首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel method for preparing the PLGA nanospheres with hydrophilic surface has been designed and characterized. Because of good solubility of tetraglycol in water, PLGA (poly(lactide-co-glycolide)) nanospheres were formed by spraying the PLGA/tetraglycol solution into water. The size of PLGA nanospheres was manipulated by changing the concentration of PLGA/tetraglycol solution. Based on the hydrophobic interaction between PLGA and poly(propylene oxide) domain of F-127 (one of Pluronics, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer, F-127-coated PLGA nanospheres was prepared to enhance the stability of PLGA nanospheres in the aqueous media. For the application as a drug delivery vehicle, it was characterized by measuring the loading amount, the encapsulation efficiency and the release pattern of drug. Paclitaxel used as a potent anti-cancer drug was selected as a model drug.  相似文献   

2.
In this study, the formulation and process parameters that determine successful production and long-term stability of freeze-dried poly(lactic acid) (PLA) nanoparticles with "hairy-like" poly(ethylene oxide) (PEO) surfaces were investigated. Nanoparticles with grafted (covalently bound) PEO coatings were produced by the salting-out method from blends of PLA and PLA-PEO diblock or triblock copolymers. PLA nanoparticles with physically adsorbed PEO were also produced. The redispersibility of the nanoparticles after freeze-drying under various conditions was assessed. The surface of the nanoparticles was characterized and classified in terms of "brush" and "loop" conformations. Upon freeze-drying, it appeared that the presence of PEO at the nanoparticle surface could severely impair the redispersibility of the particles, especially in the PEO-grafted systems. This effect was shown to be related to the amount and molecular weight of PEO in the various formulations. In most cases, particle aggregation was prevented by use of trehalose as lyoprotective agent. Increasing the concentration of particles in the suspension to be freeze-dried was shown to induce much less damage to the nanoparticles, and freezing the suspension at a very low temperature (-196 degrees C) was found to further improve the lyoprotective effect. Most of the lyoprotected nanoparticles remained stable for at least 12 weeks at 4 and -25 degrees C. The production and preservation of freeze-dried PLA-PEO diblock and triblock copolymer nanoparticles is feasible under optimized lyoprotective conditions.  相似文献   

3.
Amphiphilic triblock copolymers, poly(epsilon-caprolactone)-poly(ethylene oxide)-poly(epsilon-caprolactone) (PCL-PEO-PCL), were synthesized by ring opening polymerization of epsilon-caprolactone initiated with the hydroxyl functional groups of poly(ethylene glycol) at both ends of the chain. The micelles composed of this type of copolymer had such a structure that both ends of the PEO chain were anchored to the micelle. The critical micelle concentration of the block copolymer in distilled water was determined by a fluorescence probe technique using pyrene. As the hydrophobic components of the block copolymer increased, the critical micelle concentration value decreased. To estimate the feasibility as novel drug carriers, the block copolymer micelles were prepared by precipitation of polymer from acetone solution into water. From the observation of transmission electron microscopy, the micelles exhibited a spherical shape. Nimodipine was incorporated into the hydrophobic inner core of micelles as a lipophilic model drug to investigate the drug release behavior. The PEO/PCL ratio of copolymer was a main factor in controlling micelle size, drug-loading content, and drug release behavior. As PCL weight ratio increased, the micelle size and drug-loading content increased, and the drug release rate decreased.  相似文献   

4.
《药学学报(英文版)》2020,10(6):1122-1133
This study aimed to explore the link between block copolymers’ interfacial properties and nanoscale carrier formation and found out the influence of length ratio on these characters to optimize drug delivery system. A library of diblock copolymers of PEG-PCL and triblock copolymers with additional PEI (PEG-PCL-PEI) were synthesized. Subsequently, a systematic isothermal investigation was performed to explore molecular arrangements of copolymers at air/water interface. Then, structural properties and drug encapsulation in self-assembly were investigated with DLS, SLS and TEM. We found the additional hydrogen bond in the PEG-PCL-PEI contributes to film stability upon the hydrophobic interaction compared with PEG-PCL. PEG-PCL-PEI assemble into smaller micelle-like (such as PEG-PCL4006-PEI) or particle-like structure (such as PEG-PCL8636-PEI) determined by their hydrophilic and hydrophobic block ratio. The distinct structural architectures of copolymer are consistent between interface and self-assembly. Despite the disparity of constituent ratio, we discovered the arrangement of both chains guarantees balanced hydrophilic–hydrophobic ratio in self-assembly to form stable construction. Meanwhile, the structural differences were found to have significant influence on model drugs incorporation including docetaxel and siRNA. Taken together, these findings indicate the correlation between molecular arrangement and self-assembly and inspire us to tune block compositions to achieve desired nanostructure and drug loading.  相似文献   

