首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background

The purpose of this study was to evaluate the feasibility of the magnetic resonance (MR) conditional pacemaker (PM) system (Evia SR-T and DR-T with Safio S leads) under MR conditions.

Methods

Patients with standard PM indications and Evia PM were eligible for enrollment in this single center prospective non-randomized pilot study. Patients underwent MR of the brain and lower lumbar spine at 1.5 Tesla. Atrial (RA) und ventricular (RV) lead parameters (sensing, pacing threshold [PTH], pacing impedance) were assessed immediately before (baseline follow-up [FU]) and immediately after MRI (1st FU), after 1 month (2nd FU) and 3 months (3rd FU). The effect of MR on serious adverse device effect (SADE) free-rate, on atrial and ventricular sensing (AS/VS; mV) and atrial (RA) and ventricular (RV) pacing thresholds (PTH; V/0.4 ms) were investigated between baseline and 2nd FU. Continuous variables are expressed as mean ± SD and were compared using paired Student’s t-test. A p < 0.05 was considered significant.

Results

Thirty-one patients were enrolled. One patient had to be excluded because of an enrollment violation. Therefore, data of 30 patients (female 12 [40%], age 73 ± 12 years, dual chamber PM 15 [50%]) were included in this analysis. No MR related SADE occurred. Lead measurements were not statistically different between the baseline FU and the 2nd FU (AS/VS at baseline 3.2 ± 2.1/15.0 ± 6.0, at 2nd FU 3.2 ± 2.1/14.9 ± 6.5; p = ns. RA-PTH/RV-PTH at baseline 0.68 ± 0.18/0.78 ± 0.22, at 2nd FU 0.71 ± 0.24/0.78 ± 0.22; p = ns). The presence of the permanent pacemakers led to MR imaging artifacts on diffusion weighted sequences of the brain, but did not affect other sequences (e.g. FLAIR and T2 weighted spin-echo images).

Conclusion

The use of the MR conditional Evia PM in a MR environment under predefined conditions is feasible. No MR related SADEs nor clinically relevant changes in device functions occurred.  相似文献   

2.

Background

The development of clinically applicable fluid-structure interaction (FSI) models of the left heart is inherently challenging when using in vivo cardiovascular magnetic resonance (CMR) data for validation, due to the lack of a well-controlled system where detailed measurements of the ventricular wall motion and flow field are available a priori. The purpose of this study was to (a) develop a clinically relevant, CMR-compatible left heart physical model; and (b) compare the left ventricular (LV) volume reconstructions and hemodynamic data obtained using CMR to laboratory-based experimental modalities.

Methods

The LV was constructed from optically clear flexible silicone rubber. The geometry was based off a healthy patient’s LV geometry during peak systole. The LV phantom was attached to a left heart simulator consisting of an aorta, atrium, and systemic resistance and compliance elements. Experiments were conducted for heart rate of 70 bpm. Wall motion measurements were obtained using high speed stereo-photogrammetry (SP) and cine-CMR, while flow field measurements were obtained using digital particle image velocimetry (DPIV) and phase-contrast magnetic resonance (PC-CMR).

Results

The model reproduced physiologically accurate hemodynamics (aortic pressure = 120/80 mmHg; cardiac output = 3.5 L/min). DPIV and PC-CMR results of the center plane flow within the ventricle matched, both qualitatively and quantitatively, with flow from the atrium into the LV having a velocity of about 1.15 m/s for both modalities. The normalized LV volume through the cardiac cycle computed from CMR data matched closely to that from SP. The mean difference between CMR and SP was 5.5 ± 3.7 %.

Conclusions

The model presented here can thus be used for the purposes of: (a) acquiring CMR data for validation of FSI simulations, (b) determining accuracy of cine-CMR reconstruction methods, and (c) conducting investigations of the effects of altering anatomical variables on LV function under normal and disease conditions.  相似文献   

3.

Background

Sudden death in the young is a tragic complication of a number of medical diseases. There is limited data regarding the utility of post-mortem Magnetic Resonance (MR) imaging and Computer Tomography (CT) scanning in determining the cause of sudden death. This study sought to compare the accuracy of post-mortem cross-sectional imaging (MR and CT) with the conventional autopsy in determining the cause of sudden death in the young.

Methods

Consecutive patients from 2010 to 2012 (aged 1–35 years) who had sudden death were included. Patients were scanned by CT and 1.5 T MR imaging prior to the conventional autopsy being performed. The primary outcome was diagnostic congruence between imaging and conventional autopsy.

