, TOP inhibitor evodiamine and their combination. Taken together, this study highlights the therapeutic advantages of evodiamine-based HDAC1/TOP2 dual inhibitors and provides valuable leads for the development of novel multi-targeting antitumor agents.  相似文献   

10.
Owing to incurable castration-resistant prostate cancer (CRPC) ultimately developing after treating with androgen deprivation therapy (ADT), it is vital to devise new therapeutic strategies to treat CRPC. Treatments that target programmed cell death protein 1 (PD-1) and programmed death ligand-1 (PD-L1) have been approved for human cancers with clinical benefit. However, many patients, especially prostate cancer, fail to respond to anti-PD-1/PD-L1 treatment, so it is an urgent need to seek a support strategy for improving the traditional PD-1/PD-L1 targeting immunotherapy. In the present study, analyzing the data from our prostate cancer tissue microarray, we found that PD-L1 expression was positively correlated with the expression of heterogeneous nuclear ribonucleoprotein L (HnRNP L). Hence, we further investigated the potential role of HnRNP L on the PD-L1 expression, the sensitivity of cancer cells to T-cell killing and the synergistic effect with anti-PD-1 therapy in CRPC. Indeed, HnRNP L knockdown effectively decreased PD-L1 expression and recovered the sensitivity of cancer cells to T-cell killing in vitro and in vivo, on the contrary, HnRNP L overexpression led to the opposite effect in CRPC cells. In addition, consistent with the previous study, we revealed that ferroptosis played a critical role in T-cell-induced cancer cell death, and HnRNP L promoted the cancer immune escape partly through targeting YY1/PD-L1 axis and inhibiting ferroptosis in CRPC cells. Furthermore, HnRNP L knockdown enhanced antitumor immunity by recruiting infiltrating CD8+ T cells and synergized with anti-PD-1 therapy in CRPC tumors. This study provided biological evidence that HnRNP L knockdown might be a novel therapeutic agent in PD-L1/PD-1 blockade strategy that enhanced anti-tumor immune response in CRPC.  相似文献   

11.
Macrophages are recognized as one of the major cell types in tumor microenvironment, and macrophage infiltration has been predominantly associated with poor prognosis among patients with breast cancer. Using the murine models of triple-negative breast cancer in CD169-DTR mice, we found that CD169+ macrophages support tumor growth and metastasis. CD169+ macrophage depletion resulted in increased accumulation of CD8+ T cells within tumor, and produced significant expansion of CD8+ T cells in circulation and spleen. In addition, we observed that CD169+ macrophage depletion alleviated tumor-induced splenomegaly in mice, but had no improvement in bone loss and repression of bone marrow erythropoiesis in tumor-bearing mice. Cancer cells and tumor associated macrophages exploit the upregulation of the immunosuppressive protein PD-L1 to subvert T cell-mediated immune surveillance. Within the tumor microenvironment, our understanding of the regulation of PD-L1 protein expression is limited. We showed that there was a 5-fold higher relative expression of PD-L1 on macrophages as compared with 4T1 tumor cells; coculture of macrophages with 4T1 cells augmented PD-L1 levels on macrophages, but did not upregulate the expression of PD-L1 on 4T1 cells. JAK2/STAT3 signaling pathway was activated in macrophages after coculture, and we further identified the JAK2 as a critical regulator of PD-L1 expression in macrophages during coculture with 4T1 cells. Collectively, our data reveal that breast cancer cells and CD169+ macrophages exhibit bidirectional interactions that play a critical role in tumor progression, and inhibition of JAK2 signaling pathway in CD169+ macrophages may be potential strategy to block tumor microenvironment-derived immune escape.  相似文献   