5.
6.
With the objective of obtaining slow-acting isoniazid derivatives, of potential use as chemoprophylactics or chemotherapeutics in tuberculosis, the micelle-forming copolymer of poly(ethylene glycol)-poly(aspartic acid) prodrug with isoniazid was synthesized. The derivative obtained was found to be active in Mycobacterium tuberculosis culture, with a minimal inhibitory concentration (MIC) 5.6 times lower than that of the tuberculostatic drug.  相似文献   

7.
Poly(ethylene glycol)-grafted-polyethylenimine (PEG-PEI) are promising non-viral gene delivery systems. Herein, we aimed to synthesize a biodegradable disulfide containing PEGylated PEI to attempt to reduce its cytotoxicity and enhance the gene transfer activity. Using click chemistry, low Mw PEI (br. 2 kDa) and short chain length PEG (tetraethylene glycol, TEG) were cross-linked to a high Mw PEG-PEI copolymer (~ 22 kDa). The chemical structure of the copolymer was characterized using (1)H NMR and GPC. The degradation behavior was investigated under in vitro conditions in the presence of 1,4-dithiothreitol (DTT). The gel retardation assay, dynamic light scattering and atomic force microscopy showed good DNA condensation ability by forming polyplexes with small particle size and positive zeta potential. In particular, MTT assay indicated that this PEG-PEI polymer is about 22-fold less toxic than PEI 25k and only 2-fold more toxic than PEI 2k in L929 cell line. After coupling of small PEG chains and cross-linking by disulfide bridges, the transfection efficiency is increased approximately 6-fold in comparison to PEI 2k and still reaches approximately 17% of PEI 25k. Hence, this click cluster cross-linked disulfide containing PEG-PEI copolymer could be an attractive cationic polymer for non-viral gene delivery.  相似文献   

8.
Purpose. Microparticles containing ovalbumin as a model for protein drugs were formulated from blends of poly(DL lactide-co-glycolide) and poly(ethylene oxide)-poly(propylene oxide) copolymers (Pluronic). The objectives were to achieve uniform release characteristics and improved protein delivery capacity. Methods. The water- in oil -in oil emulsion/solvent extraction technique was used for microparticle production. Results. A protein loading level of over 40% (w/w) was attained in microparticles having a mean diameter of approximately 5 µm. Linear protein release profiles over 25 days in vitro were exhibited by certain blend formulations incorporating hydrophilic Pluronic F127. The release profile tended to plateau after 10 days when the more hydrophobic Pluronic L121 copolymer was used to prepare microparticles. A delivery capacity of 3 µg OVA/mg particles/ day was achieved by formulation of microparticles using a 1:2 blend of PLG:Pluronic F127. Conclusions. The w/o/o formulation approach in combination with PLG:Pluronic blends shows potential for improving the delivery of therapeutic proteins and peptides from microparticulate systems. Novel vaccine formulations are also feasible by incorporation of Pluronic L121 in the microparticles as a co-adjuvant.  相似文献   

