首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Distal hereditary motor neuropathies (dHMNs) comprise a group of clinically and genetically heterogeneous inherited lower motor neuron syndromes mainly characterized by a distal-predominant pattern of progressive muscle atrophy, weakness and hyporeflexia, without sensory dysfunction. Although at least 21 causative genes for dHMN have been reported, mutational scanning of these genes often fails to identify the causative variants in dHMN cohorts, suggesting that additional causative genes remain to be identified. We studied a four-generation pedigree of a Japanese family with autosomal dominant dHMN to provide insight into the pathogenetic basis of the disease. Neurological examinations were performed on all six family members enrolled in this study. Whole-exome sequencing (WES) was used to identify the causative gene for dHMN. The clinical features of the patients included muscle weakness with distal extensor dominancy in the lower extremities, accompanied by facial and neck flexor muscle impairment, no sensory involvement, and areflexia. Nerve conduction studies demonstrated axonal changes mainly in the peroneal nerve. WES combined with rigorous filtering revealed three missense variants (NM_001083964: c.851G > A [p.Arg284His] in TDRKH, NM_002858: c.1654G > T [p.Gly552Cys] in ABCD3, NM_001005164: c.898A > T [p.Ile300Phe], in OR52E2). The variant in TDRKH is located in a conserved region of the tudor domain which is also present in the survival of motor neuron (SMN) protein, encoded by the SMN1 gene. Therefore, we concluded the variant in TDRKH is likely to be responsible for dHMN in our pedigree.  相似文献   

2.
Intellectual disability (ID) with autosomal recessive (AR) inheritance is believed to be common; however, very little is known about causative genes and genotype–phenotype correlations. The broad genetic heterogeneity of AR-ID, and its usually nonsyndromic nature make it difficult to pool multiple pedigrees with the same underlying genetic defect to achieve consistent nosology. Nearly all autosomal genes responsible for recessive cognitive disorders have been identified in large consanguineous families from the Middle East, and nonsense mutations in TRAPPC9 have been reported in a total of 5. Although several recurrent phenotypic abnormalities are described in some of these patients, the associated phenotype is usually referred to as nonsyndromic. By means of single-nucleotide polymorphism-array first and then by exome sequencing, we identified a new pathogenic mutation in TRAPPC9 in two Italian sisters born to healthy and apparently nonconsanguineous parents. It consists of a homozygous splice site mutation causing exon skipping with frameshift and premature termination, as confirmed by mRNA sequencing. By detailed phenotypic analysis of our patients, and by critical literature review, we found that homozygous TRAPPC9 loss-of-function mutations cause a distinctive phenotype, characterized by peculiar facial appearance, obesity, hypotonia (all signs resembling a Prader–Willi-like phenotype), moderate-to-severe ID, and consistent brain abnormalities.  相似文献   

3.
Charcot–Marie–Tooth disease (CMT) is a group of hereditary peripheral neuropathies. The dominantly inherited axonal CMT2 displays striking genetic heterogeneity, with 17 presently known disease genes. The large number of candidate genes, combined with lack of genotype–phenotype correlations, has made genetic diagnosis in CMT2 time-consuming and costly. In Finland, 25% of dominant CMT2 is explained by either a GDAP1 founder mutation or private MFN2 mutations but the rest of the families have remained without molecular diagnosis. Whole-exome and genome sequencing are powerful techniques to find disease mutations for CMT patients but they require large amounts of sequencing to confidently exclude heterozygous variants in all candidate genes, and they generate a vast amount of irrelevant data for diagnostic needs. Here we tested a targeted next-generation sequencing approach to screen the CMT2 genes. In total, 15 unrelated patients from dominant CMT2 families from Finland, in whom MFN2 and GDAP1 mutations had been excluded, participated in the study. The targeted approach produced sufficient sequence coverage for 95% of the 309 targeted exons, the rest we excluded by Sanger sequencing. Unexpectedly, the screen revealed a disease mutation only in one family, in the HSPB1 gene. Thus, new disease genes underlie CMT2 in the remaining families, indicating further genetic heterogeneity. We conclude that targeted next-generation sequencing is an efficient tool for genetic screening in CMT2 that also aids in the selection of patients for genome-wide approaches.  相似文献   

