首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We recently described a new autosomal dominant myopathy associated with a missense mutation in the myosin heavy chain (MyHC) IIa gene (MYH2). In this study, we performed mutation analysis of MYH2 in eight Swedish patients with familial myopathy of unknown cause. In two of the eight index cases, we identified novel heterozygous missense mutations in MYH2, one in each case: V970I and L1061V. The mutations were located in subfragment 2 of the MyHC and they changed highly conserved residues. Most family members carrying the mutations had signs and symptoms consisting mainly of mild muscle weakness and myalgia. In addition, we analyzed the extent and distribution of nucleotide variation in MYH2 in 50 blood donors, who served as controls, by the complete sequencing of all 38 exons comprising the coding region. We identified only six polymorphic sites, five of which were synonymous polymorphisms. One variant, which occurred at an allele frequency of 0.01, was identical to the L1061V that was also found in one of the families with myopathy. The results of the analysis of normal variation indicate that there is strong selective pressure against mutations in MYH2. On the basis of these results, we suggest that MyHC genes should be regarded as candidate genes in cases of hereditary myopathies of unknown etiology.  相似文献   

2.
Recessive nebulin (NEB) mutations are a common cause of nemaline myopathy (NM), typically characterized by generalized weakness of early-onset and nemaline rods on muscle biopsy. Exceptional adult cases with additional cores and an isolated distal weakness have been reported. The large NEB gene with 183 exons has been an obstacle for the genetic work-up. Here we report a childhood-onset case with distal weakness and a core-rod myopathy, associated with recessive NEB mutations identified by next generation sequencing (NGS). This 6-year-old boy presented with a history of gross-motor difficulties following a normal early development. He had distal leg weakness with bilateral foot drop, as well as axial muscle weakness, scoliosis and spinal rigidity; additionally he required nocturnal respiratory support. Muscle magnetic resonance (MR) imaging showed distal involvement in the medial and anterior compartment of the lower leg. A muscle biopsy featured both rods and cores. Initial targeted testing identified a heterozygous Nebulin exon 55 deletion. Further analysis using NGS revealed a frameshifting 4 bp duplication, c.24372_24375dup (P.Val8126fs), on the opposite allele. This case illustrates that NEB mutations can cause childhood onset distal NM, with additional cores on muscle biopsy and proves the diagnostic utility of NGS for myopathies, particularly when large genes are implicated.  相似文献   

3.
Hereditary spastic paraplegias (HSPs) comprise a heterogeneous group of disorders characterized by progressive spasticity and weakness of the lower limbs. Autosomal dominant and ‘pure'' forms of HSP account for ∼80% of cases in Western societies of whom 10% carry atlastin-1 (ATL1) gene mutations. We report on a large consanguineous family segregating six members with early onset HSP. The pedigree was compatible with both autosomal dominant and autosomal recessive inheritance. Whole-exome sequencing and segregation analysis revealed a homozygous novel missense variant c.353G>A, p.(Arg118Gln) in ATL1 in all six affected family members. Seven heterozygous carriers, five females and two males, showed no clinical signs of HSP with the exception of sub-clinically reduced vibration sensation in one adult female. Our combined findings show that homozygosity for the ATL1 missense variant remains the only plausible cause of HSP, whereas heterozygous carriers are asymptomatic. This apparent autosomal recessive inheritance adds to the clinical complexity of spastic paraplegia 3A and calls for caution using directed genetic screening in HSP.  相似文献   

4.
Isolated metabolic myopathies encompass a heterogeneous group of disorders, with mitochondrial myopathies being a subgroup, with depleted skeletal muscle energy production manifesting either by recurrent episodes of myoglobinuria or progressive muscle weakness. In this study, we investigated the genetic cause of a patient from a consanguineous family who presented with adolescent onset autosomal recessive mitochondrial myopathy. Analysis of enzyme activities of the five respiratory chain complexes in our patients'' skeletal muscle showed severely impaired activities of iron sulfur (Fe-S)-dependent complexes I, II and III and mitochondrial aconitase. We employed exome sequencing combined with homozygosity mapping to identify a homozygous mutation, c.1A>T, in the FDX1L gene, which encodes the mitochondrial ferredoxin 2 (Fdx2) protein. The mutation disrupts the ATG initiation translation site resulting in severe reduction of Fdx2 content in the patient muscle and fibroblasts mitochondria. Fdx2 is the second component of the Fe-S cluster biogenesis machinery, the first being IscU that is associated with isolated mitochondrial myopathy. We suggest adding genetic analysis of FDX1L in cases of mitochondrial myopathy especially when associated with reduced activity of the respiratory chain complexes I, II and III.  相似文献   

