首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein (MIP-1alpha) are implicated in monocyte infiltration into the central nervous system (CNS) under pathological conditions. We previously showed that in vivo human umbilical cord blood cells (HUCB) migrate toward brain injury after middle cerebral artery occlusion (MCAO). We hypothesized that MCP-1 and MIP-1alpha may participate in the recruitment of HUCB towards the injury. Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO), and 24 hours later the production of MCP-1 and MIP-1alpha in the brain was examined with immunohistochemistry, ELISA, and western blotting. The chemotactic effect of MCP-1 and MIP-1alpha, and the expression of MCP-1 receptor CCR2 and MIP-1alpha receptor CCR1, CCR5 on the surface of HUCB were also examined. MCP-1 and MIP-1alpha expression were significantly increased in the ischemic hemisphere of brain, and significantly promoted HUCB cell migration compared to the contralateral side. This cell migration was neutralized with polyclonal antibodies against MCP-1 or MIP-1alpha. Also chemokine receptors were constitutively expressed on the surface of HUCB cells. The data suggested that the increased chemokines in the ischemic area can bind cell surface receptors on HUCB, and induce cell infiltration of systemically delivered HUCB cells into the CNS in vivo.  相似文献   

2.
3.
After target ablation by olfactory bulbectomy (OBX), the murine olfactory epithelium (OE) undergoes degenerative changes leading to apoptosis of olfactory receptor neurons (ORNs) followed by regenerative changes that include proliferation of progenitor cells leading to neurogenesis and ORN replacement. Macrophages recruited to the OE after OBX are involved in both the degenerative and regenerative processes. Relative quantitative RT-PCR was used to demonstrate that within hours of OBX, mRNAs encoding three key components in the leukemia inhibitory factor (LIF) signaling pathway, including LIF, LIF receptor (LIFR), and STAT3, as well as cyclin D1, a growth factor sensor indicative of progenitor cell transformation, were upregulated. These mRNAs reached peak levels of expression on or before day 3 post-OBX, coincident with the peak time for macrophage recruitment and progenitor cell proliferation. Cells expressing LIF mRNA in the OE of mice at 3 days post-OBX, the time point at which LIF mRNA expression peaked, were identified using non-isotopic in situ hybridization. LIF mRNA was localized in infiltrating macrophages; near-adjacent sections exhibited macrophages immunoreactive for F4/80, a marker for activated macrophages, in numbers commensurate with those expressing LIF mRNA. LIF mRNA was also localized in surviving ORNs, identified by their expression of olfactory marker protein (OMP) mRNA and protein in near-adjacent sections. Our data suggest that LIF functions as a mitogen originating from recruited macrophages through an intercellular signaling pathway that stimulates proliferation of progenitor cells leading to neurogenesis and regeneration, and as an intracellular survival factor for traumatized ORNs.  相似文献   

4.
The inflammatory response initiated after spinal cord injury (SCI) is characterized by the accumulation of macrophages at the impact site. Monocyte chemoattractant protein-1 (MCP-1) is a strong candidate for mediating chemotaxis of monocytes to the injured nervous system. To help in defining the role of MCP-1 in inflammation after SCI, we evaluated the time course of macrophage accumulation for 2 weeks following a midthoracic spinal cord contusion injury in mice lacking CCR2, a principal receptor for MCP-1. Mice with a deletion of CCR2 resulted in significantly reduced Mac-1 immunoreactivity restricted to the lesion epicenter at 7 days postinjury. The regions devoid of Mac-1 immunoreactivity corresponded to areas of reduced myelin degradation at this time. By 14 days postinjury, however, there were no differences in Mac-1 staining between CCR2 (+/+) and CCR2 (-/-) mice. Analyses of mRNA levels by RNase protection assay (RPA) revealed increases in MCP-1 as well as MCP-3 and MIP-2 mRNA at 1 day postinjury compared with 7 day postinjury. There were no differences in chemokine expression between CCR2-deficient mice and wild-type littermate controls. The CCR2-deficient mice also exhibited reduced expression of mRNA for chemokine receptors CCR1 and CCR5. Together, these results indicate that chemokines acting through CCR2 contribute to the early recruitment of monocytes to the lesion epicenter following SCI.  相似文献   