4.
Hereditary retinal dystrophies (RD) constitute a group of blinding diseases that are characterized by clinical variability and pronounced genetic heterogeneity. The different forms of RD can be caused by mutations in >100 genes, including >1600 exons. Consequently, next generation sequencing (NGS) technologies are among the most promising approaches to identify mutations in RD. So far, NGS is not routinely used in gene diagnostics. We developed a diagnostic NGS pipeline to identify mutations in 170 genetically and clinically unselected RD patients. NGS was applied to 105 RD-associated genes. Underrepresented regions were examined by Sanger sequencing. The NGS approach was successfully established using cases with known sequence alterations. Depending on the initial clinical diagnosis, we identified likely causative mutations in 55% of retinitis pigmentosa and 80% of Bardet–Biedl or Usher syndrome cases. Seventy-one novel mutations in 40 genes were newly associated with RD. The genes USH2A, EYS, ABCA4, and RHO were more frequently affected than others. Occasionally, cases carried mutations in more than one RD-associated gene. In addition, we found possible dominant de-novo mutations in cases with sporadic RD, which implies consequences for counseling of patients and families. NGS-based mutation analyses are reliable and cost-efficient approaches in gene diagnostics of genetically heterogeneous diseases like RD.  相似文献   

5.
This study aimed to identify genetic mechanisms underlying severe retinal degeneration in one large family from northern Sweden, members of which presented with early-onset autosomal recessive retinitis pigmentosa and juvenile macular dystrophy. The clinical records of affected family members were analysed retrospectively and ophthalmological and electrophysiological examinations were performed in selected cases. Mutation screening was initially performed with microarrays, interrogating known mutations in the genes associated with recessive retinitis pigmentosa, Leber congenital amaurosis and Stargardt disease. Searching for homozygous regions with putative causative disease genes was done by high-density SNP-array genotyping, followed by segregation analysis of the family members. Two distinct phenotypes of retinal dystrophy, Leber congenital amaurosis and Stargardt disease were present in the family. In the family, four patients with Leber congenital amaurosis were homozygous for a novel c.2557C>T (p.Q853X) mutation in the CRB1 gene, while of two cases with Stargardt disease, one was homozygous for c.5461-10T>C in the ABCA4 gene and another was carrier of the same mutation and a novel ABCA4 mutation c.4773+3A>G. Sequence analysis of the entire ABCA4 gene in patients with Stargardt disease revealed complex alleles with additional sequence variants, which were evaluated by bioinformatics tools. In conclusion, presence of different genetic mechanisms resulting in variable phenotype within the family is not rare and can challenge molecular geneticists, ophthalmologists and genetic counsellors.  相似文献   

6.
Hereditary spastic paraplegias (HSPs) comprise a heterogeneous group of disorders characterized by progressive spasticity and weakness of the lower limbs. Autosomal dominant and ‘pure'' forms of HSP account for ∼80% of cases in Western societies of whom 10% carry atlastin-1 (ATL1) gene mutations. We report on a large consanguineous family segregating six members with early onset HSP. The pedigree was compatible with both autosomal dominant and autosomal recessive inheritance. Whole-exome sequencing and segregation analysis revealed a homozygous novel missense variant c.353G>A, p.(Arg118Gln) in ATL1 in all six affected family members. Seven heterozygous carriers, five females and two males, showed no clinical signs of HSP with the exception of sub-clinically reduced vibration sensation in one adult female. Our combined findings show that homozygosity for the ATL1 missense variant remains the only plausible cause of HSP, whereas heterozygous carriers are asymptomatic. This apparent autosomal recessive inheritance adds to the clinical complexity of spastic paraplegia 3A and calls for caution using directed genetic screening in HSP.  相似文献   

7.
We used exome sequencing to study a non-consanguineous family with two children who had anterior segment dysgenesis, sclerocornea, microphthalmia, hypotonia and developmental delays. Sanger sequencing verified two Peroxidasin (PXDN) mutations in both sibs—a maternally inherited, nonsense mutation, c.1021C>T predicting p.(Arg341*), and a paternally inherited, 23-basepair deletion causing a frameshift and premature protein truncation, c.2375_2397del23, predicting p.(Leu792Hisfs*67). We re-examined exome data from 20 other patients with structural eye defects and identified two additional PXDN mutations in a sporadic male with bilateral microphthalmia, cataracts and anterior segment dysgenesis—a maternally inherited, frameshift mutation, c.1192delT, predicting p.(Tyr398Thrfs*40) and a paternally inherited, missense substitution that was predicted to be deleterious, c.947 A>C, predicting p.(Gln316Pro). Mutations in PXDN were previously reported in three families with congenital cataracts, microcornea, sclerocornea and developmental glaucoma. The gene is expressed in corneal epithelium and is secreted into the extracellular matrix. Defective peroxidasin has been shown to impair sulfilimine bond formation in collagen IV, a constituent of the basement membrane, implying that the eye defects result because of loss of basement membrane integrity in the developing eye. Our finding of a broader phenotype than previously appreciated for PXDN mutations is typical for exome-sequencing studies, which have proven to be highly effective for mutation detection in patients with atypical presentations. We conclude that PXDN sequencing should be considered in microphthalmia with anterior segment dysgenesis.  相似文献   