Results

In 17 patients studied, the mean age at death was 23 ± 11 years, with a male predominance (n = 12; 71%). The most common cause of death was a primary cardiac pathology (n = 8; 47%), including ARVC (24%) and ischemic heart disease (12%). Non-cardiac causes identified included pulmonary embolism (6%), and aortic dissection (6%). MR imaging correctly identified the diagnosis in 12 patients who subsequently had positive findings at conventional autopsy, while the diagnosis in the remaining 5 cases remained unexplained. MR imaging was found to be highly sensitive (100%) with a high negative (100%) and positive (80%) predictive value.

Conclusions

Dedicated post-mortem MR imaging of the heart and brain is a useful modality in determining the cause of sudden death in children and young adults, particularly in situations where a conventional autopsy cannot be performed for logistic, cultural or personal reasons.  相似文献   

4.

Background

With recent advances in imaging methods, detection of LVNC is increasingly common. Concomitantly, the prognostic importance of LVNC is less clear.

Methods

We followed 42 patients (63% male, age 44 ± 15 years) with incident heart failure or suspected cardiomyopathy, in whom cardiovascular magnetic resonance (CMR) yielded a diagnosis of LVNC, for 27 ± 16 months.

Results

LVNC was preferentially distributed among posterolateral segments, with apical predominance. Patients with maximum non-compacted-to-compacted thickness ratio (NC:C) < 3 improved by 0.9 ± 0.7 NYHA Class, compared to 0.3 ± 0.8 for patients with NC:C > 3 (p = 0.001). In 29 patients with baseline LVEF < 0.40, there was an inverse correlation between NC:C ratio, and the change in LVEF during follow-up. Tachyarrhythmias were observed in 42% of patients with LGE, and in 0% of patients without LGE (p = 0.02). In multivariate analysis, arrhythmia incidence was significantly higher in patients with LGE, even when adjusted for LVEF and RVEF.

Conclusions

CMR assessments of myocardial morphology provide important prognostic information for patients with LVNC who present with incident heart failure or suspected cardiomyopathy.

Electronic supplementary material

The online version of this article (doi:10.1186/s12968-014-0064-2) contains supplementary material, which is available to authorized users.  相似文献   

5.

Background

This study sought to evaluate the relation between long-term segmental and global functional outcome after revascularisation in patients with chronic ischaemic left ventricular dysfunction (LVD) and baseline markers of viability: late gadolinium enhancement (LGE) transmurality and contractile reserve (CR).

Methods

Forty-two patients with chronic ischaemic LVD underwent low-dose dobutamine- (LDD) and late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) before surgical or percutaneous revascularisation. Regional and global left ventricular (LV) functions and LGE were repeatedly assessed 6 ± 1 and 35 ± 6 months after revascularisation. In total, 319 at baseline dysfunctional and successfully revascularised segments were available for statistical analysis.

Results

The likelihood of long-term functional improvement was directly related to the presence of CR and inversely related to both the LGE and the degree of contractile dysfunction at baseline. The time course of functional improvement was protracted, with significantly more delay in segments with more extensive LGE (p = 0.005) and more severe contractile dysfunction at baseline (p = 0.002). The presence of CR was the predictor of earlier functional improvement (p < 0.0001). Using a definition of viable segment as a segment without any LGE or with any LGE and producing CR during LDD stimulation, ≥55% of viable segments from all dysfunctional and revascularised segments in a patient was the only independent predictor of significant improvement (≥5%) in the left ventricular ejection fraction (LVEF) after revascularisation, with a 72% sensitivity and an 80% specificity (AUC 0.76, p = 0.014). Reverse LV remodelling was observed in patients who had a significant amount of viable myocardium successfully revascularised.

Conclusions

In patients with chronic ischaemic LVD, improvement of dysfunctional but viable myocardium can be considerably delayed. Both the likelihood and the time course of functional improvement are related to the LGE, CR and the degree of contractile dysfunction at baseline. At 35 ± 6 months after revascularisation, patients with ≥55% of viable segments from all dysfunctional and revascularised segments significantly improve LVEF and experience reverse LV remodelling. A combination of LDD–CMR and LGE–CMR is a simple and powerful tool for identifying which patients with impaired LV function will benefit from revascularisation.  相似文献   

6.