5.
Experimental autoimmune encephalomyelitis (EAE) is a disease model of multiple sclerosis (MS) that is characterized by remittance and relapse of the disease and autoimmune and demyelinating lesions in the central nervous system (CNS). To better understand the mechanism of disease relapse, we induced acute and chronic relapsing (CR)-EAE in Lewis rats and examined the differences between the two groups. An immunohistochemical study revealed that significantly higher numbers of macrophages infiltrated the spinal cord during the first and second attacks of CR-EAE than at the peak of acute EAE, whereas the number of infiltrating T cells was essentially the same in acute and CR-EAE. In accordance with this finding, monocyte chemoattractant protein-1 (MCP-1) mRNA, but not MIP-1alpha and RANTES mRNA, increased significantly in CR-EAE lesions rather than in acute EAE lesions. More importantly, the level of MCP-1 during the remission of CR-EAE was significantly higher than during the recovery phase of acute EAE, suggesting that this high level of MCP-1 in CR-EAE is associated with relapse of the disease. CC chemokine receptor 2 (CCR2), the main receptor for MCP-1, was expressed on astrocytes, macrophages and T cells and the number of positive cells was higher in CR-EAE than in acute EAE. Collectively, these findings suggest that high expression of MCP-1 and its receptor, CCR2, in the CNS play important roles in relapse of EAE.  相似文献   

6.
Following injury to the peripheral nervous system, circulating monocytes/macrophages are recruited to the damaged tissue, where they play vital roles during both nerve degeneration and subsequent regeneration. Monocyte chemoattractant protein-1 (MCP-1), a member of the C-C or β-chemokine family, is a powerful leukocyte recruitment/activation factor that is relatively specific for monocytes/macrophages. Because these are the predominant leukocyte type recruited by injured nerve, we hypothesized that up-regulation of MCP-1 expression is involved in recruitment of these cells. Indeed, assay of steady-state levels of MCP-1 mRNA in rat sciatic nerve during tellurium-induced primary demyelination indicated up-regulation of this chemokine with a peak after 3 days of tellurium exposure, preceding the peak of accumulation of phagocytic macrophages (assayed as lysozyme mRNA levels) by 6 days. Increasing levels of MCP-1 mRNA expression, induced by increasing levels of tellurium exposure, resulted in corresponding increases in subsequent recruitment of macrophages. In situ hybridization suggested that MCP-1 mRNA was localized in Schwann cells. No expression of MIP-2, which is a C-X-C or α-chemokine that is specific for recruitment of neutrophils, was detected, consistent with the lack of recruitment of significant numbers of these cells. In addition, we also investigated the response seen following nerve transection (axonal degeneration and secondary demyelination with no subsequent regeneration) and nerve crush (degeneration followed by regeneration). In these latter two nerve injury models, there was also a marked, early up-regulation of MCP-1 mRNA, with a time course that is compatible with a role for this chemokine in macrophage recruitment. We conclude that MCP-1 is involved in recruiting monocytes/macrophages to injured peripheral nerve and that the specificity of leukocyte types recruited results from specificity of chemokine production. J. Neurosci. Res. 53:260–267, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
Proinflammatory cytokines and chemokines are quickly upregulated in response to ischemia/reperfusion (I/R) injury; however, the relationship between I/R-induced oxidative stress and cytokine/chemokine expression has not been elucidated. We investigated the temporal profile of cytokine and chemokine gene expression in transient focal cerebral ischemia using complementary DNA array technology. Among 96 genes studied, 10, 4, 11, and 5 genes were increased at 6, 12, 24, and 72 h of reperfusion, respectively, whereas, 4, 11, 8, and 21 genes, respectively, were decreased. To clarify the relationship between chemokines and oxidative stress, we compared the gene and protein expression of monocyte chemoattractant protein 1 (MCP-1) and macrophage inflammatory protein-1 alpha (MIP-1 alpha) in wild-type (WT) mice and copper/zinc-superoxide dismutase (SOD 1) transgenic (Tg) mice. Monocyte chemoattractant protein-1 and MIP-1 alpha mRNA were significantly upregulated at 6 to 12 h of reperfusion. In the SOD 1 Tg mice, however, MCP-1 and MIP-1 alpha mRNA expression was significantly decreased 12 h postinsult. In the WT mice, MCP-1 and MIP-1 alpha protein expression peaked 24 h after onset of reperfusion determined by immunohistochemistry. In the SOD 1 Tg mice, MCP-1 and MIP-1 alpha immunopositive cells were reduced, as were concentrations of these proteins (measured by enzyme-linked immunosorbent assay) at 24 h of reperfusion. Our results suggest that MCP-1 and MIP-1 alpha expression is influenced by I/R-induced oxidative stress after transient focal stroke.  相似文献   