8.
Although many genes have been identified for the autosomal recessive cerebellar ataxias (ARCAs), several patients are unlinked to the respective loci, suggesting further genetic heterogeneity. We combined homozygosity mapping and exome sequencing in a consanguineous Egyptian family with congenital ARCA, mental retardation and pyramidal signs. A homozygous 5-bp deletion in SPTBN2, the gene whose in-frame mutations cause autosomal dominant spinocerebellar ataxia type 5, was shown to segregate with ataxia in the family. Our findings are compatible with the concept of truncating SPTBN2 mutations acting recessively, which is supported by disease expression in homozygous, but not heterozygous, knockout mice, ataxia in Beagle dogs with a homozygous frameshift mutation and, very recently, a homozygous SPTBN2 nonsense mutation underlying infantile ataxia and psychomotor delay in a human family. As there was no evidence for mutations in 23 additional consanguineous families, SPTBN2-related ARCA is probably rare.  相似文献   

9.
Congenital muscular dystrophies associated with brain malformations are a group of disorders frequently associated with aberrant glycosylation of α-dystroglycan. They include disease entities such a Walker–Warburg syndrome, muscle–eye–brain disease and various other clinical phenotypes. Different genes involved in glycosylation of α-dystroglycan are associated with these dystroglycanopathies. We describe a 5-year-old girl with psychomotor retardation, ataxia, spasticity, muscle weakness and increased serum creatine kinase levels. Immunhistochemistry of skeletal muscle revealed reduced glycosylated α-dystroglycan. Magnetic resonance imaging of the brain at 3.5 years of age showed increased T2 signal from supratentorial and infratentorial white matter, a hypoplastic pons and subcortical cerebellar cysts. By whole exome sequencing, the patient was identified to be compound heterozygous for a one-base duplication and a missense mutation in the gene B3GALNT2 (β-1,3-N-acetylgalactosaminyltransferase 2; B3GalNAc-T2). This patient showed a milder phenotype than previously described patients with mutations in the B3GALNT2 gene.  相似文献   

10.
Stickler syndrome is an autosomal dominant connective tissue disorder caused by mutations in different collagen genes. The aim of our study was to define more precisely the phenotype and genotype of Stickler syndrome type 1 by investigating a large series of patients with a heterozygous mutation in COL2A1. In 188 probands with the clinical diagnosis of Stickler syndrome, the COL2A1 gene was analyzed by either a mutation scanning technique or bidirectional fluorescent DNA sequencing. The effect of splice site alterations was investigated by analyzing mRNA. Multiplex ligation-dependent amplification analysis was used for the detection of intragenic deletions. We identified 77 different COL2A1 mutations in 100 affected individuals. Analysis of the splice site mutations showed unusual RNA isoforms, most of which contained a premature stop codon. Vitreous anomalies and retinal detachments were found more frequently in patients with a COL2A1 mutation compared with the mutation-negative group (P<0.01). Overall, 20 of 23 sporadic patients with a COL2A1 mutation had either a cleft palate or retinal detachment with vitreous anomalies. The presence of vitreous anomalies, retinal tears or detachments, cleft palate and a positive family history were shown to be good indicators for a COL2A1 defect. In conclusion, we confirm that Stickler syndrome type 1 is predominantly caused by loss-of-function mutations in the COL2A1 gene as >90% of the mutations were predicted to result in nonsense-mediated decay. On the basis of binary regression analysis, we developed a scoring system that may be useful when evaluating patients with Stickler syndrome.  相似文献   

11.
Distal hereditary motor neuropathy (dHMN) is a clinically and genetically heterogeneous group of inherited neuropathies characterized by distal limb muscle wasting and weakness with no or minimal sensory abnormalities. To investigate the clinical and genetic features of dHMN caused by WARS mutations in mainland China, we performed Sanger sequencing of the coding and untranslated region (UTR) regions of WARS in 160 unresolved dHMN and Charcot-Marie-Tooth (CMT) index patients. We detected a novel heterozygous variant c.941A>G (p.Asp314Gly) of WARS in an index patient from an autosomal dominant dHMN family including five affected members over three generations. The variant completely co-segregates with the dHMN phenotype in the family, and it was classified as likely pathogenic according to the American College of Medical Genetics and Genomics standards and guidelines. The clinical features included juvenile to adult onset (15-23 years), distal wasting and weakness, minimal sensory disturbance and length-dependent motor axonal degeneration with CMT examination score ranging from 6 to 10. Our report further confirms the role of WARS in dHMN and indicates that the variant c.941A>G (p.Asp314Gly) of WARS is related to a mild to moderate affected and later onset phenotype of dHMN.  相似文献   

