首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yamaguchi K  Motegi K  Endo Y 《Toxicology》2000,156(1):57-65
Interleukin (IL)-12, a potent antitumour cytokine, has inflammatory side effects. We examined the effect of IL-12 on the histamine-forming enzyme, histidine decarboxylase (HDC). When injected intraperitoneally into C3H/HeN mice, IL-12 exhibited antitumour activity against squamous epithelial tumour cells (NR-S1 cells). At doses that produced this antitumour activity, IL-12 also enhanced HDC activity in the lung, liver, spleen and bone marrow. Compared with that induced by IL-1, the elevation of HDC activity induced by IL-12 was low and slow. However, daily injections of IL-12, but not of IL-1, produced a cumulative effect on HDC activities, an accumulation of exudate in the thorax, and death. Antagonists of H1 and H2 receptors and an inhibitor of HDC all failed to prevent the pulmonary exudation and death. These results suggest that IL-12 is an inflammatory cytokine capable of stimulating the synthesis of histamine, but that histamine itself may be not the direct cause of the pulmonary exudation and/or lethality induced by IL-12.  相似文献   

2.
白藜芦醇对脂多糖诱导小鼠急性肺损伤的保护作用   总被引:3,自引:2,他引:1  
目的研究白藜芦醇对脂多糖(LPS)致小鼠急性肺损伤(ALI)的保护作用,探讨其可能的作用机制。方法以小鼠气道滴注LPS制备急性肺损伤模型,检测气道吸气阻力(Ri)、气道呼气阻力(Re)和动态肺顺应性(Cdyn)的变化,测定支气管肺泡灌洗液(BALF)中白细胞介素-1β(IL-1β)、白细胞介素-6(IL-6)和肿瘤坏死因子-α(TNF-α)的含量,检测肺湿/干比值和毛细血管通透性,观察组织病理学变化。结果白藜芦醇能明显抑制Ri、Re增长和Cdyn降低,降低BALF中IL-1βI、L-6、TNF-α的含量,降低肺湿/干比值和渗透性,减轻肺组织病理学的损伤。结论白藜芦醇对LPS诱导的ALI具有保护作用,作用机制可能与抑制炎症因子的合成与释放有关。  相似文献   

3.
Inflammation is a protective immune response against harmful stimuli whose long time continuation results in host disease. Quinazolinones are nitrogen containing heterocyclic compounds with wide spectrum of biological activities. The anticancer effect of a 3-(arylideneamino)‐phenylquinazoline-4(3H)-one derivative was reported earlier. The anti-inflammatory effect of these quinazolinone derivatives has now been examined in endotoxin stimulated macrophages and in different in vivo models of inflammation by measuring the proinflammatory cytokines (TNF-α, IL-1β and IL-6), mediators NO and NF-κB (by ELISA and western blot), and translocation of the nuclear factor kB (by immunocytochemical analysis). To elucidate the in vivo effect, mice endotoxin model was and the various levels of edema, inflammatory pain and vascular permeability were studied. One of the quinazolinone derivatives showed significant anti-inflammatory activity in stimulated macrophage cells by inhibiting the expression of TNF-α, IL-1β, IL-6, iNOS, COX-2, p-IκB and NF-κBp65. Significant (P < 0.01) improvement was observed in the mortality of endotoxemic mice. The carrageenan and formalin-induced paw edema thicknesses were found to be reduced significantly (P < 0.01) along with the reduction of pain, vascular permeability and edema induced by complete Freund's adjuvant (P < 0.01). These findings indicate that 3-(arylideneamino)‐phenylquinazoline-4(3H)-one derivative as a potential anti-inflammatory agent.  相似文献   