5.
Disease causing variants in the Ryanodine receptor 1 (RYR1) gene are a common cause for congenital myopathy and for malignant hyperthermia susceptibility. We report a 17 year old boy with congenital muscle weakness progressing to a myasthenia like myopathy with muscle weakness, fatigability, ptosis, and ophthalmoplegia. Muscle biopsy showed predominance and atrophy of type 1 fibers. Whole-exome trio sequencing revealed three variants in the RYR1-gene in the patient: c.6721C > T,p.(Arg2241*) and c.2122G > A,p.(Asp708Asn) in cis position, and the c.325C > T,p.(Arg109Trp) variant in trans. Treatment with pyridostigmine improved symptoms. This case supports that a myasthenia like phenotype is part of the phenotypic spectrum of RYR1 related disorders, and that treatment with pyridostigmine can be beneficial for patients with this phenotype.  相似文献   

6.
Variants in ACTA1, which encodes α-skeletal actin, cause several congenital myopathies, most commonly nemaline myopathy. Autosomal recessive variants comprise approximately 10% of ACTA1 myopathy. All recessive variants reported to date have resulted in loss of skeletal α-actin expression from muscle and severe weakness from birth. Targeted next-generation sequencing in two brothers with congenital muscular dystrophy with rigid spine revealed homozygous missense variants in ACTA1. Skeletal α-actin expression was preserved in these patients. This report expands the clinical and histological phenotype of ACTA1 disease to include congenital muscular dystrophy with rigid spine and dystrophic features on muscle biopsy. This represents a new class of recessive ACTA1 variants, which do not abolish protein expression.  相似文献   

7.
Ariel is a mouse mutant that suffers from skeletal muscle myofibrillar degeneration due to the rapid accumulation of large intracellular protein aggregates. This fulminant disease is caused by an ENU-induced recessive mutation resulting in an L342Q change within the motor domain of the skeletal muscle myosin protein MYH4 (MyHC IIb). Although normal at birth, homozygous mice develop hindlimb paralysis from Day 13, consistent with the timing of the switch from developmental to adult myosin isoforms in mice. The mutated myosin (MYH4(L342Q)) is an aggregate-prone protein. Notwithstanding the speed of the process, biochemical analysis of purified aggregates showed the presence of proteins typically found in human myofibrillar myopathies, suggesting that the genesis of ariel aggregates follows a pathogenic pathway shared with other conformational protein diseases of skeletal muscle. In contrast, heterozygous mice are overtly and histologically indistinguishable from control mice. MYH4(L342Q) is present in muscles from heterozygous mice at only 7% of the levels of the wild-type protein, resulting in a small but significant increase in force production in isolated single fibres and indicating that elimination of the mutant protein in heterozygotes prevents the pathological changes observed in homozygotes. Recapitulation of the L342Q change in the functional equivalent of mouse MYH4 in human muscles, MYH1, results in a more aggregate-prone protein.  相似文献   

8.

Aim

Conditions related to mutations in the gene encoding the skeletal muscle ryanodine receptor 1 (RYR1) are genetic muscle disorders and include congenital myopathies with permanent weakness, as well as episodic phenotypes such as rhabdomyolysis/myalgia. Although RYR1 dysfunction is the primary mechanism in RYR1-related disorders, other downstream pathogenic events are less well understood and may include a secondary remodeling of major contractile proteins. Hence, in the present study, we aimed to investigate whether congenital myopathy-related RYR1 mutations alter the regulation of the most abundant contractile protein, myosin.

Methods

We used skeletal muscle tissues from five patients with RYR1-related congenital myopathy and compared those with five controls and five patients with RYR1-related rhabdomyolysis/myalgia. We then defined post-translational modifications on myosin heavy chains (MyHCs) using LC/MS. In parallel, we determined myosin relaxed states using Mant-ATP chase experiments and performed molecular dynamics (MD) simulations.

Results

LC/MS revealed two additional phosphorylations (Thr1309-P and Ser1362-P) and one acetylation (Lys1410-Ac) on the β/slow MyHC of patients with congenital myopathy. This method also identified six acetylations that were lacking on MyHC type IIa of these patients (Lys35-Ac, Lys663-Ac, Lys763-Ac, Lys1171-Ac, Lys1360-Ac, and Lys1733-Ac). MD simulations suggest that modifying myosin Ser1362 impacts the protein structure and dynamics. Finally, Mant-ATP chase experiments showed a faster ATP turnover time of myosin heads in the disordered–relaxed conformation.

