首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The abilities of mutated active K-RAS and H-RAS proteins, in an isogenic human carcinoma cell system, to modulate the activity of signaling pathways following exposure to ionizing radiation is unknown. Loss of K-RAS D13 expression in HCT116 colorectal carcinoma cells blunted basal extracellular signal-regulated kinase 1/2 (ERK1/2), AKT, and c-Jun NH2-terminal kinase 1/2 activity. Deletion of the allele to express K-RAS D13 also enhanced expression of ERBB1, ERBB3, and heregulin but nearly abolished radiation-induced activation of all signaling pathways. Expression of H-RAS V12 in HCT116 cells lacking an activated RAS molecule (H-RAS V12 cells) restored basal ERK1/2 and AKT activity to that observed in parental cells but did not restore or alter basal c-jun NH2-terminal kinase 1/2 activity. In parental cells, radiation caused stronger ERK1/2 pathway activation compared with that of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, which correlated with constitutive translocation of Raf-1 into the plasma membrane of parental cells. Inhibition of mitogen-activated protein kinase/ERK1/2, but not PI3K, radiosensitized parental cells. In H-RAS V12 cells, radiation caused stronger PI3K/AKT pathway activation compared with that of the ERK1/2 pathway, which correlated with H-RAS V12-dependent translocation of PI3K into the plasma membrane. Inhibition of PI3K, but not mitogen-activated protein kinase/ERK1/2, radiosensitized H-RAS V12 cells. Radiation-induced activation of the PI3K/AKT pathway in H-RAS V12 cells 2 to 24 hours after exposure was dependent on heregulin-stimulated ERBB3 association with membrane-localized PI3K. Neutralization of heregulin function abolished radiation-induced AKT activation and reverted the radiosensitivity of H-RAS V12 cells to those levels found in cells lacking expression of any active RAS protein. These findings show that H-RAS V12 and K-RAS D13 differentially regulate radiation-induced signaling pathway function. In HCT116 cells expressing H-RAS V12, PI3K-dependent radioresistance is mediated by both H-RAS-dependent translocation of PI3K into the plasma membrane and heregulin-induced activation of membrane-localized PI3K via ERBB3.  相似文献   

2.
We hypothesized that epidermal growth factor (EGF) receptor (EGFR) activation and vascular endothelial growth factor (VEGF)-induced angiogenic signals are important for the progression and metastasis of human salivary adenoid cystic carcinoma (ACC). To test this hypothesis, we evaluated the therapeutic effect of AEE788, a dual inhibitor of EGF and VEGF receptor (VEGFR) tyrosine kinases, on human salivary ACC. In clinical specimens of salivary ACC, EGF and VEGF signaling proteins were expressed at markedly higher levels than in adjacent normal glandular tissues. We examined the effects of AEE788 on salivary ACC cell growth and apoptosis and on the phosphorylation of EGFR and VEGFR-2 in salivary ACC cells. Treatment of salivary ACC cells with AEE788, alone or in combination with chemotherapy, led to growth inhibition, induction of apoptosis, and dose-dependent inhibition of EGFR and VEGFR-2 phosphorylation. To determine the in vivo antitumor effects of AEE788, nude mice with orthotopic parotid tumors were randomized to receive oral AEE788 alone, paclitaxel alone, cisplatin alone, a combination of AEE788 plus paclitaxel, a combination of AEE788 plus cisplatin, or a placebo. AEE788 inhibited tumor growth and prevented lung metastasis in nude mice. To study the mechanism of interaction between AEE788 and chemotherapy, AEE788 was found to potentiate growth inhibition and apoptosis of ACC tumor cells mediated by chemotherapy. Tumors of mice treated with AEE788 and AEE788 plus chemotherapy exhibited down-regulation of activated EGFR and VEGFR-2, increased tumor and endothelial cell apoptosis, and decreased microvessel density, which correlated with a decrease in the level of matrix metalloproteinase-9 and matrix metalloproteinase-2 expression and a decrease in the incidence of vascular metastasis. These data show that EGFR and VEGFR can be molecular targets for therapy of salivary ACC.  相似文献   