12.
Immune checkpoint blockade therapy has become a first-line treatment in various cancers. But there are only a small percent of colorectal patients responding to PD-1/PD-L1 blockage immunotherapy. How to increase their treatment efficacy is an urgent and clinically unmet need. It is acknowledged that immunogenic cell death (ICD) induced by some specific chemotherapy can enhance antitumor immunity. Chemo-based combination therapy can yield improved outcomes by activating the immune system to eliminate the tumor, compared with monotherapy. Here, we develop a PD-L1-targeting immune liposome (P-Lipo) for co-delivering irinotecan (IRI) and JQ1, and this system can successfully elicit antitumor immunity in colorectal cancer through inducing ICD by IRI and interfering in the immunosuppressive PD-1/PD-L1 pathway by JQ1. P-Lipo increases intratumoral drug accumulation and promotes DC maturation, and thereby facilitates adaptive immune responses against tumor growth. The remodeling tumor immune microenvironment was reflected by the increased amount of CD8+ T cells and the release of IFN-γ, and the reduced CD4+Foxp3+ regulatory T cells (Tregs). Collectively, the P-Lipo codelivery system provides a chemo-immunotherapy strategy that can effectively remodel the tumor immune microenvironment and activate the host immune system and arrest tumor growth.  相似文献   

13.
Cancer immunotherapy has brought a great revolution in the treatment of advanced human cancer. Immune checkpoint inhibitors (ICIs) that target cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and the programmed cell death protein 1 pathway (PD-1/PD-L1) have been widely administrated in the past years and demonstrated promising in a variety of malignancies. While some patients show benefit from ICIs, others do not respond or even develop resistance to these therapies. Among the responders, the treatments are consequently accompanied with immune-related adverse effects (irAEs), which are diverse in their effected organs, degree of severity and timing. Some of the toxicities are fatal and result in discontinuance of immunotherapy. The toxicity profile from anti-CTLA-4 to anti-PD-1/PD-L1 immunotherapies is distinct from those caused by conventional anticancer therapies, though their presentation may be similar. In order to better help clinicians recognize, monitor and manage irAEs in a growing population of cancer patients who are receiving ICI therapy, this article summarizes the FDA approved ICIs and focuses on (1) existing toxic evidence related to ICIs, (2) occurrence of irAEs, (3) factors influencing tumor responders treated with ICIs, (4) predictive biomarkers of irAEs, and (5) new potential mechanisms of resistance to ICI therapy.  相似文献   

14.
《药学学报(英文版)》2021,11(10):2983-2994
Genomic instability remains an enabling feature of cancer and promotes malignant transformation. Alterations of DNA damage response (DDR) pathways allow genomic instability, generate neoantigens, upregulate the expression of programmed death ligand 1 (PD-L1) and interact with signaling such as cyclic GMP–AMP synthase-stimulator of interferon genes (cGAS–STING) signaling. Here, we review the basic knowledge of DDR pathways, mechanisms of genomic instability induced by DDR alterations, impacts of DDR alterations on immune system, and the potential applications of DDR alterations as biomarkers and therapeutic targets in cancer immunotherapy.  相似文献   

15.
Multiple cancer immunotherapies including chimeric antigen receptor T cell and immune checkpoint inhibitors (ICIs) have been successfully developed to treat various cancers by motivating the adaptive anti-tumor immunity. Particularly, the checkpoint blockade approach has achieved great clinic success as evidenced by several U.S. Food and Drug Administration (FDA)-approved anti-programmed death receptor 1/ligand 1 or anti-cytotoxic T lymphocyte associated protein 4 antibodies. However, the majority of cancers have low clinical response rates to these ICIs due to poor tumor immunogenicity. Indeed, the cyclic guanosine monophosphate-adenosine monophosphate synthase‒stimulator of interferon genes‒TANK-binding kinase 1 (cGAS‒STING‒TBK1) axis is now appreciated as the major signaling pathway in innate immune response across different species. Aberrant signaling of this pathway has been closely linked to multiple diseases, including auto-inflammation, virus infection and cancers. In this perspective, we provide an updated review on the latest progress on the development of small molecule modulators targeting the cGAS‒STING‒TBK1 signaling pathway and their preclinical and clinical use as a new immune stimulatory therapy. Meanwhile, highlights on the clinical candidates, limitations and challenges, as well as future directions in this field are also discussed. Further, small molecule inhibitors targeting this signaling axis and their potential therapeutic use for various indications are discussed as well.  相似文献   