Background

Late gadolinium enhancement (LGE) is identified frequently in LVNC. However, the features of this findings are limited. The purpose of the present study was to describe the frequency and distribution of LGE in patients meeting criteria for left ventricular non-compaction (LVNC), as assessed by cardiovascular magnetic resonance (CMR).

Methods

Forty-seven patients (37 males and 10 females; mean age, 39 ± 18 years) considered to meet standard CMR criteria for LVNC were studied. The LGE images were obtained 15 ± 5 min after the injection of 0.2 mmol/kg of gadolinium-DTPA using an inversion-recovery sequence, and analyzed using a 17-segment model.

Results

Mean number of non-compacted segments per patient was 7.4 ± 2.5 and the NC:C was 3.2 ± 0.7. Non-compaction was most commonly noted in the apical segments in all patients. LGE was present in 19 of the 47 patients (40%), and most often located in the ventricular septum. The distribution of LGE was subendocardial (n = 5; 6%), mid-myocardial (n = 61; 68%), subepicardial (n = 10; 11%), and transmural (n = 14; 15%) in total of 90 LGE (+) segments.

Conclusions

In patients considered to meet criteria for LVNC, LGE distributions visible were strikingly heterogeneous with appearances potentially attributable to three or more distinct cardiomyopathic processes. This may be in keeping with previous suggestions that the criteria may be of low specificity. Further work is needed to determine whether conditions such as dilated cardiomyopathy, previous myocardidtis or ischaemic heart disease increase the apparent depth of non-compact relative to compact myocardium.  相似文献   

7.

Background

In patients with severe aortic stenosis, left ventricular hypertrophy is associated with increased myocardial stiffness and dysfunction linked to cardiac morbidity and mortality. We aimed at systematically investigating the degree of left ventricular mass regression and changes in left ventricular function six months after transcatheter aortic valve implantation (TAVI) by cardiovascular magnetic resonance (CMR).

Methods

Left ventricular mass indexed to body surface area (LVMi), end diastolic volume indexed to body surface area (LVEDVi), left ventricular ejection fraction (LVEF) and stroke volume (SV) were investigated by CMR before and six months after TAVI in patients with severe aortic stenosis and contraindications for surgical aortic valve replacement.

Results

Twenty-sevent patients had paired CMR at baseline and at 6-month follow-up (N=27), with a mean age of 80.7±5.2 years. LVMi decreased from 84.5±25.2 g/m2 at baseline to 69.4±18.4 g/m2 at six months follow-up (P<0.001). LVEDVi (87.2±30.1 ml /m2vs 86.4±22.3 ml/m2; P=0.84), LVEF (61.5±14.5% vs 65.1±7.2%, P=0.08) and SV (89.2±22 ml vs 94.7±26.5 ml; P=0.25) did not change significantly.

Conclusions

Based on CMR, significant left ventricular reverse remodeling occurs six months after TAVI.  相似文献   

8.
9.

Background

Although cardiovascular magnetic resonance (CMR) is showing increasingly diagnostic potential in left ventricular non-compaction (LVNC), relatively little research relevant to CMR is conducted in children with LVNC. This study was performed to characterize and compare CMR features and clinical outcomes in children with LVNC with and without late gadolinium enhancement (LGE).

Methods

A cohort of 40 consecutive children (age, 13.7 ± 3.3 years; 29 boys and 11 girls) with isolated LVNC underwent a baseline CMR scan with subsequent clinical follow-up. Short-axis cine images were used to calculate left ventricular (LV) ejection fraction (EF), end-diastolic volume (EDV), end-systolic volume (ESV), myocardial mass, ratio of non-compacted-to-compacted myocardial thickness (NC/C ratio), and number of non-compacted segments. The LGE images were analyzed to assess visually presence and patterns of LGE. The primary end point was a composite of cardiac death and heart transplantation.

Results

The LGE was present in 10 (25 %) children, and 46 (27 %) segments were involved, including 23 non-compacted segments and 23 normal segments. Compared with LGE- cohort, LGE+ cohort had significantly lower LVEF (23.8 ± 10.7 % vs. 42.9 ± 16.7 %, p < 0.001) and greater LVEDV (169.2 ± 65.1 vs. 118.2 ± 48.9 mL/m2, p = 0.010), LVESV (131.3 ± 55.5 vs. 73.3 ± 46.7 mL/m2, p = 0.002), and sphericity indices (0.75 ± 0.19 vs. 0.60 ± 0.20, p = 0.045). There were no differences in terms of number and distribution of non-compacted segments, NC/C ratio, and myocardial mass index between LGE+ and LGE- cohort. In the LGE+ cohort, adverse events occurred in 6 patients compared to 2 events in the LGE- cohort. Kaplan-Meier analysis showed a significant difference in outcome between LGE+ and LGE- cohort for cardiac death and heart transplantation (p = 0.011).