3.
Tumor cells with genomic amplification of MET display constitutive activation of the MET tyrosine kinase, which renders them highly sensitive to MET inhibition. Several MET inhibitors have recently entered clinical trials; however, as with other molecularly targeted agents, resistance is likely to develop. Therefore, elucidating possible mechanisms of resistance is of clinical interest. We hypothesized that collateral growth factor receptor pathway activation can overcome the effects of MET inhibition in MET-amplified cancer cells by reactivating key survival pathways. Treatment of MET-amplified GTL-16 and MKN-45 gastric cancer cells with the highly selective MET inhibitor PHA-665752 abrogated MEK/mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/AKT signaling, resulting in cyclin D1 loss and G(1) arrest. PHA-665752 also inhibited baseline phosphorylation of epidermal growth factor receptor (EGFR) and HER-3, which are transactivated via MET-driven receptor cross-talk in these cells. However, MET-independent HER kinase activation using EGF (which binds to and activates EGFR) or heregulin-beta1 (which binds to and activates HER-3) was able to overcome the growth-inhibitory effects of MET inhibition by restimulating MEK/MAPK and/or PI3K/AKT signaling, suggesting a possible escape mechanism. Importantly, dual inhibition of MET and HER kinase signaling using PHA-665752 in combination with the EGFR inhibitor gefitinib or in combination with inhibitors of MEK and AKT prevented the above rescue effects. Our results illustrate that highly targeted MET tyrosine kinase inhibition leaves MET oncogene-"addicted" cancer cells vulnerable to HER kinase-mediated reactivation of the MEK/MAPK and PI3K/AKT pathways, providing a rationale for combined inhibition of MET and HER kinase signaling in MET-amplified tumors that coexpress EGFR and/or HER-3.  相似文献   

4.
Therapies inhibiting receptor tyrosine kinases (RTKs) are effective against some human cancers when they lead to simultaneous downregulation of PI3K/AKT and MEK/ERK signaling. However, mutant KRAS has the capacity to directly activate ERK and PI3K signaling, and this is thought to underlie the resistance of KRAS mutant cancers to RTK inhibitors. Here, we have elucidated the molecular regulation of both the PI3K/AKT and MEK/ERK signaling pathways in KRAS mutant colorectal cancer cells and identified combination therapies that lead to robust cancer cell apoptosis. KRAS knockdown using shRNA suppressed ERK signaling in all of the human KRAS mutant colorectal cancer cell lines examined. However, no decrease, and actually a modest increase, in AKT phosphorylation was often seen. By performing PI3K immunoprecipitations, we determined that RTKs, often IGF-IR, regulated PI3K signaling in the KRAS mutant cell lines. This conclusion was also supported by the observation that specific RTK inhibition led to marked suppression of PI3K signaling and biochemical assessment of patient specimens. Interestingly, combination of RTK and MEK inhibitors led to concomitant inhibition of PI3K and MEK signaling, marked growth suppression, and robust apoptosis of human KRAS mutant colorectal cancer cell lines in vitro and upon xenografting in mice. These findings provide a framework for utilizing RTK inhibitors in the treatment of KRAS mutant colorectal cancers.  相似文献   

5.
Patients with non-small cell lung cancer (NSCLC) who have activating epidermal growth factor receptor (EGFR) mutations benefit from treatment with EGFR-tyrosine kinase inhibitors (EGFR-TKIs), namely, gefitinib and erlotinib. However, these patients eventually develop resistance to EGFR-TKIs. About 50% of this acquired resistance may be the result of a secondary mutation in the EGFR gene, such as the one corresponding to T790M. In our previous study, we found that combined treatment with fulvestrant and gefitinib decreases the proliferation of H1975 NSCLC cells, compared to treatment with either fulvestrant or gefitinib alone; however, the molecular mechanism for the improved effects of the combination treatment are still unknown. In this study, we confirmed that fulvestrant increases the gefitinib sensitivity of H1975 cells and found that let-7c was most upregulated in the fulvestrant-treated cells. Our data revealed that let-7c increases gefitinib sensitivity by repressing RAS and inactivating the phosphoinositide 3-kinase (PI3K)/AKT and mitogen-activated extracellular signal-regulated kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathways. Taken together, our findings suggest that let-7c plays an important role in fulvestrant-induced upregulation of gefitinib sensitivity in H1975 cells.  相似文献   