4.
Aminobisphosphonates (aminoBPs) are potent inhibitors of bone resorption. However, they cause undesirable inflammatory reactions, including fever, in humans. Intraperitoneal injection of aminoBPs into mice also induces inflammatory reactions, including a prolonged elevation of the activity of the histamine-forming enzyme, histidine decarboxylase (HDC). Because interleukin-1 (IL-1) is a typical pyrogen and a strong inducer of HDC, we examined whether aminoBPs induce inflammatory reactions in mice deficient in genes for both IL-1alpha and IL-1beta (IL-1-KO mice). In control mice, aminoBPs induced an elevation of HDC activity and other inflammatory reactions (enlargement of the spleen, atrophy of the thymus, exudate in the thorax and increase in granulocytic cells in the peritoneal cavity). These responses were all weak or undetectable in IL-1-KO mice. We have previously shown that lipopolysaccharides (LPSs) from Escherichia coli and Prevotella intermedia (a prevalent gram-negative bacterium both in periodontitis and endodontal infections) are capable of inducing HDC activity in various tissues in mice. In control mice treated with an aminoBP, the LPS-induced elevations of serum IL-1 (alpha and beta) and tissue HDC activity were both markedly augmented. However, such an augmentation of HDC activity was small or undetectable in IL-1-KO mice. These results, taken together with our previous findings (i) suggest that IL-1 is involved in the aminoBP-induced inflammatory reactions and (ii) lead us to think that under some conditions, inflammatory reactions induced by gram-negative bacteria might be augmented in patients treated with an aminoBP. In this study, we also obtained a result suggesting that IL-1-deficiency might be compensated by a second, unidentified, mechanism serving to induce HDC in response to LPS when IL-1 is lacking.  相似文献   

5.

Background and purpose:

Disturbances in pulmonary vascular reactivity are important components of inflammatory lung disease. Haem oxygenase-1 (HO-1) is an important homeostatic enzyme upregulated in inflammation. Here we have investigated the potentially protective effect of HO-1 against cytokine-induced impairment in pulmonary artery relaxation.

Experimental approach:

Haem oxygenase-1 protein levels were assessed by immunofluorescence. HO activity was assessed by conversion of haemin to bilirubin. Rings of rat isolated pulmonary artery in organ baths were used to measure relaxant responses to the endothelium-dependent agent ACh and the endothelium-independent agent sodium nitroprusside (SNP). Production of nitric oxide (NO) and reactive oxygen species (ROS) was assessed by confocal fluorescence microscopy and fluorescent probes.

Key results:

Haem oxygenase-1 protein expression was strongly induced in pulmonary artery after 24-h incubation with either haemin (5 µM) or curcumin (2 µM), accompanied by a significant increase in HO activity. Incubation with tumour necrosis factor α (TNFα, 1 ng·mL−1, 2 h) significantly decreased relaxation of arterial rings to ACh, without affecting responses to SNP. Induction of HO-1 by curcumin or haemin protected against TNFα-induced hyporesponsiveness to ACh. The competitive HO inhibitor, tin protoporphyrin (20 µM), abolished the protective effect of haemin. HO-1 induction prevented a TNFα-induced increase in NO generation without affecting the TNFα-induced increase in ROS generation. HO-1 induction prevented the TNFα-induced decrease in ACh-stimulated NO generation.

Conclusions and implications:

Induction of HO-1 protected against TNFα impairment of endothelium-dependent relaxation in pulmonary artery, by a mechanism involving a reduction in inducible NO synthase-derived NO production.  相似文献   

6.
Recent studies show that mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) signaling pathways are two pivotal roles contributing to the development of lipopolysaccharide (LPS)-induced acute lung injury (ALI). The present study aimed to investigate the protective effect of kaempferol (Kae), a naturally occurring flavonoid compound, on ALI and explore its possible mechanisms. Male BALB/c mice with ALI, induced by intranasal instillation of LPS, were treated or not with Kae (100mg/kg, intragastrically) 1h prior to LPS exposure. Kae treatment attenuated pulmonary edema of mice with ALI after LPS challenge, as it markedly decreased the lung W/D ratio of lung samples, protein concentration and the amounts of inflammatory cells in BALF. Similarly, LPS mediated overproduction of proinflammatory cytokines in BALF, including TNF-α, IL-1β and IL-6, was strongly reduced by Kae. Histological studies demonstrated that Kae substantially inhibited LPS-induced alveolar wall thickness, alveolar hemorrhage and leukocytes infiltration in lung tissue with evidence of reduced myeloperoxidase (MPO) activity. Kae also efficiently increased superoxide dismutase (SOD) activity of lung sample when compared with LPS group, which was obviously reduced by LPS administration. In addition, Western blot analysis indicated that the activation of MAPKs and NF-κB signaling pathways stimulated by LPS was significantly blocked by Kae. Taken together, our results suggest that Kae exhibits a protective effect on LPS-induced ALI via suppression of MAPKs and NF-κB signaling pathways, which may involve the inhibition of tissue oxidative injury and pulmonary inflammatory process.  相似文献   