8.
The present study was designed to elucidate the effects of the chemokine monocyte chemoattractant protein (MCP-1) on blood-brain barrier (BBB) permeability. Experiments were conducted under in vitro conditions (coculture of brain endothelial cells and astrocytes) to study the cellular effects of MCP-1 and under in vivo conditions (intracerebral and intracerebroventricular administration of MCP-1) to study the potential contribution of MCP-1 to BBB disruption in vivo. Our results showed that MCP-1 induces a significant increase in the BBB permeability surface area product for fluorescein isothiocyanate (FITC)-albumin under in vivo conditions, particularly during prolonged (3 or 7 days) exposure (0.096+/-0.008 versus 0.031+/-0.005 microL/g min in controls at 3 days, P<0.001). Monocyte chemoattractant protein-1 also enhanced (17-fold compared with control) the permeability of the in vitro BBB (coculture) model. At the cellular level, MCP-1 causes alteration of tight junction (TJ) proteins in endothelial cells (redistribution of TJ proteins determined by Western blotting and loss of immunostaining for occludin, claudin-5, ZO-1, ZO-2). Monocyte chemoattractant protein-1-induced alterations in BBB permeability are mostly realized through the CCR2 receptor. Absence of CCR2 diminishes any effect of MCP-1 on BBB permeability in vitro and in vivo. The permeability surface area product for FITC-albumin after 3 days exposure to MCP-1 was 0.096+/-0.006 and 0.032+/-0.007 microL/g min, in CCR2+/+ and CCR2-/- mice, respectively (P<0.001). Monocytes/macrophages also participate in MCP-1-induced alterations in BBB permeability in vivo. Monocytes/macrophages depletion (by clodronate liposomes) reduced the effect of MCP-1 on BBB permeability in vivo approximately 2 fold. Our results suggest that, besides its main function of recruiting leukocytes at sites of inflammation, MCP-1 also plays a role in 'opening' the BBB.  相似文献   

9.
Aims: To investigate protein and gene expressions of chemokine subtypes CCR3, CCR2A and their respective ligands macrophage inflammatory protein 1-alpha (MIP-1α), monocyte chemotactic protein-1 (MCP-1) in the normal mouse central nervous system (CNS) and in the hippocampus at different time points during and after pilocarpine-induced status epilepticus (PISE). Methods: CCR3 and MIP-1α protein expressions were mapped in the mouse CNS. The protein and gene expressions of CCR3 and CCR2A and their respective ligands MIP-1α, MCP-1 in the hippocampus were studies by immunocytochemical and quantitative real-time RT-PCR during and after PISE. Results: CCR3 and MIP-1α gene expression and immunopositive neurones were broadly distributed in the CNS. CCR3 and CCA2A gene and their protein expression were downregulated in the hippocampus at 1 h during PISE. The protein expression of MIP-1α, MCP-1 decreased but gene expression increased at 2 h during PISE. In the hilus of the dentate gyrus, significant reduction of the numbers of CCR3, CCR2A, MCP-1 immunopositive neurones occurred from 1 h during to 2 months after PISE, but the number of MIP-1α neurones reduced from 2 h during to 2 months after PISE. Induced expression of CCR3 at 1 week, CCR2A, MCP-1 or MIP-1α at 1 week and 2 months after PISE was found in reactive astrocytes. MCP-1 was also demonstrated in the blood vessels of the hippocampus at 2 months after PISE. Conclusions: CCR3 and MIP-1α may play important functional roles in the mouse brain. The downregulation of CCR3, CCR2A, MIP-1α and MCP-1 in the hippocampal neurones at the acute stage during and after PISE may weaken the neuroprotective mechanisms. However, induced expression of MCP-1 in hippocampal blood vessel may be related to changes in permeability of the blood–brain barrier during epileptogenesis.  相似文献   