12.
Germline mutations in telomere biology genes cause dyskeratosis congenita (DC), an inherited bone marrow failure and cancer predisposition syndrome. DC is a clinically heterogeneous disorder diagnosed by the triad of dysplastic nails, abnormal skin pigmentation, and oral leukoplakia; Hoyeraal-Hreidarsson syndrome (HH), a clinically severe variant of DC, also includes cerebellar hypoplasia, immunodeficiency, and intrauterine growth retardation. Approximately 70% of DC cases are associated with a germline mutation in one of nine genes, the products of which are all involved in telomere biology. Using exome sequencing, we identified mutations in Adrenocortical Dysplasia Homolog (ACD) (encoding TPP1), a component of the telomeric shelterin complex, in one family affected by HH. The proband inherited a deletion from his father and a missense mutation from his mother, resulting in extremely short telomeres and a severe clinical phenotype. Characterization of the mutations revealed that the single-amino-acid deletion affecting the TEL patch surface of the TPP1 protein significantly compromises both telomerase recruitment and processivity, while the missense mutation in the TIN2-binding region of TPP1 is not as clearly deleterious to TPP1 function. Our results emphasize the critical roles of the TEL patch in proper stem cell function and demonstrate that TPP1 is the second shelterin component (in addition to TIN2) to be implicated in DC.  相似文献   

13.
Mucolipidosis (ML) II and ML IIIα/β are allelic autosomal recessive metabolic disorders due to mutations in GNPTAB. The gene encodes the enzyme UDP-GlcNAc-1-phosphotransferase (GNPT), which is critical to proper trafficking of lysosomal acid hydrolases. The ML phenotypic spectrum is dichotomous. Criteria set for defining ML II and ML IIIα/β are inclusive for all but the few patients with phenotypes that span the archetypes. Clinical and biochemical findings of the ‘intermediate'' ML in eight patients with the c.10A>C missense mutation in GNPTAB are presented to define this intermediate ML and provide a broader insight into ML pathogenesis. Extensive clinical information, including radiographic examinations at various ages, was obtained from a detailed study of all patients. GNPTAB was sequenced in probands and parents. GNPT activity was measured and cathepsin D sorting assays were performed in fibroblasts. Intermediate ML patients who share the c.10A>C/p.K4Q mutation in GNPTAB demonstrate a distinct, consistent phenotype similar to ML II in physical and radiographic features and to ML IIIα/β in psychomotor development and life expectancy. GNPT activity is reduced to 7–12% but the majority of newly synthesized cathepsin D remains intracellular. The GNPTAB c.10A>C/p.K4Q missense allele results in an intermediate ML II/III with distinct clinical and biochemical characteristics. This delineation strengthens the utility of the discontinuous genotype–phenotype correlation in ML II and ML IIIα/β and prompts additional studies on the tissue-specific pathogenesis in GNPT-deficient ML.  相似文献   

14.
15.
The sodium (Na+):multivitamin transporter (SMVT), encoded by SLC5A6, belongs to the sodium:solute symporter family and is required for the Na+-dependent uptake of biotin (vitamin B7), pantothenic acid (vitamin B5), the vitamin-like substance α-lipoic acid, and iodide. Compound heterozygous SLC5A6 variants have been reported in individuals with variable multisystemic disorder, including failure to thrive, developmental delay, seizures, cerebral palsy, brain atrophy, gastrointestinal problems, immunodeficiency, and/or osteopenia. We expand the phenotypic spectrum associated with biallelic SLC5A6 variants affecting function by reporting five individuals from three families with motor neuropathies. We identified the homozygous variant c.1285 A > G [p.(Ser429Gly)] in three affected siblings and a simplex patient and the maternally inherited c.280 C > T [p.(Arg94*)] variant and the paternally inherited c.485 A > G [p.(Tyr162Cys)] variant in the simplex patient of the third family. Both missense variants were predicted to affect function by in silico tools. 3D homology modeling of the human SMVT revealed 13 transmembrane helices (TMs) and Tyr162 and Ser429 to be located at the cytoplasmic facing region of TM4 and within TM11, respectively. The SLC5A6 missense variants p.(Tyr162Cys) and p.(Ser429Gly) did not affect plasma membrane localization of the ectopically expressed multivitamin transporter suggesting reduced but not abolished function, such as lower catalytic activity. Targeted therapeutic intervention yielded clinical improvement in four of the five patients. Early molecular diagnosis by exome sequencing is essential for timely replacement therapy in affected individuals.Subject terms: Peripheral neuropathies, Genetics research  相似文献   