7.
Histamine modulates immune responses. There are at least two ways histamine might be supplied: one is its release from cells that pool pre-formed histamine and the other is its de novo formation via induction of histidine decarboxylase (HDC). Lipopolysaccharide (LPS) and the proinflammatory cytokine interleukin (IL)-1 induce a marked elevation of HDC activity in various tissues or organs. To examine the contribution of mast cells to HDC induction in mice given LPS or IL-1, we examined the effects of LPS and IL-1 on HDC activity and/or histamine content in various organs (liver, lung, spleen or bone marrow) in mast cell-deficient mice (W/Wv), their normal littermates (+/+) and BALB/c mice deficient in IL-1alpha, IL-1beta and tumor necrosis factor (TNF)-alpha (IL-1alpha beta/TNFalphaKO mice). In non-stimulated mice, the histamine in the lung and spleen was contained largely within mast cells. The LPS-stimulated increase in HDC activity in a given organ was similar between +/+ and W/W(v) mice, and between IL-1alpha beta/TNFalphaKO BALB/c and control BALB/c mice, and led to increases in histamine. In W/Wv and +/+ mice, IL-1alpha also elevated HDC activity. These results suggest that (i) in liver, lung and spleen, either the major cells supplying histamine via HDC induction in response to LPS and IL-1 are not mast cells, or mast cells are not a prerequisite for the induction of HDC; (ii) the cells in which HDC is induced by LPS and IL-1 are similar or identical in a given organ; and (iii) neither IL-1 nor TNF-alpha is a prerequisite for the induction of HDC by LPS.  相似文献   

8.
Dexmedetomidine (Dex) is a highly selective α2-adrenergic receptor agonist that is widely used for sedation in intensive care units and in clinical anesthesia. Dex has also been shown to possess anti-inflammatory benefits. However, the underlying mechanism by which Dex relieves the inflammatory reaction in the lung tissues of septic mice has not been fully elucidated. In this study, we aimed to evaluate the protective effects and possible mechanism of Dex on the sepsis-induced lung inflammatory response in mice. Sepsis was induced in mice models through the intraperitoneal injection of lipopolysaccharide (LPS). The preemptive administration of Dex substantially abated sepsis-induced pulmonary edema, pulmonary histopathological changes, and NF-κB p65 activity. The production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) at both the mRNA and protein levels was also reduced. Moreover, these effects were significantly blocked by the α7 nicotinic acetylcholine receptor (α7nAChR) antagonist α-bungarotoxin (α-Bgt). α-Bgt aggravated pulmonary edema and pulmonary histopathological changes, as well as increased NF-κB p65 activity and TNF-α and IL-6 expression at both the mRNA and protein levels. The overall results demonstrate that Dex inhibits the LPS-induced inflammatory reaction in the lung tissues of septic mice partly through the α7nAChR-dependent cholinergic anti-inflammatory pathway.  相似文献   