Conclusions

The LGE was present in up to one-fourth of children with LVNC, and the LGE+ children exhibited a more maladaptive LV remodeling and a higher incidence of cardiovascular death and heart transplantation.  相似文献   

10.

Background

Evaluation of left ventricular (LV) diastolic function is essential for the management of heart failure. We verified whether LV diastolic function could be evaluated by measuring the fractional area change (FAC) using cine cardiovascular magnetic resonance (CMR).

Methods

We collected clinical data from 59 patients who underwent echocardiography and cine CMR. Normal, impaired relaxation, pseudonormal, and restrictive LV filling were observed in 15, 28, 11, and 5 patients, respectively. We calculated FAC during the first 30% of diastole (diastolic-index%) in the short-axis view, by tracing the contours on only three MR cine images.

Results

The diastolic index was significantly lower (p < 0.0001) in patients with impaired relaxation (32.4 ± 7.5), pseudonormal filling (25.4 ± 5.6), and restrictive filling (9.5 ± 1.5) compared to those with normal diastolic function (67.7 ± 10.8), and the index decreased significantly with worsening of diastolic dysfunction. The diastolic index correlated positively with early diastolic mitral annular velocity measured by tissue Doppler imaging (r = 0.75, p < 0.0001), respectively.

Conclusions

Measurement of FAC can be useful for the evaluation of LV diastolic function using cine CMR.  相似文献   

11.

Background

Assessment of left (LV) ventricular function is one of the most important tasks of cardiovascular magnetic resonance (CMR). Impairment of LV deformation is a strong predictor of cardiovascular outcome in various cardiac diseases like ischemic heart disease or cardiomyopathies. The aim of the study was to provide reference values for myocardial deformation derived from the CMR feature tracking imaging (FTI) algorithm in a reference population of healthy volunteers.

Methods

FTI was applied to standard short axis and 2-, 3- and 4-chamber views of vector-ECG gated CMR cine SSFP sequences of 150 strictly selected healthy volunteers (75 male/female) of three age tertiles (mean age 45.8yrs). Global peak and mean radial, circumferential and longitudinal endo- and myocardial systolic strain values as well as early diastolic strain rates were measured using FTI within a standard protocol on a 1.5T whole body MR scanner.

Results

Global peak systolic values were 36.3 ± 8.7% for radial, −27.2 ± 4.0% for endocardial circumferential, −21.3 ± 3.3% for myocardial circumferential, −23.4 ± 3.4% for endocardial longitudinal and −21.6 ± 3.2% for myocardial longitudinal strain. Global peak values were -2.1 ± 0.5s−1 for radial, 2.1 ± 0.6s−1 for circumferential endocardial, 1.7 ± 0.5s−1 for circumferential myocardial, 1.8 (1.5-2.2)s−1 for longitudinal endocardial, 1.6 (1.4-2.0)s−1 for longitudinal myocardial early diastolic strain rates. Men showed a higher radial strain than women whereas the circumferential and longitudinal strains were lower resulting in less negative values. Circumferential and longitudinal strain rates were significantly higher in female subjects. Radial strain increased significantly with age whereas the diastolic function measured by the radial, circumferential and longitudinal strain rates showed a decrease.The coefficients of variation determined in ten further subjects, who underwent two CMR examinations within 12 days, were −4.8% for circumferential and −4.5% for longitudinal endocardial mean strains.

Conclusions

Myocardial deformation analysis using FTI is a novel technique and robust when applied to standard cine CMR images providing the possibility of a reliable, objective quantification of global LV deformation. Since strain values and strain rates differed partly between genders as well as between age groups, the application of specific reference values as provided by this study is recommendable.  相似文献   

12.

Background

To investigate the feasibility of accelerated electrocardiogram (ECG)-triggered contrast enhanced pulmonary vein magnetic resonance angiography (CE-PV MRA) with isotropic spatial resolution using compressed sensing (CS).