Conclusions

Altogether, our results suggest that RYR1 mutations have secondary negative consequences on myosin structure and function, likely contributing to the congenital myopathic phenotype.  相似文献   

9.
Chronic progressive external ophthalmoplegia is one of mitochondrial disorders, characterized by ptosis, limitation of eye movement, variably severe bulbar muscle weakness and proximal limb weakness. Chronic progressive external ophthalmoplegia complicated with acquired disease is extremely rare. We report a 44 years old male patient with more than 20 years of chronic progressive bilateral ptosis and limitation of eye movements manifested dysarthria, dysphagia and neck muscle weakness for 3 years. The first muscle biopsy showed red-ragged fibers and cytochrome c oxidase negative fibers as well as inflammatory cells infiltration. Electron microscopy revealed paracrystalline inclusions. Mitochondrial genetic analysis demonstrated a large-scale mtDNA deletion of m.8470_13446del4977. The patient was treated with prednisone. In a three-year follow-up study, the second biopsy was performed. Before the treatment, except bilateral ptosis and external ophthalmopelgia, this patient presented bulbar muscle weakness and neck muscle weakness. After treated with prednisone, the symptoms of dysphagia, dysarthria and neck muscle weakness were significantly improved, and the second biopsy showed only mitochondrial myopathy pathology but the inflammations disappeared. Here, we report a patient with chronic progressive external ophthalmoplegia complicated with inflammatory myopathy and after treated with prednisone as myositis, he had a significant therapeutic effect.  相似文献   

10.
Megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS) is characterized by marked dilatation of the bladder and microcolon and decreased intestinal peristalsis. Recent studies indicate that heterozygous variants in ACTG2, which codes for a smooth muscle actin, cause MMIHS. However, such variants do not explain MMIHS cases that show an autosomal recessive mode of inheritance. We performed exome sequencing in a newborn with MMIHS and prune belly phenotype whose parents are consanguineous and identified a homozygous variant (c.3598A>T: p.Lys1200Ter) in MYH11, which codes for the smooth muscle myosin heavy chain. Previous studies showed that loss of Myh11 function in mice causes a bladder and intestinal phenotype that is highly reminiscent of MMIHS. All together, these observations strongly suggest that loss-of-function variants in MYH11 cause MMIHS. The documentation of variants in ACTG2 and MYH11 thus points to the involvement of the contractile apparatus of the smooth muscle in MMIHS. Interestingly, dominant-negative variants in MYH11 have previously been shown to cause thoracic aortic aneurism and dilatation. Different mechanisms of MYH11 disruption may thus lead to distinct patterns of smooth muscle dysfunction.  相似文献   

11.
Laing early onset distal myopathy and myosin storage myopathy are caused by mutations of slow skeletal/β‐cardiac myosin heavy chain encoded by the gene MYH7, as is a common form of familial hypertrophic/dilated cardiomyopathy. The mechanisms by which different phenotypes are produced by mutations in MYH7, even in the same region of the gene, are not known. To explore the clinical spectrum and pathobiology, we screened the MYH7 gene in 88 patients from 21 previously unpublished families presenting with distal or generalized skeletal muscle weakness, with or without cardiac involvement. Twelve novel mutations have been identified in thirteen families. In one of these families, the father of the proband was found to be a mosaic for the MYH7 mutation. In eight cases, de novo mutation appeared to have occurred, which was proven in four. The presenting complaint was footdrop, sometimes leading to delayed walking or tripping, in members of 17 families (81%), with other presentations including cardiomyopathy in infancy, generalized floppiness, and scoliosis. Cardiac involvement as well as skeletal muscle weakness was identified in nine of 21 families. Spinal involvement such as scoliosis or rigidity was identified in 12 (57%). This report widens the clinical and pathological phenotypes, and the genetics of MYH7 mutations leading to skeletal muscle diseases.  相似文献   

12.
Although many genes have been identified for the autosomal recessive cerebellar ataxias (ARCAs), several patients are unlinked to the respective loci, suggesting further genetic heterogeneity. We combined homozygosity mapping and exome sequencing in a consanguineous Egyptian family with congenital ARCA, mental retardation and pyramidal signs. A homozygous 5-bp deletion in SPTBN2, the gene whose in-frame mutations cause autosomal dominant spinocerebellar ataxia type 5, was shown to segregate with ataxia in the family. Our findings are compatible with the concept of truncating SPTBN2 mutations acting recessively, which is supported by disease expression in homozygous, but not heterozygous, knockout mice, ataxia in Beagle dogs with a homozygous frameshift mutation and, very recently, a homozygous SPTBN2 nonsense mutation underlying infantile ataxia and psychomotor delay in a human family. As there was no evidence for mutations in 23 additional consanguineous families, SPTBN2-related ARCA is probably rare.  相似文献   