9.
The near infrared (NIR) spectroscopic technique was used to determine copolymer ratios of polylactide-co-glycolide samples. Appropriate quantities of DL-polylactic acid and lactic-co-glycolic acid polymers with 86:14, 75:25, 64:36 and 52:48 lactide to glycolide ratios were dissolved in methylene chloride to obtain 5% (w/w) solutions. NIR spectra of the samples were obtained from the solutions using a Polyol Analyzer operated in the transmittance mode. Linear regression calibration models were generated at 2130 and 2288 nm from the second derivative spectral data obtained from the NIR technique. The lowest and highest standard errors of calibration (SEC) at 2130 nm were 1.29 and 1.63%, whereas those obtained from the calibration models generated at 2288 nm were 2.00 and 2.03%, respectively. Partial least squares (PLS) calibration models were also generated from the second derivative spectral data from 1100 to 2500 nm. The lowest and the highest SEC for the models were 1.46 and 1.53%, respectively. The calibration models were then used to predict the lactide contents of the unknown (test) samples. The highest percent error of prediction was 2.56% for samples with 86% lactide content when the linear regression calibration at 2130 nm was used, whereas the highest percent error of prediction was 1.56% for samples with 64% lactide content when the linear regression calibration at 2288 nm was used. The highest percent error of prediction was 1.73% for samples with 75% lactide content when the two-factor PLS calibration model was used.  相似文献   

10.
This paper deals with the preparation and characterization of monomethoxypoly(ethylene oxide)-poly(lactic acid) (MPEO-PLA) nanoparticles containing protein C, a plasma inhibitor which regulates the mechanism of blood coagulation. Protein C was entrapped in MPEO-PLA nanoparticles using the double emulsion method. The influence of MPEO-PLA copolymers on the different parameters was evaluated: characteristics of protein C-loaded nanoparticles, in vitro release of the protein, evolution of the particle size with incubation time and MPEO release. The nanoparticle size does not depend on copolymer characteristics (MPEO and/or PLA block molecular weight). On the other hand, the efficiency of protein C entrapment is affected by the copolymer characteristics. The burst effect during the protein C release is increased with the hydrophilic character of the copolymer. Moreover, protein C adsorption on the particle surface during its release may be related to MPEO release. Only 25% of the released protein C is active, which clearly illustrates that it is altered during its encapsulation. The optimization of the experimental parameters which disturbed entrapped protein C activity, i.e. sonication time and organic solvent was investigated and has led to a preservation of protein C activity. Then, to optimize its entrapment efficiency, a blend PLA/MPEO-PLA (25/75) was used to prepare nanoparticles. This blend limited burst effect of protein C and its adsorption. However, protein C is only partially released which implicates further investigation for a potential therapeutic use.  相似文献   

11.
Biodegradability of poly(γ-benzyl L-glutamate)/poly(ethylene oxide)/poly(γ-benzyl L-glutamate) block copolymer (GEG) having different content of poly(ethylene oxide) (PEO) were examined using magnetite as a tracer in mice. GEG microspheres containing magnetite were injected into mice through tail vein. Biodegradability and tissue distribution of microspheres were examined by analyzing the amount of magnetite in the microspheres recollected from mice organs after specific time interval. The results showed that GEG microsphere of high content of PEO was degraded more rapidly than those of low content of PEO in the mice organs.  相似文献   

12.
The effects of administration of the parent substance of high-molecular-weight poly(ethylene oxide) (HMWPEO) with a molecular mass of 3-6 x 10(6) D and the related drug polyetox (representing a water-soluble lyophilized form of HMWPEO suitable for intravenous injection) on the characteristics of peripheral blood and bone marrow were studied in rats. HMWPEO was injected intravenously and intraperitoneally in a single toxic dose. Polyetox was injected intraperitoneally in a therapeutic dose and in 3- and 10-fold doses over a period of 30 days. Single i.v. and i.p. injections of HMWPEO in the maximum tolerable dose leads to a dose-dependent reversible hemolytic anemia of medium degree, neutrophilic leukocytosis, lymphopenia, and thrombocytopenia. The chronic i.p. adminstration of polyetox in a 10-fold therapeutic dose caused red blood cell lysis and led to the development of reversible regenerative anemia.  相似文献   

13.
The pharmacokinetics of high-molecular-weight poly(ethylene oxide) (PEO) was studied after intravenous injection in rats. The polymer is eliminated from the blood plasma (central compartment) according to a single-exponent law with an elimination rate constant of 0.0127 h−1. The polymer and its fragments were excreted mainly with urine. The large mean retention time indicates that PEO can be accumulated in the organism. __________ Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 40, No. 9, pp. 7–8, September, 2006.  相似文献   