Methods

Nineteen patients (59 ± 13 y, 11 M) referred for MR were scanned using the proposed accelerated free breathing ECG-triggered 3D CE-PV MRA sequence (FOV = 340 × 340 × 110 mm3, spatial resolution = 1.5 × 1.5 × 1.5 mm3, acquisition window = 140 ms at mid diastole and CS acceleration factor = 5) and a conventional first-pass breath-hold non ECG-triggered 3D CE-PV MRA sequence. CS data were reconstructed offline using low-dimensional-structure self-learning and thresholding reconstruction (LOST) CS reconstruction. Quantitative analysis of PV sharpness and subjective qualitative analysis of overall image quality were performed using a 4-point scale (1: poor; 4: excellent).

Results

Quantitative PV sharpness was increased using the proposed approach (0.73 ± 0.09 vs. 0.51 ± 0.07 for the conventional CE-PV MRA protocol, p < 0.001). There were no significant differences in the subjective image quality scores between the techniques (3.32 ± 0.94 vs. 3.53 ± 0.77 using the proposed technique).

Conclusions

CS-accelerated free-breathing ECG-triggered CE-PV MRA allows evaluation of PV anatomy with improved sharpness compared to conventional non-ECG gated first-pass CE-PV MRA. This technique may be a valuable alternative for patients in which the first pass CE-PV MRA fails due to inaccurate first pass timing or inability of the patient to perform a 20–25 seconds breath-hold.  相似文献   

13.

Background

We aimed to assess the feasibility of 3 dimensional (3D) respiratory and ECG gated, gadolinium enhanced magnetic resonance angiography (MRA) on a 3 Tesla (3 T) scanner for imaging pulmonary veins (PV) and left atrium (LA). The impact of heart rate (HR) and rhythm irregularity associated with atrial fibrillation (AF) on image and segmentation qualities were also assessed.

Methods

101 consecutive patients underwent respiratory and ECG gated (ventricular end systolic window) MRA for pre AF ablation imaging. Image quality (assessed by PV delineation) was scored as 1 = not visualized, 2 = poor, 3 = good and 4 = excellent. Segmentation quality was scored on a similar 4 point scale. Signal to noise ratios (SNRs) were calculated for the LA, LA appendage (LAA), and PV. Contrast to noise ratios (CNRs) were calculated between myocardium and LA, LAA and PV, respectively. Associations between HR/rhythm and quality metrics were assessed.

Results

35 of 101 (34.7%) patients were in AF at time of MRA. 100 (99%) patients had diagnostic studies, and 91 (90.1%) were of good or excellent quality. Overall, mean ± standard deviation (SD) image quality score was 3.40 ± 0.69. Inter observer agreement for image quality scores was substantial, (kappa = 0.68; 95% confidence interval (CI): 0.46, 0.90). Neither HR adjusting for rhythm [odds ratio (OR) = 1.03, 95% CI = 0.98,1.09; p = 0.22] nor rhythm adjusting for HR [OR = 1.25, 95% CI = 0.20, 7.69; p = 0.81] demonstrated association with image quality. Similarly, SNRs and CNRs were largely independent of HR after adjusting for rhythm. Segmentation quality scores were good or excellent for 77.3% of patients: mean ± SD score = 2.91 ± 0.63, and scores did not significantly differ by baseline rhythm (p = 0.78).

Conclusions

3D respiratory and ECG gated, gadolinium enhanced MRA of the PVs and LA on a 3 T system is feasible during ventricular end systole, achieving high image quality and high quality image segmentation when imported into electroanatomic mapping systems. Quality is independent of HR and heart rhythm for this free breathing, radiation free, alternative strategy to current MRA or CT based approaches, for pre AF ablation imaging of PVs and LA.  相似文献   

14.

Background

Despite increasing clinical use, there is limited data regarding regadenoson in stress perfusion cardiovascular magnetic resonance (CMR). In particular, given its long half-life the optimal stress protocol remains unclear. Although Myocardial Perfusion Reserve (MPR) may provide additive prognostic information, current techniques for its measurement are cumbersome and challenging for routine clinical practice.The aims of this study were: 1) To determine the feasibility of MPR quantification during regadenoson stress CMR by measurement of Coronary Sinus (CS) flow; and 2) to investigate the role of aminophylline reversal during regadenoson stress-CMR.