6.
Epidermal growth factor receptor (EGFR) has been extensively targeted in the treatment of non-small cell lung cancer, producing responses in a small number of patients. To study the role of ligand expression in mediating response to EGFR antagonism, we injected NCI-H441 [EGFR and EGF/transforming growth factor-alpha (TGF-alpha) positive] or PC14-PE6 (EGFR positive and EGF/TGF-alpha negative) human lung adenocarcinoma cells into the lungs of nude mice. We randomized the mice to receive treatment with the EGFR tyrosine kinase inhibitors gefitinib or AEE788 or vehicle. Treatment of mice bearing NCI-H441 but not PC14-PE6 lung tumors resulted in a significant reduction in primary tumor growth, pleural effusion, and lymph node metastasis. Immunohistochemical analyses revealed that NCI-H441 and PC14-PE6 cells expressed EGFR but that the expression of EGF/TGF-alpha was high in NCI-H441 cells and very low in PC14-PE6 cells. Consequently, EGFR was activated in both tumor and tumor-associated endothelial cells in the NCI-H441 tumors but not in the PC14-PE6 tumors. Antagonism of EGFR signaling by treatment of mice with AEE788 decreased proliferation and increased apoptosis of both tumor cells and tumor-associated endothelial cells in NCI-H441 tumors but not in PC14-PE6 tumors. However, after transfection of PC14-PE6 cells with TGF-alpha, lung tumors derived from the transfected cells expressed and activated EGFR in both tumor and tumor-associated endothelial cells and tumors responded to treatment with AEE788. Collectively, these results strongly suggest that the response of human lung cancers growing orthotopically in mice to the inhibition of EGFR signaling is determined by ligand (EGF/TGF-alpha) expression by tumor cells. Our findings provide an additional explanation for the susceptibility of lung cancers to treatment with EGFR tyrosine kinase inhibitors.  相似文献   

7.
Middle East respiratory syndrome coronavirus (MERS-CoV) is a lineage C betacoronavirus, and infections with this virus can result in acute respiratory syndrome with renal failure. Globally, MERS-CoV has been responsible for 877 laboratory-confirmed infections, including 317 deaths, since September 2012. As there is a paucity of information regarding the molecular pathogenesis associated with this virus or the identities of novel antiviral drug targets, we performed temporal kinome analysis on human hepatocytes infected with the Erasmus isolate of MERS-CoV with peptide kinome arrays. bioinformatics analysis of our kinome data, including pathway overrepresentation analysis (ORA) and functional network analysis, suggested that extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) and phosphoinositol 3-kinase (PI3K)/serine-threonine kinase (AKT)/mammalian target of rapamycin (mTOR) signaling responses were specifically modulated in response to MERS-CoV infection in vitro throughout the course of infection. The overrepresentation of specific intermediates within these pathways determined by pathway and functional network analysis of our kinome data correlated with similar patterns of phosphorylation determined through Western blot array analysis. In addition, analysis of the effects of specific kinase inhibitors on MERS-CoV infection in tissue culture models confirmed these cellular response observations. Further, we have demonstrated that a subset of licensed kinase inhibitors targeting the ERK/MAPK and PI3K/AKT/mTOR pathways significantly inhibited MERS-CoV replication in vitro whether they were added before or after viral infection. Taken together, our data suggest that ERK/MAPK and PI3K/AKT/mTOR signaling responses play important roles in MERS-CoV infection and may represent novel drug targets for therapeutic intervention strategies.  相似文献   

8.
Constitutive activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) mitogen-activated protein kinase (MAPK) signaling pathway in human cancers is often associated with mutational activation of BRAF or RAS. MAPK/ERK kinase 1/2 kinases lie downstream of RAS and BRAF and are the only acknowledged activators of ERK1/2, making them attractive targets for therapeutic intervention. AZD6244 (ARRY-142886) is a potent, selective, and ATP-uncompetitive inhibitor of MAPK/ERK kinase 1/2. In vitro cell viability inhibition screening of a tumor cell line panel found that lines harboring BRAF or RAS mutations were more likely to be sensitive to AZD6244. The in vivo mechanisms by which AZD6244 inhibits tumor growth were investigated. Chronic dosing with 25 mg/kg AZD6244 bd resulted in suppression of growth of Colo-205, Calu-6, and SW-620 xenografts, whereas an acute dose resulted in significant inhibition of ERK1/2 phosphorylation. Increased cleaved caspase-3, a marker of apoptosis, was detected in Colo-205 and Calu-6 but not in SW-620 tumors where a significant decrease in cell proliferation was detected. Chronic dosing of AZD6244 induced a morphologic change in SW-620 tumors to a more differentiated phenotype. The potential of AZD6244 in combination with cytotoxic drugs was evaluated in mice bearing SW-620 xenografts. Treatment with tolerated doses of AZD6244 and either irinotecan or docetaxel resulted in significantly enhanced antitumor efficacy relative to that of either agent alone. These results indicate that AZD6244 has potential to inhibit proliferation and induce apoptosis and differentiation, but the response varies between different xenografts. Moreover, enhanced antitumor efficacy can be obtained by combining AZD6244 with the cytotoxic drugs irinotecan or docetaxel.  相似文献   