14.
Objectives Intestinal toxicity and low levels of systemic drug exposure are among the major problems associated with tumour therapy. We have developed poly (ethylene oxide)‐poly (propylene oxide)‐poly (ethylene oxide) (PEO‐PPO‐PEO) micelles loaded with irinotecan hydrochloride (CPT‐11) hoping to decrease CPT‐11‐induced intestinal toxicity while increasing its systemic exposure. In addition, we have investigated the potential involvement of breast cancer resistance protein (BCRP) in biliary excretion, pharmacokinetics, and intestinal toxicity of CPT‐11. Methods PEO‐PPO‐PEO micelles were prepared using PEO20‐PPO70‐PEO20 and lecithin. The effect of PEO‐PPO‐PEO micelles on BCRP‐mediated cellular accumulation and transport efflux of CPT‐11 was evaluated in MDCKII/BCRP cells. The biliary excretion, intestinal damage, and pharmacokinetic study of CPT‐11‐loaded PEO‐PPO‐PEO micelles were investigated in rats. Key findings The obtained micelles could effectively inhibit BCRP‐mediated CPT‐11 efflux in MDCKII/BCRP cells, and significantly decrease the drug biliary excretion in rats. Moreover, intestinal toxicity, assessed by microscopic examination of pathological damage, was ameliorated in rats injected with PEO‐PPO‐PEO micelles compared with rats injected with CPT‐11 alone. Treatment with PEO‐PPO‐PEO micelles resulted in prolonged circulation time in blood and increased bioavailability of CPT‐11 and SN‐38 (7‐ethyl‐10‐hydroxycamptothecin). Conclusions PEO‐PPO‐PEO micelles were identified as promising carriers able to reduce intestinal toxicity and increase antitumour therapeutic effect of CPT‐11. The study indicated a potential involvement of BCRP in CPT‐11 pharmacokinetics and CPT‐11‐induced intestinal toxicity.  相似文献   

15.
An acute inhalation toxicity study in several species of animals with an ethylene oxide/propylene oxide copolymer (EO/PO) having a molecular weight of 4000 [UCON-50-HB-5100, CAS #9038-95-3] was designed to determine if any species variation could be shown. Species tested included: rats, mice, hamsters, guinea pigs, and dogs. The test material was administered as a respirable liquid aerosol for 4 hours at target concentrations of 50, 100, 200, and 500 mg/m3. A vehicle control group was exposed to a distilled water aerosol. The 4 hours LC50's were calculated to be 147 mg/m3 [rats], 174 mg/m3 [mice], 293 mg/m3 [guinea pigs] and 511 mg/m [hamsters]. The dog LC50 was determined to be greater than 500 mg/m3 since all the test animals survived exposure to this concentration. These values show that rats and mice were the most sensitive species with a declining response in guinea pigs, hamsters and dogs. Lung weights were increased at all exposure concentrations in rats, mice and hamsters. Lung weights were increased in guinea pigs at exposure concentrations of 100 mg/m3 and above. Lung weights in dogs were increased only at the 500 mg/m3 exposure concentration. Significant pathological changes were limited to the lungs and were more common in animals which died prior to scheduled sacrifice. Grossly, these lung changes consisted of red discoloration, edema, emphysema, and surface irregularities. Microscopic findings in the lungs included acute congestion and hemorrhage and, less commonly, acute interstitial inflammation.  相似文献   

16.
Increasing knowledge into personalized medicine has demonstrated the need for individual dosing. Drug dosage forms are urgently needed enabling an individual therapy, especially for oral drug delivery. This review is focusing on approaches for solid and liquid oral dosage forms for individual dosing. The proposed dosage forms and devices may be distinguished into assembling and partition concepts and have been categorized regarding their applicability, costs, dose flexibility and potential benefits. Opportunities, challenges and further unmet needs are elaborated and critically discussed. Liquid dosage forms can be accurately dosed by novel dropping tubes or oral syringes, but less precisely by dosing spoons and cups. Breaking scored tablets into fragments show major risks such as inaccurate dosing, formation of potent dust and stability issues of the residual segments. Novel approaches are proposed for solid dosage forms enabling a flexible and appropriate therapy such as various dispensers for multiparticulate drug formulations. However, most of the proposals still have to prove their applicability in practice. Promising concepts are the solid dosage pen and drug-loaded oral films which can be cut in individual sections enabling freely selectable doses. Further research and development are required for novel dosage forms and medical devices appropriate for individualized therapy.  相似文献   