Methods

117 consecutive patients with possible myocardial ischemia were prospectively enrolled. Perfusion imaging was performed at 1 minute and 15 minutes after administration of 0.4 mg regadenoson. A subgroup of 41 patients was given aminophylline (100 mg) after stress images were acquired. CS flow was measured using phase-contrast imaging at baseline (pre CS flow), and immediately after the stress (peak CS flow) and rest (post CS flow) perfusion images.

Results

CS flow measurements were obtained in 92% of patients with no adverse events. MPR was significantly underestimated when calculated as peak CS flow/post CS flow as compared to peak CS flow/pre CS flow (2.43 ± 0.20 vs. 3.28 ± 0.32, p = 0.03). This difference was abolished when aminophylline was administered (3.35 ± 0.44 vs. 3.30 ± 0.52, p = 0.95). Impaired MPR (peak CS flow/pre CS flow <2) was associated with advanced age, diabetes, current smoking and higher Framingham risk score.

Conclusions

Regadenoson stress CMR with MPR measurement from CS flow can be successfully performed in most patients. This measurement of MPR appears practical to perform in the clinical setting. Residual hyperemia is still present even 15 minutes after regadenoson administration, at the time of resting-perfusion acquisition, and is completely reversed by aminophylline. Our findings suggest routine aminophylline administration may be required when performing stress CMR with regadenoson.  相似文献   

15.

Background

Cine balanced steady-state free precession (SSFP), the preferred sequence for ventricular function, demands uninterrupted radio frequency (RF) excitation to maintain the steady-state during suspended respiration. This is difficult to accomplish in sedated children. In this work, we validate a respiratory triggered (RT) SSFP sequence that drives the magnetization to steady-state before commencing retrospectively cardiac gated cine acquisition in a sedated pediatric population.

Methods

This prospective study was performed on 20 sedated children with congenital heart disease (8.6 ± 4 yrs). Identical imaging parameters were used for multiple number of signal averages (MN) and RT cine SSFP sequences covering both the ventricles in short-axis (SA) orientation. Image quality assessment and quantitative volumetric analysis was performed on the datasets by two blinded observers. One-sided Wilcoxon signed rank test and Box plot analysis were performed to compare the clinical scores. Bland-Altman (BA) analysis was performed on LV and RV volumes.

Results

Scan duration for SA stack using RT-SSFP (3.9 ± 0.8 min) was slightly shorter than MN-SSFP (4.6 ± 0.9 min) acquisitions. The endocardial edge definition was significantly better for RT than MN, blood to myocardial contrast was better for RT than MN without reaching statistical significance, and inter slice alignment was comparable. BA analysis indicates that the variability of volumetric indices between RT and MN is comparable to inter and intra-observer variability reported in the literature.

Conclusions

The free breathing RT-SSFP sequence allows diagnostic images in sedated children with significantly better edge definition when compared to MN-SSFP, without any penalty for total scan time.  相似文献   

16.

Background

In patients with anomalous left coronary artery from the pulmonary artery (ALCAPA) left ventricular (LV) dilatation and dysfunction evolves due to diminished myocardial perfusion caused by coronary steal phenomenon. Using late gadolinium enhanced cardiovascular magnetic resonance (LGE-CMR) imaging, myocardial scarring has been shown in ALCAPA patients late after repair, however the incidence of scarring before surgery and its impact on postoperative course after surgical repair remained unknown.

Methods

8 ALCAPA-patients (mean age 10.0 ± 5.8 months) underwent CMR before and early after (mean 4.9 ± 2.5 months) coronary reimplantation procedures. CMR included functional analysis and LGE for detection of myocardial scars.

Results

LV dilatation (mean LVEDVI 171 ± 94 ml/m2) and dysfunction (mean LV-EF 22 ± 10 %) was present in all patients and improved significantly after surgery (mean LVEDV 68 ± 42 ml/m2, p = 0.02; mean LV-EF 58 ± 19 %, p < 0.001). Preoperative CMR revealed myocardial scarring in 2 of the 8 patients and did not predict postoperative course. At follow-up CMR, one LGE-positive patient showed delayed recovery of LV function while myocardial scarring was still present in both patients. In two patients new-onset transmural scarring was found, although functional recovery after operation was sufficient. One of them showed a stenosis of the left coronary artery and required resurgery.

Conclusions

Despite diminished myocardial perfusion and severely compromised LV function, myocardial scarring was preoperatively only infrequently present. Improvement of myocardial function was independent of new-onset scarring while the impact of preoperative scarring still needs to be defined.  相似文献   

17.