10.
Perivascular and meningeal macrophages are important for immune surveillance in the healthy and the injured brain. Monocyte chemoattractant protein-1 (MCP-1) regulates macrophage migration and permeability of the blood brain barrier. In the present study, we investigated the influence of MCP-1 or/and chemokine receptor 2 (CCR2)-deficiency on macrophage turnover. The results showed no influence of single MCP-1- or CCR-2-deficiency, but double-deficient mice revealed a virtual absence of blood-borne macrophage recruitment. This finding emphasizes that the MCP-1/CCR2 axis is crucially important for macrophage turnover and compensatory mechanisms remain only partially sufficient to sustain regulatory functions.  相似文献   

11.
Expression of binding sites for beta chemokines on human astrocytes   总被引:3,自引:0,他引:3  
Astrocytes are major sources of chemokines and are thus critical effectors of central nervous system (CNS) inflammation. However, it is as yet unclear whether these cells, like leukocytes, also possess receptors for chemokines (CCRs). To address this issue, we utilized a novel fluorescence approach to detect qualitatively and quantitatively binding sites for biotinylated derivatives of the beta chemokines monocyte chemotactic protein-1 (MCP-1) and macrophage inflammatory protein-1alpha (MIP-1alpha) on cultured human fetal astrocytes. Both chemokines were found to bind to the surface of astrocytes in a specific and saturable manner and with the high-affinity typical of these chemokines' binding to leukocyte CCRs. Binding of labeled MCP-1 and of labeled MIP-1alpha was antagonized by the respective unlabeled homologue but not by the unlabeled heterologous chemokine. Binding of labeled MCP-1 was also inhibited by unlabeled MCP-3, both of which are ligands for CCR2. In a parallel manner, binding of labeled MIP-1alpha was first shown to be attenuated by unlabeled RANTES, both of which recognize CCR1 and CCR5, and then separately antagonized by MCP-3 and MIP-1beta, which bind to CCR1 and CCR5, respectively. Finally, binding of both labeled chemokines was observed to be modulated in response to astrocyte stimulation by proinflammatory cytokines interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha), further indicating that these binding sites are subject to regulation and, thus, likely to be physiologically responsive. Collectively, these results indicate that binding sites exhibiting characteristics of chemokine receptors exist on human astrocytes. Such sites might function in the recruitment of both astrocytes and leukocytes to specified brain regions during physiological and pathophysiological processes.  相似文献   

12.
Chemokines direct the recruitment of leukocytes to inflammatory sites and may also participate in the regulation of cytokine production by naive T helper cells. Chemokine production by blood monocytes was investigated by intracytoplasmic staining in interferon-beta (IFN-beta)-treated multiple sclerosis (MS) patients, untreated MS patients, and healthy controls. Under unstimulated conditions, no differences in the production of interleukin-8 (IL-8), IFN-inducible protein 10 (IP-10), monokine induced by interferon-gamma (Mig), monocyte chemoattractant protein-1 (MCP-1), and monocyte chemoattractant protein-3 (MCP-3) were seen between untreated MS patients and controls. Chemokine production by monocytes following T cell activation was decreased in MS patients taking IFN-beta compared to controls and untreated MS patients. Unlike other chemokines, macrophage inflammatory protein-1alpha (MIP-1alpha) production by monocytes was significantly decreased in untreated MS patients compared to controls, and IFN-beta treatment increased MIP-1alpha expression to the level seen in controls. In vitro addition of IFN-beta1b to peripheral blood mononuclear cells (PBMC) cultures tended to decrease the production of IL-8, IP-10, Mig, MCP-1, and MCP-3, but not of MIP-1alpha. These findings suggest that IFN-beta treatment may have a differential affect on chemokine production by monocytes. Longitudinal studies must be done to confirm these observations.  相似文献   

13.
Transient focal ischemia is known to induce proliferation of neural progenitors in adult rodent brain. We presently report that doublecortin positive neuroblasts formed in the subventricular zone (SVZ) and the posterior peri-ventricle region migrate towards the cortical and striatal penumbra after transient middle cerebral artery occlusion (MCAO) in adult rodents. Cultured neural progenitor cells grafted into the non-infarcted area of the ipsilateral cortex migrated preferentially towards the infarct. As chemokines are known to induce cell migration, we investigated if monocyte chemoattractant protein-1 (MCP-1) has a role in post-ischemic neuroblast migration. Transient MCAO induced an increased expression of MCP-1 mRNA in the ipsilateral cortex and striatum. Immunostaining showed that the expression of MCP-1 was localized in the activated microglia and astrocytes present in the ischemic areas between days 1 and 3 of reperfusion. Furthermore, infusion of MCP-1 into the normal striatum induced neuroblast migration to the infusion site. The migrating neuroblasts expressed the MCP-1 receptor CCR2. In knockout mice that lacked either MCP-1 or its receptor CCR2, there was a significant decrease in the number of migrating neuroblasts from the ipsilateral SVZ to the ischemic striatum. These results show that MCP-1 is one of the factors that attract the migration of newly formed neuroblasts from neurogenic regions to the damaged regions of brain after focal ischemia.  相似文献   