9.
Exposure to high altitude results in hypobaric hypoxia which is considered as an acute physiological stress and often leads to high altitude maladies such as high altitude pulmonary edema (HAPE) and high altitude cerebral edema (HACE). The best way to prevent high altitude injuries is hypoxic preconditioning which has potential clinical usefulness and can be mimicked by cobalt chloride. Preconditioning with cobalt has been reported to provide protection in various tissues against ischemic injury. However, the effect of preconditioning with cobalt against high altitude induced pulmonary edema has not been investigated in vivo. Therefore, in the present study, rats pretreated with saline or cobalt (12.5mg/kg body weight) for 7days were exposed to hypobaric hypoxia of 9142m for 5h at 24°C. Formation of pulmonary edema was assessed by measuring transvascular leakage of sodium fluorescein dye and lung water content. Total protein content, albumin content, vascular endothelial growth factor (VEGF) and cytokine levels were measured in bronchoalveolar lavage fluid. Expression of HO-1, MT, NF-κB DNA binding activity and lung tissue pathology were evaluated to determine the effect of preconditioning on HAPE. Hypobaric hypoxia induced increase in transvascular leakage of sodium fluorescein dye, lung water content, lavage total protein, albumin, VEGF levels, pro-inflammatory cytokine levels, tissue expression of cell adhesion molecules and NF-κB DNA binding activity were reduced significantly after hypoxic preconditioning with cobalt. Expression of anti-inflammatory protein HO-1, MT, TGF-β and IL-6 were increased after hypoxic preconditioning. These data suggest that hypoxic preconditioning with cobalt has protective effect against HAPE.  相似文献   

10.
Soyasaponin Ab (SA) has been reported to have anti-inflammatory effect. However, the effects of SA on lipopolysaccharide (LPS)-induced acute lung injury (ALI) have not been reported. The aim of this study was to investigate the anti-inflammatory effects of SA on LPS-induced ALI and clarify the possible mechanism. The mice were stimulated with LPS to induce ALI. SA was given 1 h after LPS treatment. 12 h later, lung tissues were collected to assess pathological changes and edema. Bronchoalveolar lavage fluid (BALF) was collected to assess inflammatory cytokines and nitric oxide (NO) production. In vitro, mice alveolar macrophages were used to investigate the anti-inflammatory mechanism of SA. Our results showed that SA attenuated LPS-induced lung pathological changes, edema, the expression of cycloxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in lung tissues, as well as TNF-α, IL-6, IL-1β, and NO production in mice. Meanwhile, SA up-regulated the activities of superoxide dismutase (SOD) and catalase decreased by LPS in mice. SA also inhibited LPS-induced TNF-α, IL-6 and IL-1β production as well as NF-κB activation in alveolar macrophages. Furthermore, SA could activate Liver X Receptor Alpha (LXRα) and knockdown of LXRα by RNAi abrogated the anti-inflammatory effects of SA. In conclusion, the current study demonstrated that SA exhibited protective effects against LPS-induced acute lung injury and the possible mechanism was involved in activating LXRα, thereby inhibiting LPS-induced inflammatory response.  相似文献   

11.
Up-regulation of cell adhesion molecules on vascular smooth muscle cells (VSMCs) and leukocyte recruitment to the vascular wall contribute to vascular inflammation and atherosclerosis. Stereocalpin A, a chemical compound of the Antarctic lichen Ramalina terebarata, displays tumoricidal activity against several different tumor cell types. However, other biological activities of stereocalpin A and its molecular mechanisms remain unknown. In this study, our work is directed toward studying the in vitro effects of stereocalpin A on the ability to suppress the expression of adhesion molecules induced by TNF-α in vascular smooth muscle cells. Pretreatment of VSMCs for 2h with stereocalpin A at nontoxic concentrations of 0.1-10 μg/ml inhibited TNF-α-induced adhesion of THP-1 monocytic cells and expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1). Stereocalpin A reduced TNF-α-induced production of intracellular reactive oxygen species (ROS) and phosphorylation of p38, ERK, JNK and Akt. Stereocalpin A also inhibited NK-κB activation induced by TNF-α. Moreover, stereocalpin A inhibited TNF-α-induced ΙκΒ kinase activation, subsequent degradation of ΙκΒα, and nuclear translocation of NF-κB. Hence, we describe a new anti-inflammatory activity and mechanism of stereocalpin A, owing to the negative regulation of TNF-α-induced adhesion molecule and MCP-1 expression, monocyte adhesion and ROS production in vascular smooth muscle cells. These results suggest that stereocalpin A has the potential to exert a protective effect by modulating inflammation within the atherosclerotic lesion.  相似文献   