13.
An MYH2 mutation p.(Glu706Lys) was originally described in a family with autosomal dominant inheritance, where the affected family members presented with multiple congenital contractures and ophthalmoplegia, progressing to a proximal myopathy in adulthood. Another patient with a dominant mutation p.(Leu1870Pro) was described, presenting as a congenital myopathy with ophthalmoplegia. Here, we present a patient with symptoms beginning at age 16 years, of prominent distal but also proximal weakness, bulbar involvement and ophthalmoplegia. Initially, clinically classified as oculopharyngodistal myopathy, the patient was found to carry a novel, de novo MYH2 mutation c.5630T>C p.(Leu1877Pro). This expands the phenotype of dominant MYH2 myopathies with the clinical phenotype overlapping the oculopharyngodistal myopathy spectrum.  相似文献   

14.
Multiple mitochondrial DNA deletions are associated with clinically heterogeneous disorders transmitted as mendelian traits. Dominant missense mutations were found in the gene encoding the heart and skeletal muscle-specific isoform of the adenine nucleotide translocator (ANT1) in families with autosomal dominant progressive external opthalmoplegia and in a sporadic patient. We herein report on a sporadic patient who presented with hypertrophic cardiomyopathy, mild myopathy with exercise intolerance and lactic acidosis but no ophthalmoplegia. A muscle biopsy showed the presence of numerous ragged-red fibers, and Southern blot analysis disclosed multiple deletions of muscle mitochondrial DNA. Molecular analysis revealed a C to A homozygous mutation at nucleotide 368 of the ANT1 gene. The mutation converted a highly conserved alanine into an aspartic acid at codon 123 and was absent in 500 control individuals. This is the first report of a recessive mutation in the ANT1 gene. The clinical and biochemical features are different from those found in dominant ANT1 mutations, resembling those described in ANT1 knockout mice. No ATP uptake was measured in proteoliposomes reconstituted with protein extracts from the patient's muscle. The equivalent mutation in AAC2, the yeast ortholog of human ANT1, resulted in a complete loss of transport activity and in the inability to rescue the severe Oxidative Phosphorylation phenotype displayed by WB-12, an AAC1/AAC2 defective strain. Interestingly, exposure to reactive oxygen species (ROS) scavengers dramatically increased the viability of the WB-12 transformant, suggesting that increased redox stress is involved in the pathogenesis of the disease and that anti-ROS therapy may be beneficial to patients.  相似文献   

15.
In 2005 the commonality of sarcotubular myopathy (STM) and limb girdle muscular dystrophy type 2H (LGMD2H) was demonstrated, as both are caused by the p D487N missense mutation in TRIM32 originally found in the Manitoba Hutterite population. Recently, three novel homozygous TRIM32 mutations have been described in LGMD patients. Here we describe a three generation Swedish family clinically presenting with limb girdle muscular weakness and histological features of a microvacuolar myopathy. The two index patients were compound heterozygotes for a frameshift mutation in TRIM32 (c.1560delC ) and a 30 kb intragenic deletion, encompassing parts of intron 1 and the entire exon 2 of TRIM32. In these patients, no full‐length or truncated TRIM32 could be detected. Interestingly, heterozygous family members carrying only one mutation showed mild clinical symptoms and vacuolar changes in muscle. In our family, the phenotype encompasses additionally a mild demyelinating polyneuropathic syndrome. Thus STM and LGMD2H are the result of loss of function mutations that can be either deletions or missense mutations. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Congenital muscular dystrophies associated with brain malformations are a group of disorders frequently associated with aberrant glycosylation of α-dystroglycan. They include disease entities such a Walker–Warburg syndrome, muscle–eye–brain disease and various other clinical phenotypes. Different genes involved in glycosylation of α-dystroglycan are associated with these dystroglycanopathies. We describe a 5-year-old girl with psychomotor retardation, ataxia, spasticity, muscle weakness and increased serum creatine kinase levels. Immunhistochemistry of skeletal muscle revealed reduced glycosylated α-dystroglycan. Magnetic resonance imaging of the brain at 3.5 years of age showed increased T2 signal from supratentorial and infratentorial white matter, a hypoplastic pons and subcortical cerebellar cysts. By whole exome sequencing, the patient was identified to be compound heterozygous for a one-base duplication and a missense mutation in the gene B3GALNT2 (β-1,3-N-acetylgalactosaminyltransferase 2; B3GalNAc-T2). This patient showed a milder phenotype than previously described patients with mutations in the B3GALNT2 gene.  相似文献   