17.
Tri-block poly(lactide)-poly(ethylene glycol)-poly(lactide) (PLA-PEG-PLA) copolymers and related acrylated derivative were synthesized and used to prepare micelles and nanogels for controlled release of naltrexone. The resulting copolymers, micelles and nanogels were characterized by various techniques such as proton nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, gel permeation chromatography, fluorescence spectrometry, differential scanning calorimetry, photon correlation spectroscopy and scanning electron microscopy. The nanogels exhibited high encapsulation efficiency around 60% and excellent stability for long periods of time. The drug release profiles of micelles and nanogels were compared and it was found that the naltrexone loaded nanogels offered a steady and long-term release pattern for different periods of time up to 35 days, depending on the crosslinker concentration, compared to the micelles. The size of nanogels could be manipulated easily in the range of 128-200 nm by variations in polymer concentration used in the nanogels preparation step. From the results obtained it can be concluded that PLA-PEG-PLA nanogels can be considered as a promising carrier for drug delivery purpose.  相似文献   

18.
This review describes our recent efforts on the design and preparation of intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) (PEG-PAA) block copolymers. The polymeric micelles feature a spherical sub-100 nm core-shell structure in which anticancer drugs are loaded avoiding undesirable interactions in vivo. Chemical modification of the core-forming block of PEG-PAA with a hydrazone linkage allows the polymeric micelles to release drugs selectively at acidic pH (4-6). Installation of folic acids on the micelle surface improves cancer cell-specific drug delivery efficiency along with pH-controlled drug release. These intelligent micelles appear to be superior over classical micelles that physically incorporate drugs. Studies showed both controlled drug release and targeted delivery features of the micelles reduced toxicity and improved efficacy significantly. Further developments potentiate combination delivery of multiple drugs using mixed micelles. Therefore clinically relevant performance of the polymeric micelles provides a promising approach for more efficient and patient-friendly cancer therapy.  相似文献   

19.
The triblock copolymer based on poly(epsilon-caprolactone) (PCL) as hydrophobic part and poly(ethylene glycol) (PEG) as hydrophilic one was synthesized and characterized. Core-shell type nanoparticles of poly(epsilon-caprolactone)/poly(ethylene glycol)/poly(epsilon-caprolactone) (CEC) block copolymer were prepared by a dialysis technique. According to the amphiphilic characters, CEC block copolymer can self-associate at certain concentration and their critical association concentration (CAC) was determined by fluorescence probe technique. CAC value of the CEC-2 block copolymer was evaluated as 0.0030 g/l. CAC values of CEC block copolymer decreased with the increase of PCL chain length, i.e. the shorter the PCL chain length, the higher the CAC values. From the observation of transmission electron microscopy (TEM), the morphologies of CEC-2 core-shell type nanoparticles were spherical shapes. Particle size of CEC-2 nanoparticles was 32.3+/-17.3 nm as a monomodal and narrow distribution. Particle size, drug loading, and drug release rate of CEC-2 nanoparticles were changed by the initial solvents and the molecular weight of CEC. The degradation behavior of CEC-2 nanoparticles was observed by 1H NMR spectroscopy. It was suggested that clonazepam (CNZ) release kinetics were dominantly governed by diffusion mechanism.  相似文献   

20.
Irinotecan-containing nanoparticles (NP) were prepared by coprecipitation with addition of water to acetone solution of poly(DL-lactic acid), poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) and irinotecan, and subsequent evaporation of organic solvent. NP were purified by gel filtration and used for experiments after condensation by evaporation. The obtained NP showed the drug content of 4.5% (w/w) and the mean particle diameter of 118 nm with the particle diameter distribution between 80-210 nm. When the antitumor effect was examined at a repeated dose of 20 mg irinotecan eq/kg for 3 d (3 x 20 mg/kg) using mice bearing Sarcoma 180 subcutaneously, only NP suppressed tumor growth significantly. After i.v. injection in rats, NP maintained irinotecan plasma concentration longer than CPT-11 aqueous solution. The present nanoparticle formation is suggested as a possibly useful dosage form of irinotecan against solid tumor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号