12.
Duchesnea indica (Rosaceae family) is herb used extensively in traditional Chinese medicine. In this study we investigated its protective activity against hydrogen peroxide (H(2)O(2))-induced cytotoxicity in human skin fibroblast (CCD-986Sk) cells and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced H(2)O(2) in the skin of hairless mice. Pretreatment of CCD-986Sk cells with methanolic extract of D. indica (DIM) improved the cell viability, enhanced activity of catalase, and decreased the leakage of lactate dehydrogenase (LDH) and the levels of malondialdehyde (MDA) and intracellular reactive oxygen species (ROS) in H(2)O(2) injured cells. Furthermore, DIM inhibited cell apoptosis and Bax expression induced by H(2)O(2). In addition, the level of H(2)O(2) stimulated by TPA was decreased by DIM in the skin of hairless mice. These results suggest that DIM offers protection against oxidative stress in vitro and in vivo, and this ability suggests potential use for protection against oxidation-induced skin damage.  相似文献   

13.
This study was performed to investigate whether or not amiloride, a sodium-hydrogen exchanger (NHE) inhibitor, can protect against seizure development of pentylenetetrazole (PTZ)-induced kindling in mice.Kindling was induced by once every 2 days treatment with PTZ (25 mg kg(-1) i.p.) for 5 weeks. Challenge experiments were carried out after 15 or 30 days of last treatment with PTZ. Administration of amiloride (2 h before PTZ, in doses of 0.65 and 1.3 mg kg(-1), p.o.) significantly prolonged the onset of kindling and reduced the incidence and severity of seizures in a dose-dependent manner. The effect of amiloride on the incidence of PTZ-induced seizures was evident even after 15 or 30 days of last treatment. The results indicate a protective role for amiloride against PTZ-induced kindling in mice. The possibility of mediation of such effects by NHE inhibition is discussed.  相似文献   

14.
Inhalation of fine particulate matter (PM2.5) is associated with elevated pulmonary injury attributed to the loss of vascular barrier integrity. Black ginseng (BG), steamed 9 times and dried ginseng, and its major protopanaxatriol type ginsenosides (ginsenoside Rg4, Rg6, Rh4, Rh1, and Rg2) exhibited various biological activities including anti-septic, anti-diabetic, wound healing, immune-stimulatory, and anti-antioxidant activity. The aim of this study was to investigate the beneficial effects of Rgx365 (a protopanaxatriol type rare ginsenosides fraction) on PM-induced lung endothelial cell (EC) barrier disruption and pulmonary inflammation. Permeability, leukocyte migration, activation of proinflammatory proteins, generation of reactive oxygen species (ROS), and histology were examined in PM2.5-treated EC and mice. Rgx365 significantly scavenged PM2.5-induced ROS, inhibited ROS-induced activation of p38 mitogen-activated protein kinase (MAPK), activated Akt in purified pulmonary EC, which helped maintain endothelial integrity. Further, Rgx365 reduced vascular protein leakage, leukocyte infiltration, and proinflammatory cytokine release in bronchoalveolar lavage fluids in PM-induced mouse lung tissues. Data suggested that Rgx365 might exhibit protective effects in PM-induced inflammatory lung injury and vascular hyperpermeability.  相似文献   