16.
Type I interferons play a critical role in host defense against influenza virus infection. Interferon cascade induces the expression of interferon-stimulated genes then subsequently promotes antiviral immune responses. The microRNAs are important regulators of innate immunity, but microRNAs-mediated regulation of interferon cascade during influenza infection remains to be fully identified. Here we found influenza A virus (IAV) infection significantly inhibited miR-93 expression in alveolar epithelial type II cells through RIG-I/JNK pathway. IAV-induced downregulation of miR-93 was found to upregulate JAK1, the target of miR-93, and then feedback promote antiviral innate response by facilitating IFN effector signaling. Importantly, in vivo administration of miR-93 antagomiR markedly suppressed IAV infection, protecting mice form IAVs -associated death. Hence, the inducible downregulation of miR-93 feedback suppress IAV infection by strengthening IFN-JAK-STAT pathway via JAK1 upregulation, and in vivo inhibition of miR-93 bears considerable therapeutic potential for suppressing IAV infection.  相似文献   

17.
《药学学报(英文版)》2020,10(7):1321-1330
JS001 (toripalimab) is a humanized IgG monoclonal antibody which strongly inhibits programmed cell death protein 1 (PD1). In this study, we used a different iodine isotype (nat/124/125I) to label JS001 probes to target the human PD1 (hPD1) antigen. In vitro, the half maximal effective concentration (EC50) value of natI-JS001 did not significantly differ from that of JS001. The uptake of 125I-JS001 by activated T cells was 5.63 times higher than that by nonactivated T cells after 2 h of incubation. The binding affinity of 125I-JS001 to T cells of different lineages after phytohemagglutinin (PHA) stimulation reached 4.26 nmol/L. Humanized PD1 C57BL/6 mice bearing mouse sarcoma S180 cell tumors were validated for immuno-positron emission tomography (immuno-PET) imaging. Pathological staining was used to assess the expression of PD1 in tumor tissues. The homologous 124I-human IgG (124I-hIgG) group or blocking group was used as a control group. Immuno-PET imaging showed that the uptake in the tumor area of the 124I-JS001 group at different time points was significantly higher than that of the blocking group or the 124I-hIgG group in the humanized PD1 mouse model. Taken together, these results suggest that this radiotracer has potential for noninvasive monitoring and directing tumor-specific personalized immunotherapy in PD1-positive tumors.  相似文献   

18.
《药学学报(英文版)》2022,12(4):1928-1942
T cell engaging bispecific antibody (TCB) is an effective immunotherapy for cancer treatment. Through co-targeting CD3 and tumor-associated antigen (TAA), TCB can redirect CD3+ T cells to eliminate tumor cells regardless of the specificity of T cell receptor. Tissue factor (TF) is a TAA that involved in tumor progression. Here, we designed and characterized a novel TCB targeting TF (TF-TCB) for the treatment of TF-positive tumors. In vitro, robust T cell activation, tumor cell lysis and T cell proliferation were induced by TF-TCB. The tumor cell lysis activity was dependent upon both CD3 and TF binding moieties of the TF-TCB, and was related to TF expression level of tumor cells. In vivo, in both tumor cell/human peripheral blood mononuclear cells (PBMC) co-grafting model and established tumor models with poor T cell infiltration, tumor growth was strongly inhibited by TF-TCB. T cell infiltration into tumors was induced during the treatment. Furthermore, efficacy of TF-TCB was further improved by combination with immune checkpoint inhibitors. For the first time, our results validated the feasibility of using TF as a target for TCB and highlighted the potential for TF-TCB to demonstrate efficacy in solid tumor treatment.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号