9.
【目的】探讨磷脂酰肌醇3激酶(PI3K)蛋白表达量及蛋白激酶 B(AKT )信号通路在过氧化氢(H2 O2)诱导的 PC12细胞中的作用及天麻素的干预对其通路的影响。【方法】PC12细胞随机分为正常对照组,模型组(400μmol/L H2 O2),天麻素低、中、高浓度组(0.1、1、10μmol/L 天麻素+400μmol/L H2 O2)。咪唑蓝法检测各组细胞活力,Hoechst 染色观察各组细胞凋亡情况,比色法检测天冬氨酸蛋白水解酶(Caspase 3)、Caspase 8及 Caspase 9活性,western blot 分析 Bcl‐2、Bax 及 PI3K 蛋白表达量与 AKT 磷酸化水平。【结果】与正常对照组比较,模型组中细胞活力下降,细胞凋亡率提高,Caspase 3、Caspase 8及 Caspase 9活性提高,Bcl‐2及 PI3K 表达量下降,Bax 表达量上升,AKT 磷酸化水平降低,差异均具有统计学意义( P <0.01);与模型组比较,天麻素低、中、高浓度组细胞活力提高,细胞凋亡率降低,Caspase 3、Caspase 8及 Caspase 9活性降低,Bcl‐2、PI3K 蛋白表达量及 AKT 磷酸化水平提高,天麻素中、高浓度组 Bax 表达量降低,差异均具有统计学意义( P <0.01)。【结论】天麻素可通过激活 PI3K/AKT 信号通路,从而抑制 H2 O2诱导的 PC12细胞凋亡。  相似文献   

10.
The cellular and molecular effects of the proteasome inhibitor bortezomib on breast cancer cells are as yet poorly characterized. Here, in a panel of six breast cancer cell lines, bortezomib reduced viability in a concentration-dependent, time-dependent, and cell line-dependent manner. Proteasome activity was relatively high in two of the three more resistant cell lines. No relationship was observed between bortezomib effects on cell viability and expression/phosphorylation of HER-2, epidermal growth factor receptor (EGFR), AKT, or extracellular signal-regulated kinase 1/2 (ERK1/2). Molecular effects of bortezomib were further studied in SK-BR-3 and BT-474 cells because they share expression of EGFR and overexpression of HER-2 while, in contrast, SK-BR-3 cells were 200-fold more sensitive to this agent. Proteasome activity was inhibited to a similar extent in the two cell lines, and known proteasome substrates accumulated similarly. In SK-BR-3 cells, a marked inhibition of EGFR, HER-2, and AKT phosphorylation was observed at a clinically relevant concentration of bortezomib. In contrast, phosphorylation of Raf/mitogen-activated protein kinase kinase 1/2 (MEK 1/2)/ERK1/2 increased by bortezomib. In BT-474 cells, the effects were much less pronounced. Treatment of SK-BR-3 cells with bortezomib combined with pharmacologic inhibitors of EGFR, phosphatidylinositol 3'-kinase, or MEK resulted in modest or no enhancement of the effects on cell viability. Collectively, these results show that bortezomib has differential cellular and molecular effects in human breast cancer cells. The bortezomib-observed effects on signaling transduction molecules might be relevant to help to design mechanistic-based combination treatments.  相似文献   