15.
小儿哮喘宁平喘作用的研究   总被引:1,自引:0,他引:1  
目的初步评价小儿哮喘宁的平喘作用,为临床应用提供科学的实验依据。方法运用乙酰胆碱及组胺致豚鼠哮喘模型、内毒素(lipoplysaccharides,LPS)致小鼠急性肺损伤模型、卵白蛋白(ovalbumin,OVA)致豚鼠过敏性哮喘模型及OVA加LPS致小鼠过敏性哮喘模型,评价小儿哮喘宁的平喘作用。结果小儿哮喘宁20、10、5 g/kg均能延长乙酰胆碱+组胺所致豚鼠化学刺激性哮喘的引喘潜伏期及OVA致豚鼠过敏性哮喘的引喘潜伏期并减少跌倒动物数;20 g/kg小儿哮喘宁能降低LPS致小鼠急性肺损伤程度;对嗜酸粒细胞(eosinophil,EOS)浸润型过敏性哮喘动物模型的作用优于对中性粒细胞(neutrophil,NEU)浸润型过敏性哮喘动物模型的作用。结论小儿哮喘宁有平喘的作用,该作用可能与其抑制肺水肿、降低气道EOS浸润有关。  相似文献   

16.
Matrine is one of the main active components of Chinese herb Sophora flavescens Ait (Kushen), which has been demonstrated to be effective in suppressing inflammation. The aim of the present study is to investigate the effect of matrine on LPS-induced lung injury. Lung injury was assessed by histological study and wet to dry weight ratios, as well as cell count and protein content in bronchoalveolar lavage fluid. We also detected MPO activity reflecting neutrophil infiltration and MDA activity examining oxidative stress in lung tissues. Cytokines and ROS production in cells were monitored by ELISA and flow cytometry, respectively. The results showed that high dose of matrine significantly reduced the mortality rate of mice with LPS administration. Treatment with matrine improved LPS-induced lung histopathologic changes, alleviated pulmonary edema and lung vascular leak, inhibited MPO and MDA activity,and reduced the production of inflammatory mediators including TNF-α, IL-6 and HMGB1. In vitro, matrine administration reduced the production of ROS and inflammatory factors, which was possibly associated with inhibition of NF-κB. In conclusion, the current study demonstrated that matrine exhibited a protective effect on LPS-induced acute lung injury by inhibiting of the inflammatory response, which may involve the suppression of ROS and tissue oxidative stress.  相似文献   

17.
1. When injected intraperitoneally into mice in doses larger than those used clinically, all the amino derivatives of bisphosphonates (aminoBPs) tested induce a variety of inflammatory reactions such as induction of histidine decarboxylase (HDC, the histamine-forming enzyme), hypertrophy of the spleen, atrophy of the thymus, hypoglycaemia, ascites and accumulation of exudate in the thorax, and an increase in the number of macrophages and/or granulocytes in the peritoneal cavity of blood. On the other hand, dichloromethylene bisphosphonate (Cl2MBP) a typical non-aminoBP, has no such inflammatory actions. In the present study, we found that this agent can suppress the inflammatory actions of aminoBPs. 2. Cl2MBP, when injected into mice before or after injection of 4-amino-1-hydroxybutylidene-1,1-bisphosphonic acid (AHBuBP; a typical aminoBP), inhibited the induction of HDC activity by AHBuBP in a dose- and time-dependent manner. The increase in HDC activity induced by AHBuBP was largely suppressed by the injection of an equimolar dose of Cl2MBP. Cl2MBP also inhibited other AHBuBP-induced inflammatory reactions, as well as the inflammatory actions of two other aminoBPs. However, Cl2MBP did not inhibit the increase in HDC activity induced by lipopolysaccharide (LPS). 3. We have previously reported that AHBuBP augments the elevation of HDC activity and the production of interleukin-1beta (IL-1beta) that are induced by LPS. These actions of AHBuBP were also inhibited by Cl2MBP. 4. Based on these results and reported actions of bisphosphonates, the mechanisms underlying the contrasting effects of aminoBPs and Cl2MBP, a non-aminoBP are discussed. The results suggest that combined administration of Cl2MBP and an aminoBP in patients might be a useful way of suppressing the inflammatory side effects of aminoBPs.  相似文献   