16.
17.
Whole-exome sequencing (WES) has allowed the discovery of genes and variants causing rare human disease. This is often achieved by comparing nonsynonymous variants between unrelated patients, and particularly for sporadic or recessive disease, often identifies a single or few candidate genes for further consideration. However, despite the potential for this approach to elucidate the genetic cause of rare human disease, a majority of patients fail to realize a genetic diagnosis using standard exome analysis methods. Although genetic heterogeneity contributes to the difficulty of exome sequence analysis between patients, it remains plausible that rare human disease is not caused by de novo or recessive variants. Multiple human disorders have been described for which the variant was inherited from a phenotypically normal mosaic parent. Here we highlight the potential for exome sequencing to identify a reasonable number of candidate genes when dominant disease variants are inherited from a mosaic parent. We show the power of WES to identify a limited number of candidate genes using this disease model and how sequence coverage affects identification of mosaic variants by WES. We propose this analysis as an alternative to discover genetic causes of rare human disorders for which typical WES approaches fail to identify likely pathogenic variants.  相似文献   

18.
Mitochondrial disorders are caused by defects in mitochondrial or nuclear DNA. Although the existence of large deletions in mitochondrial DNA (mtDNA) is well known, deletions affecting whole genes are not commonly described in patients with mitochondrial disorders. Based on the results of whole-genome analyses, copy number variations (CNVs) occur frequently in the human genome and may overlap with many genes associated with clinical phenotypes. We report the discovery of two large heterozygous CNVs on 22q13.33 in two patients with mitochondrial disorders. The first patient harboured a novel point mutation c.667G>A (p.D223N) in the SCO2 gene in combination with a paternally inherited 87-kb deletion. As hypertrophic cardiomyopathy (HCMP) was not documented in the patient, this observation prompted us to compare his clinical features with all 44 reported SCO2 patients in the literature. Surprisingly, the review shows that HCMP was present in only about 50% of the SCO2 patients with non-neonatal onset. In the second patient, who had mitochondrial neurogastrointestinal encephalopathy (MNGIE), a maternally inherited 175-kb deletion and the paternally inherited point mutation c.261G>T (p.E87D) in the TYMP gene were identified.  相似文献   

19.
Trichorhinophalangeal syndrome type I (TRPSI) is a genetic disorder characterized by sparse hair, a bulbous nasal tip, short stature with severe generalized shortening of all phalanges, metacarpal and metatarsal bones and cone-shaped epiphyses. This syndrome is caused by autosomal dominant mutations in the TRPS1 gene. However, because recurrence has been observed in siblings from healthy parents, an autosomal recessive mode of inheritance has also been suggested. We report on a male patient, born to healthy unrelated parents, with TRPSI. Using Sanger sequencing, we identified a mutation in the TRPS1 gene (c.2735 G>A, P.Cys912Tyr). The same mutation was detected as a 10% mosaic mutation by Pyrosequencing in blood-derived DNA from his healthy mother. To our knowledge, this is the first time that somatic mosaicism has been identified in TRPSI. This data combined with the observations of recurrences in siblings from healthy parents modifies the genetic counseling for TRPSI, which should discuss a 5–10 percent recurrence risk for healthy parents with an affected child because of the possibility of germinal mosaicism.  相似文献   

20.
Autosomal recessive axonal neuropathy with neuromyotonia (ARAN-NM) is a rare form of hereditary neuropathy. Mutations in HINT1 gene have been identified to be the cause of this disorder. We report two unrelated patients who presented gait impairment, progressive distal muscle weakness and atrophy, neuromyotonia and foot deformities. Electrophysiological studies showed axonal motor neuropathy and neuromyotonic discharges. Using Next-generation sequencing, we identified two homozygous mutations, NM_005340.6: c.112T?>?C; p.(Cys38Arg) and NM_005340.6: c.289G?>?A; p.(Val97Met) in HINT1 gene. Based on the clinical presentation and molecular genetic analyses, ARAN-NM was diagnosed in both patients and NM_005340.6: c.112T?>?C; p.(Cys38Arg) and NM_005340.6: c.289G?>?A; p.(Val97Met) in HINT1 gene were believe to be causative for the disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号