11.
Activation of the phosphatidylinositol-3-kinase (PI3K)/AKT survival pathway is a mechanism of cytotoxic drug resistance in ovarian cancer, and inhibitors of this pathway can sensitize to cytotoxic drugs. The HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) depletes some proteins involved in PI3K/AKT signaling, e.g., ERBB2, epidermal growth factor receptor (EGFR), and phosphorylated AKT (p-AKT). 17-AAG and paclitaxel were combined (at a fixed 1:1 ratio of their IC(50)) in four ovarian cancer cell lines that differ in expression of p-AKT, EGFR, and ERBB2. The EGFR-overexpressing A431 and KB epidermoid cell lines were also included. Combination indices (CI) were calculated using the median-effect equation and interpreted in the context of 17-AAG-mediated inhibition of PI3K signaling. Synergy was observed in IGROV-1- and ERBB2-overexpressing SKOV-3 ovarian cancer cells that express a high level of constitutively activated p-AKT [CI at fraction unaffected (fu)(0.5) = 0.50 and 0.53, respectively]. Slight synergy was observed in A431 cells (moderate p-AKT/overexpressed EGFR; CI at fu(0.5) = 0.76) and antagonism in CH1 (moderate p-AKT), HX62 cells (low p-AKT), and KB cells (low p-AKT/overexpressed EGFR; CI at fu(50) = 3.0, 3.5, and 2.0, respectively). The observed effects correlated with changes in the rate of apoptosis induction. 17-AAG induced a decrease in HSP90 client proteins (e.g., C-RAF, ERBB2, and p-AKT) or in downstream markers of their activity (e.g., phosphorylated extracellular signal-regulated kinase or p-AKT) in SKOV-3, IGROV-1, and CH1 cells at IC(50) concentrations. A non-growth-inhibitory concentration (6 nmol/L) reduced the phosphorylation of AKT (but not extracellular signal-regulated kinase) and sensitized SKOV-3 cells to paclitaxel. In conclusion, 17-AAG may sensitize a subset of ovarian cancer to paclitaxel, particularly those tumors in which resistance is driven by ERBB2 and/or p-AKT.  相似文献   

12.
13.
Aberrations in various cellular signaling pathways are instrumental in regulating cellular metabolism, tumor development, growth, proliferation, metastasis and cytoskeletal reorganization. The fundamental cellular signaling cascade involved in these processes, the phosphatidylinositol 3-kinase/protein kinase-B/mammalian target of rapamycin (PI3K/AKT/mTOR), closely related to the mitogen-activated protein kinase (MAPK) pathway, is a crucial and intensively explored intracellular signaling pathway in tumorigenesis. Various activating mutations in oncogenes together with the inactivation of tumor suppressor genes are found in diverse malignancies across almost all members of the pathway. Substantial progress in uncovering PI3K/AKT/mTOR alterations and their roles in tumorigenesis has enabled the development of novel targeted molecules with potential for developing efficacious anticancer treatment. Two approved anticancer drugs, everolimus and temsirolimus, exemplify targeted inhibition of PI3K/AKT/mTOR in the clinic and many others are in preclinical development as well as being tested in early clinical trials for many different types of cancer. This review focuses on targeted PI3K/AKT/mTOR signaling from the perspective of novel molecular targets for cancer therapy found in key pathway members and their corresponding experimental therapeutic agents. Various aberrant prognostic and predictive biomarkers are also discussed and examples are given. Novel approaches to PI3K/AKT/mTOR pathway inhibition together with a better understanding of prognostic and predictive markers have the potential to significantly improve the future care of cancer patients in the current era of personalized cancer medicine.  相似文献   

14.
The mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway is frequently mutated in human cancer. This pathway consists of a small GTP protein of the RAS family that is activated in response to extracellular signaling to recruit a member of the RAF kinase family to the cell membrane. Active RAF signals through MAP/ERK kinase to activate ERK and its downstream effectors to regulate a wide range of biological activities including cell differentiation, proliferation, senescence, and survival. Mutations in the v-raf murine sarcoma viral oncogenes homolog B1 (BRAF) isoform of the RAF kinase or KRAS isoform of the RAS protein are found as activating mutations in approximately 30% of all human cancers. The BRAF pathway has become a target of interest for molecular therapy, with promising results emerging from clinical trials. Here, the role of the most common BRAF mutation BRAF(V600E) in human carcinogenesis is investigated through a review of the literature, with specific focus on its role in melanoma, colorectal, and thyroid cancers and its potential as a therapeutic target.  相似文献   

15.
16.
表皮生长因子受体(EGFR)/磷脂酰肌醇3-激酶(PI3K)/蛋白激酶B(PKB,也称Akt)信号通路是生物体内一条非常重要的生存信号通路。EGFR通过二聚化后刺激Ras蛋白,导致磷酸化级联反应的发生来激活PI3K/Akt信号通路,从而引起肿瘤的发生发展。本文从EGFR/PI3K/Akt信号传导通路对肿瘤的调节机制等多个方面综述了EGFR/PI3K/Akt信号通路与肿瘤的关系。  相似文献   