18.
There is mounting evidence implicating the role of oxidative stress induced by reactive oxygen species (ROS) in neurodegenerative disease, including Alzheimer's disease. Herein we investigated the neuroprotective potential of a natural flavonoid, calycopterin, against H(2)O(2)-induced cell death in differentiated PC12 cells. We pretreated PC12 cells with 25, 50, and 100 μM calycopterin followed by the addition of H(2)O(2) as an oxidative stress agent. We measured cell viability by the MTT test and found that 50 μM is the best protective concentration of calycopterin. Moreover, we measured six different parameters of neurite outgrowth. Interestingly, we found that calycopterin not only protects PC12 cells against H(2)O(2)-induced apoptosis but also defends against the destructive effect of oxidative stress on the criteria of neural differentiation. Calycopterin decreased ER stress-associated proteins including calpain and caspase-12, and suppressed ERK, JNK, and p38 MAPK phosphorylation. Moreover, calycopterin inhibited H(2)O(2)-induced nuclear translocation of nuclear factor-κB, a known regulator of a host of genes involved in specific stress and inflammatory responses. This observation was perfectly in agreement with the decrease of COX-2 and TNF-α levels. Calycopterin reduced intracellular ROS levels and increased catalase activity. The protective effect of this compound could represent a promising approach for the treatment of neurodegenerative diseases.  相似文献   

19.
Oxidative damage by reactive oxygen species (ROS) plays a major role in skin aging, carcinogenesis and inflammation. Little is known about the protective effects of green tea extract (GTE) on toxic ROS-induced skin death. We use an in vitro model of normal human skin fibroblasts (AG13145) to study the effects of green tea extract (GTE) on hydrogen peroxide (H(2)O(2)) induced necrosis. Cell morphology, numbers, apoptosis, necrosis, and ROS were assessed by epifluorescence microscopy and flow cytometry. This study demonstrates that GTE protected from H(2)O(2)-induced necrosis in a dose-dependent manner, with highest dose GTE (100 ng/mL) resulting in the most protection from necrosis, as assessed by improved cell morphology, increased cell numbers, and decreased necrosis. The protective effects of GTE on H(2)O(2)-induced necrosis appear to be mediated directly by decreasing intracellular ROS. The present study suggests that pretreatment with high doses of GTE could protect from toxic ROS-induced injury of skin in the clinical setting. However, additional studies are necessary to determine the clinical utility of GTE for decreasing skin cell ROS, necrosis and inflammation.  相似文献   

20.
Diarrhea is a common dose-limiting toxicity associated with cancer chemotherapy, in particular for drugs such as irinotecan (CPT-11), 5-fluouracil, oxaliplatin, capecitabine and raltitrexed. St. John's wort (Hypericum perforatum, SJW) has anti-inflammatory activity, and our preliminary study in the rat and a pilot study in cancer patients found that treatment of SJW alleviated irinotecan-induced diarrhea. In the present study, we investigated whether SJW modulated various pro-inflammatory cytokines including interleukins (IL-1beta, IL-2, IL-6), interferon (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) and intestinal epithelium apoptosis in rats. The rats were treated with irinotecan at 60 mg/kg for 4 days in combination with oral SJW or SJW-free control vehicle at 400 mg/kg for 8 days. Diarrhea, tissue damage, body weight loss, various cytokines including IL-1beta, IL-2, IL-6, IFN-gamma and TNF-alpha and intestinal epithelial apoptosis were monitored over 11 days. Our studies demonstrated that combined SJW markedly reduced CPT-11-induced diarrhea and intestinal lesions. The production of pro-inflammatory cytokines such as IL-1beta, IFN-gamma and TNF-alpha was significantly up-regulated in intestine. In the mean time, combined SJW significantly suppressed the intestinal epithelial apoptosis induced by CPT-11 over days 5-11. In particular, combination of SJW significantly inhibited the expression of TNF-alpha mRNA in the intestine over days 5-11. In conclusion, inhibition of pro-inflammatory cytokines and intestinal epithelium apoptosis partly explained the protective effect of SJW against the intestinal toxicities induced by irinotecan. Further studies are warranted to explore the potential for STW as an agent in combination with chemotherapeutic drugs to lower their dose-limiting toxicities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号