Background

In hypertrophic cardiomyopathy (HCM), autopsy studies revealed both increased focal and diffuse deposition of collagen fibers. Late gadolinium enhancement imaging (LGE) detects focal fibrosis, but is unable to depict interstitial fibrosis. We hypothesized that with T1 mapping, which is employed to determine the myocardial extracellular volume fraction (ECV), can detect diffuse interstitial fibrosis in HCM patients.

Methods

T1 mapping with a modified Look-Locker Inversion Recovery (MOLLI) pulse sequence was used to calculate ECV in manifest HCM (n = 16) patients and in healthy controls (n = 14). ECV was determined in areas where focal fibrosis was excluded with LGE.

Results

The total group of HCM patients showed no significant changes in mean ECV values with respect to controls (0.26 ± 0.03 vs 0.26 ± 0.02, p = 0.83). Besides, ECV in LGE positive HCM patients was comparable with LGE negative HCM patients (0.27 ± 0.03 vs 0.25 ± 0.03, p = 0.12).

Conclusions

This study showed that HCM patients have a similar ECV (e.g. interstitial fibrosis) in myocardium without LGE as healthy controls. Therefore, the additional clinical value of T1 mapping in HCM seems limited, but future larger studies are needed to establish the clinical and prognostic potential of this new technique within HCM.  相似文献   

18.

Background

Wave intensity analysis, traditionally derived from pressure and velocity data, can be formulated using velocity and area. Flow-velocity and area can both be derived from high-resolution phase-contrast cardiovascular magnetic resonance (PC-CMR). In this study, very high temporal resolution PC-CMR data is processed using an integrated and semi-automatic technique to derive wave intensity.

Methods

Wave intensity was derived in terms of area and velocity changes. These data were directly derived from PC-CMR using a breath-hold spiral sequence accelerated with sensitivity encoding (SENSE). Image processing was integrated in a plug-in for the DICOM viewer OsiriX, including calculations of wave speed and wave intensity. Ascending and descending aortic data from 15 healthy volunteers (30 ± 6 years) data were used to test the method for feasibility, and intra- and inter-observer variability. Ascending aortic data were also compared with results from 15 patients with coronary heart disease (61 ± 13 years) to assess the clinical usefulness of the method.

Results

Rapid image acquisition (11 s breath-hold) and image processing was feasible in all volunteers. Wave speed was physiological (5.8 ± 1.3 m/s ascending aorta, 5.0 ± 0.7 m/s descending aorta) and the wave intensity pattern was consistent with traditionally formulated wave intensity. Wave speed, peak forward compression wave in early systole and peak forward expansion wave in late systole at both locations exhibited overall good intra- and inter-observer variability. Patients with coronary heart disease had higher wave speed (p <0.0001), and lower forward compression wave (p <0.0001) and forward expansion wave (p <0.0005) peaks. This difference is likely related to the older age of the patients’ cohort, indicating stiffer aortas, as well as compromised ventricular function due to their underlying condition.

Conclusion

A non-invasive, semi-automated and reproducible method for performing wave intensity analysis is presented. Its application is facilitated by the use of a very high temporal resolution spiral sequence. A formulation of wave intensity based on area change has also been proposed, involving no assumptions about the cross-sectional shape of the vessel.  相似文献   

19.

Background

Cocaine is an addictive, sympathomimetic drug with potentially lethal effects. The prevalence and features of cocaine cardiotoxicity are not well known. We aimed to assess these effects using a comprehensive cardiovascular magnetic resonance (CMR) protocol in a large group of asymptomatic cocaine users.

Methods

Consecutive (n = 94, 81 males, 36.6 ±7 years), non-selected, cocaine abusers were recruited and had a medical history, examination, ECG, blood test and CMR. The CMR study included measurement of left and right ventricular (LV, RV) dimensions and ejection fraction (EF), sequences for detection of myocardial oedema and late gadolinium enhancement (LGE). Images were compared to a cohort of healthy controls.

Results

Years of regular cocaine use were 13.9 ± 9. When compared to the age-matched healthy cohort, the cocaine abusers had increased LV end-systolic volume, LV mass index and RV end-systolic volume, with decreased LVEF and RVEF. No subject had myocardial oedema, but 30% had myocardial LGE indicating myocardial damage.

Conclusions

CMR detected cardiovascular disease in 71% of this cohort of consecutive asymptomatic cocaine abusers and mean duration of abuse was related to probability of LV systolic dysfunction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号