14.
After nerve injury, recruitment of circulating macrophages into the endoneurium is essential for degeneration and subsequently for successful regeneration. However, the factors leading to macrophage recruitment are not known in detail. Chemokines are one of many possible factors influencing recruitment. In this study we wanted to examine, immunohistochemically, the expression of MCP-1, MIP-1alpha and RANTES from 6 hours up to 4 weeks after transection of rat sciatic nerve. An increased expression of MCP-1 was noted already 6 hours after transection, mainly in Schwann cells. Later, the MCP-1 positive staining was seen also in macrophages, fibroblast-like cells and endothelial cells. An increased number of MIP-1alpha positive cells could be noticed after 24 hours, the maximum expression in Schwann cells was noted at the 5-day timepoint. Later, part of the positive cells appeared to be macrophages. RANTES was mainly expressed in inflammatory cells. Endothelial cells in the epi- and endoneurium showed positive staining for every chemokine studied after transection. The contralateral non-operated nerves showed an increased number of positive cells for MCP-1 and MIP-1alpha. In the control nerves MCP-1 and MIP-1alpha positive cells were scattered throughout the endoneurium. This study shows that increased expression of chemokines takes place within endoneurium after peripheral nerve transection. Thus, it is probable that chemokines can take part in the recruitment of macrophages. It further shows that there is an increased expression of the studied chemokines in the non-operated contralateral nerves. Even in normal conditions chemokines are needed, probably to keep resident macrophages within endoneurium.  相似文献   

15.
Experimental autoimmune neuritis (EAN) is an inflammatory autoimmune demyelinating disease of the peripheral nervous system (PNS) and represents an animal model of Guillain-Barré syndrome (GBS), which is a major inflammatory demyelinating disease of the PNS in humans. In the present study, the dynamics of the expression of the chemokines macrophage inflammatory protein-1alpha (MIP-1alpha), MIP-2 and monocyte chemotactic protein-1 (MCP-1) were determined in the sciatic nerves of EAN rats. Additionally, the effect of neutralizing antibodies against MIP-1alpha, MIP-2 and MCP-1 on the clinical course of EAN and the chemokine expression was investigated. The maximum of MIP-1alpha positive cells in the sciatic nerves was seen on day 14 post immunization (p.i.) correlating with the development of severe clinical signs. Administration of an anti-MIP-1alpha antibody suppressed the clinical signs of EAN and inhibited inflammation and demyelination in the sciatic nerve. Peak numbers of MCP-1 positive cells in the sciatic nerves were detected on day 7 p.i. Administration of an anti-MCP-1 antibody caused a delay of onset of EAN. However, 4 of the 6 EAN rats receiving the anti-MCP-antibody showed the same degree of inflammatory cell infiltration and demyelination in the sciatic nerves as sham-treated EAN rats, whereas only 2 EAN rats had less inflammation and demyelination. The numbers of MIP-2 positive cells reached a maximum on day 21 p.i. Anti-MIP-2 antibody failed to suppress the clinical signs of EAN and the inflammation and demyelination in the sciatic nerves. Only administration of the anti-MIP-1alpha antibody resulted in a significant reduction in the number of chemokine (MIP-1alpha)-positive cells and ED1-positive macrophages in the sciatic nerves. The present results demonstrate that MIP-1alpha and MCP-1 may play a role in the immunopathogenesis of EAN, and that MIP-1alpha induced trafficking of inflammatory cells can be inhibited by immunoneutralization. Further elucidation of the regulation and coordination of MIP-1alpha and MCP-1 production may lead to new therapeutic approaches to GBS in humans.  相似文献   