17.
Autosomal recessive limb-girdle muscular dystrophies (LGMDs) are genetically heterogeneous. A subgroup of these disorders is caused by mutations in the dystrophin-associated sarcoglycan complex. Truncating mutations in the 43 kDa beta-sarcoglycan gene (LGMD 2E) were originally identified in a sporadic case of Duchenne-like muscular dystrophy, and a common missense mutation (T151R) was identified independently in Indiana Amish pedigrees with a milder form of LGMD. To facilitate mutational analysis of larger numbers of patients directly from genomic DNA, as opposed to reverse transcribed RNA from muscle biopsies, we have determined the genomic structure of the beta-sarcoglycan gene. The open reading frame of the beta-sarcoglycan coding region extends over six exons. Primers were designed for PCR amplification of single exons from genomic DNA and subsequent single strand conformation polymorphism (SSCP) analysis. We screened 15 patients from the Brazilian LGMD patient population, 13 of whom followed a severe course. Most of the patients had been assessed previously for deficiency of alpha- sarcoglycan immunofluorescence on muscle biopsy sections as a marker for disease of the sarcoglycan complex. Novel mutations in two familial and two sporadic cases of severe childhood-onset LGMD were identified. Only one of these patients carried a truncating mutation (homozygous 2 bp deletion, FS164TER), while the other three carried missense mutations (homozygous R91P, homozygous M100K, heterozygous recessive L108R; only one allele could be identified in this family). All three missense mutations occurred in exon 3, coding for the immediate extracellular domain. Complete absence for all three of the known sarcoglycans was noted by immunohistochemistry on muscle biopsy sections of the patients.   相似文献   

18.
Both peripheral neuropathy and distal myopathy are well-established inherited neuromuscular disorders characterized by progressive weakness and atrophy of the distal limb muscles. A complex phenotype of peripheral neuropathy, myopathy, hoarseness, and hearing loss was diagnosed in a large autosomal dominant Korean family. A high density single nucleotide polymorphism (SNP)-based linkage study mapped the underlying gene to a region on chromosome 19q13.3. The maximum multipoint LOD score was 3.794. Sequencing of 34 positional candidate genes in the segregating haplotype revealed a novel c.2822G>T (p.Arg941Leu) mutation in the gene MYH14, which encodes the nonmuscle myosin heavy chain 14. Clinically we observed a sequential pattern of the onset of muscle weakness starting from the anterior to the posterior leg muscle compartments followed by involvement of intrinsic hand and proximal muscles. The hearing loss and hoarseness followed the onset of distal muscle weakness. Histopathologic and electrodiagnostic studies revealed both chronic neuropathic and myopathic features in the affected patients. Although mutations in MYH14 have been shown to cause nonsyndromic autosomal dominant hearing loss (DFNA4), the peripheral neuropathy, myopathy, and hoarseness have not been associated with MYH14. Therefore, we suggest that the identified mutation in MYH14 significantly expands the phenotypic spectrum of this gene.  相似文献   

19.
20.
Genome-wide linkage analysis, followed by targeted deep sequencing, in a Danish multigeneration family with juvenile cataract revealed a region of chromosome 17 co-segregating with the disease trait. Affected individuals were heterozygous for two potentially protein-disrupting alleles in this region, in ACACA and UNC45B. As alterations of the UNC45B protein have been shown to affect eye development in model organisms, effort was focused on the heterozygous UNC45B missense mutation. UNC45B encodes a myosin-specific chaperone that, together with the general heat shock protein HSP90, is involved in myosin assembly. The mutation changes p.Arg805 to Trp in the UCS domain, an amino acid that is highly conserved from yeast to human. UNC45B is strongly expressed in the heart and skeletal muscle tissue, but here we show expression in human embryo eye and zebrafish lens. The zebrafish mutant steif, carrying an unc45b nonsense mutation, has smaller eyes than wild-type embryos and shows accumulation of nuclei in the lens. Injection of RNA encoding the human wild-type UNC45B protein into the steif homozygous embryo reduced the nuclei accumulation and injection of human mutant UNC45B cDNA in wild-type embryos resulted in development of a phenotype similar to the steif mutant. The p.Arg805Trp alteration in the mammalian UNC45B gene suggests that developmental cataract may be caused by a defect in non-muscle myosin assembly during maturation of the lens fiber cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号