17.
In many liver disorders, oxidative stress-related inflammation and apoptosis are important pathogenic components, finally resulting in acute liver failure. Erythropoietin and its analogues are well known to influence the interaction between apoptosis and inflammation in brain and kidney. The study is to clarify the effect of curcumin, a natural plant phenolic food additive, on lipopolysaccharides (LPS)-induced acute liver injury of mice with endotoxemia and associated molecular mechanism from inflammation, apoptosis and oxidative stress levels. And curcumin, lowered serum cytokines, including Interleukin 1beta (IL-1β), Interleukin 6 (IL-6) and tumor necrosis factor (TNF-α), and improved liver apoptosis through suppressing phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway and inhibiting Cyclic AMP-responsive element-binding protein (CREB)/Caspase expression, and decreased oxidative stress-associated protein expression, mainly involving 2E1 isoform of cytochrome P450/nuclear factor E2-related factor 2/reactive oxygen species (CYP2E/Nrf2/ROS) signaling pathway, as well as liver nitric oxide (NO) production in LPS-induced mice. Moreover, curcumin regulated serum alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP), accelerated liver antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and glutathione peroxidase (GSH-px) levels, and inhibited activation of the mitogen-activated protein kinases/c-Jun NH2-terminal kinase (P38/JNK) cascade in the livers of LPS-induced rats. Thus, curcumin treatment attenuates LPS-induced PI3K/AKT and CYP2E/Nrf2/ROS signaling and liver injury. Strategies to inhibit inflammation and apoptosis signaling may provide alternatives to the current clinical approaches to improve oxidative responses of endotoxemia.  相似文献   

18.
Enzastaurin (LY317615.HCl) is currently in a phase III registration trial for diffuse large B-Cell lymphoma and numerous phase II clinical trials. Enzastaurin suppresses angiogenesis and induces apoptosis in multiple human tumor cell lines by inhibiting protein kinase C (PKC) and phosphoinositide 3-kinase (PI3K)/AKT pathway signaling. PI3K/AKT pathway signaling liberates eukaryotic translation initiation factor 4E (eIF4E) through the hierarchical phosphorylation of eIF4E binding proteins (4E-BP). When hypophosphorylated, 4E-BPs associate with eIF4E, preventing eIF4E from binding eIF4G, blocking the formation of the eIF4F translation initiation complex. Herein, we show that enzastaurin treatment impacts signaling throughout the AKT/mTOR pathway leading to hypophosphorylation of 4E-BP1 in cancer cells of diverse lineages (glioblastoma, colon carcinoma, and B-cell lymphoma). Accordingly, enzastaurin treatment increases the amount of eIF4E bound to 4E-BP1 and decreases association of eIF4E with eIF4G, thereby reducing eIF4F translation initiation complex levels. We therefore chose to evaluate whether this effect on 4E-BP1 was involved in enzastaurin-induced apoptosis. Remarkably, enzastaurin-induced apoptosis was blocked in cancer cells depleted of 4E-BP1 by siRNAs, or in 4EBP1/2 knockout murine embryonic fibroblasts cells. Furthermore, eIF4E expression was increased and 4E-BP1 expression was decreased in cancer cells selected for reduced sensitivity to enzastaurin-induced apoptosis. These data highlight the importance of modulating 4E-BP1 function, and eIF4F complex levels, in the direct antitumor effect of enzastaurin and suggest that 4E-BP1 function may serve as a promising determinant of enzastaurin activity.  相似文献   

19.
20.
The T cell costimulatory molecule CD28 is important for T cell survival, yet both the signaling pathways downstream of CD28 and the apoptotic pathways they antagonize remain poorly understood. Here we demonstrate that CD4(+) T cells from CD28-deficient mice show increased susceptibility to Fas-mediated apoptosis via a phosphatidylinositol 3-kinase (PI3K)-dependent pathway. Protein kinase B (PKBalpha/Akt1) is an important serine/threonine kinase that promotes survival downstream of PI3K signals. To understand how PI3K-mediated signals downstream of CD28 contribute to T cell survival, we examined Fas-mediated apoptosis in T cells expressing an active form of PKBalpha. Our data demonstrate that T cells expressing active PKB are resistant to Fas-mediated apoptosis in vivo and in vitro. PKB transgenic T cells show reduced activation of caspase-8, BID, and caspase-3 due to impaired recruitment of procaspase-8 to the death-inducing signaling complex (DISC). Similar alterations are seen in T cells from mice which are haploinsufficient for PTEN, a lipid phosphatase that regulates phosphatidylinositol-3,4,5-trisphosphate (PIP(3)) and influences PKBalpha activity. These findings provide a novel link between CD28 and an important apoptosis pathway in vivo, and demonstrate that PI3K/PKB signaling prevents apoptosis by inhibiting DISC assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号