16.
17.
Innate responses in the CNS are critical to first line defense against infection and injury. Leukocytes migrate to inflammatory sites in response to chemokines. We studied leukocyte migration and glial chemokine expression within the denervated hippocampus in response to axonal injury caused by entorhinodentate lesions. A population of Mac1/CD11b+ CD45high macrophages (distinct from CD45low microglia) was specifically detected within the lesion-reactive hippocampus by 12 hr after injury. Significant infiltration by CD3+ T cells did not occur in the denervated hippocampus until 24 hr after axotomy. A broad spectrum of chemokines [RANTES/CCL5, monocyte chemoattractant protein (MCP)-1/CCL2, interferon gamma inducible protein (IP)-10/CXCL10, macrophage inflammatory protein (MIP)-1alpha/CCL3, MIP-1beta/CCL4, and MIP-2/CXCL2] was induced at this time. RANTES/CCL5 was not significantly elevated until 24 hr after axotomy, whereas MCP-1/CCL2 was significantly induced before leukocyte infiltration occurred. Neither T cells nor macrophages infiltrated the denervated hippocampus of CCR2-deficient mice, arguing for a critical role for the CCR2 ligand MCP-1/CCL2 in leukocyte migration. Both T cells and macrophages infiltrated CCR5-deficient hippocampi, showing that CCR5 ligands (including RANTES/CCL5) are not critical to this response. In situ hybridization combined with immunohistochemistry for ionized binding calcium adapter molecule (iba)1 or glial fibrillary acidic protein (GFAP) identified iba1+ microglia and GFAP+ astrocytes as major sources of MCP-1/CCL2 within the lesion-reactive hippocampus. We conclude that leukocyte responses to CNS axonal injury are directed via innate glial production of chemokines.  相似文献   

18.
19.
The pathological hallmarks of secondary progressive (SP) multiple sclerosis (MS) include slowly expanding demyelination and axonal damage with less inflammation. To elucidate the pathomechanisms of secondary progressive (SP) multiple sclerosis (MS), we have investigated the expression of chemokines, chemokine receptors, matrix metalloproteinase-9 (MMP-9) and immunoglobulins in the demyelinating plaques. Immunohistochemical analysis revealed that numerous hypertrophic astrocytes were observed at the rim, but not in the center, of the chronic active lesions. Microglia/macrophages phagocytosing myelin debris were also found at the lesion border. In contrast, T cell infiltration was minimal in these plaques. Characteristically, at the rim of the lesions, there were abundant immunoreactivities for monocyte chemoattractant protein-1 (MCP-1)/CCL2 and interferon-γ inducible protein-10 (IP-10)/CXCL10 and their receptors, CCR2 and CXCR3, while these immunoreactivities were weak in the center, thus forming a chemokine gradient. Double immunofluorescense staining demonstrated that cellular sources of MCP-1/CCL2 and IP-10/CXCL10 were hypertrophic astrocytes and that both astrocytes and microglia/macrophages expressed CCR2 and CXCR3. MMP-9 was also present at the rim of the lesions. These results suggest that MCP-1/CCL2 and IP-10/CXCL10 produced by astrocytes may activate astrocytes in an autocrine or paracrine manner and direct reactive gliosis followed by migration and activation of microglia/macrophages as effector cells in demyelinating lesions. Targeting chemokines in SPMS may therefore be a powerful therapeutic approach to inhibit lesional expansion.  相似文献   

20.
Beta-chemokine receptor expression in idiopathic inflammatory myopathies   总被引:4,自引:0,他引:4  
Beta-chemokines attract and activate T cells and monocytes and have a key role in chronic inflammation. Certain beta-chemokines, such as monocyte chemoattractant protein-1 (MCP-1), have been reported to be upregulated in the idiopathic inflammatory myopathies (IIM). We studied the distribution of beta-chemokine receptors in polymyositis (PM), sporadic inclusion-body myositis (sIBM), dermatomyositis (DM), and control samples. CCR1-5 were localized to blood vessels in all samples. In addition, increased endothelial expression of CCR2A was observed in IIM. Subsets of inflammatory cells, identified as macrophages and T cells, in all three types of IIM expressed CCR2A, CCR2B, CCR3, CCR4, and CCR5. In contrast to an earlier report, we found CCR2B to be the most prominent MCP-1 receptor on inflammatory cells in IIM, especially in PM and sIBM. Strong CCR4 expression was present on myonuclei of regenerating muscle fibers. The prominence of the CCR2 receptors further underlines the importance of the interaction with their ligand MCP-1 in the immunopathogenesis of IIM and puts CCR2B forward as a potential target for future therapeutic intervention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号