首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
To study the differentiation process of erythroid progenitors from normal human bone marrow and peripheral blood, CD34/CD36 sorted cells were cultured in the presence of Erythropoietin (Epo) and Epo plus mast cell growth factor (MGF). The CD34+/CD36- cell fraction from bone marrow supported 74 +/- 33 erythroid burst forming units (BFU-E)/10(4) cells (mean +/- SD, n = 4) in the presence of Epo, which increased 2.1- fold by coculturing with MGF. However, erythroid colony-forming units (CFU-E) were not cultured from the CD34+/CD36- cell fraction. In contrast, the CD34-/CD36+ cell fraction supported CFU-Es in the presence of Epo (152 +/- 115/10(5)) or Epo plus MGF (180 +/- 112/10(5)), whereas BFU-Es were hardly noticed. However, the transition of the BFu-E to CFU-E was observed by incubating CD34+/CD36- cells (10(4)/100 microL) in suspension with Epo plus MGF for 7 days followed by Epo in the colony assay. This was reflected by the appearance of CD34-/CD36+/Glycophorin A+/CD14- cells. In addition high numbers of CFU- Es (1,000 +/- 150, n = 4) were cultured from this cell fraction. In contrast to bone marrow erythroid progenitors, no peripheral blood CFU- Es were cultured from either the CD36+ or CD36- fraction, whereas BFU- Es were predominantly present in the CD36+ fraction. However, the CD34+ progenitor cell from peripheral blood did have intrinsic capacity to differentiate to CFU-Es because CD34+/CD36- cells incubated with Epo plus MGF for 7 days and followed by Epo in the colony assay, supported high numbers of CFU-Es (1,200 +/- 400, n = 3). To study whether additional growth factors have similar effects on erythroid progenitors, experiments were performed with interleukin 1 (IL-1), IL- 3, and IL-6. IL-1 and IL-6 did not modulate the Epo supported proliferation and differentiation. In contrast, IL-3 in the presence of Epo did support CFU-Es, from CD34+/CD36- cells after 7 days in suspension culture. However, flow cytometry analysis showed that Epo plus IL-3 not only supported CD34-/CD36+/Glycophorin A+ cells but also CD36+/CD14+ cells, indicating the differentiation along different cell lineages. In summary, the data show a phenotypic distinction between bone marrow and peripheral blood erythroid progenitors with regard to CD36 expression. In addition, the results suggest that Epo plus MGF or IL-3 and preincubation in suspension culture are prerequisites for the transition of the BFU-E to the CFU-E.  相似文献   

2.
Rennick  D; Jackson  J; Yang  G; Wideman  J; Lee  F; Hudak  S 《Blood》1989,73(7):1828-1835
The growth-promoting activities of interleukin-6 (IL-6) in combination with different factors were assessed in bone marrow (BM) cultures prepared from normal mice and from mice treated with 5-fluorouracil (5- FU). Effects on hematopoietic colony formation with respect to number, size, and cellular composition were evaluated. In agreement with previous reports, IL-6 acts synergistically with IL-3 to stimulate increased numbers of granulocyte/macrophage (GM) and multilineage colonies in day-2 and day-4 post-5-FU BM cultures. Furthermore, day 4 but not day 2 post-5-FU BM showed enhanced GM colony formation when stimulated with IL-6 plus interleukin-4 (IL-4) or granulocyte colony- stimulating factor (G-CSF). In contrast, IL-6 did not increase the number of colonies supported by M-CSF or GM-CSF. Nevertheless IL-6 interacted with all factors, including M-CSF and GM-CSF, to stimulate an increase in colony size. Many of these myeloid colonies attained a diameter of greater than or equal to 0.5 mm, suggesting they derive from high proliferative potential cells (HPP-CFC). The response of normal and day-8 post-5-FU BM containing high numbers of more mature progenitors was also assessed. We found IL-6 enhanced colony formation by lineage-restricted megakaryocytic and erythroid progenitors in the presence of IL-3 and IL-4 plus erythropoietin (Epo), respectively. The sum of these results shows that IL-6 interacts with a variety of factors to regulate the growth of progenitor cells at different stages of lineage commitment and maturation.  相似文献   

3.
Human mast cell growth factor (MGF, a c-kit ligand) and colony stimulating factors (Epo, GM-CSF, G-CSF, IL-3) were assessed in the absence or presence of serum for stimulation in semi-solid medium of single CD34 , CD34 HLA-DR+, or CD34 HLA-DR+CD33- cells sorted per microtiter well. The % of wells containing CFU-GM and erythroid containing (BFU-E and CFU-GEMM) colonies increased in proportion to the number of cytokines added. In the presence of serum, 1, to 4 cytokine combinations resulted in respective increases in cloning efficiencies of 10 to 21.0, 19.5 to 31.5, 35.8 to 42.9, and 46.3 to 60.0%. MGF had little effect by itself, but did act in combination with CSFs to enhance numbers and size of the colonies from isolated single cells. High cloning efficiencies were also obtained in the absence of serum when multiple cytokines were used. The results demonstrate that MGF and CSFs can act directly on the proliferation of single hematopoietic progenitor cells in the absence of accessory cells and serum.  相似文献   

4.
Mizuguchi  T; Kosaka  M; Saito  S 《Blood》1993,81(11):2891-2897
We examined the effects of activin A on the proliferation and differentiation of immature hematopoietic progenitors prepared from peripheral blood (PB) using methylcellulose and liquid-suspension culture. In a kinetic analysis, colony formation by PB granulocyte- macrophage colony-forming unit (CFU-GM) was delayed in a dose-dependent manner by the addition of activin A only when stimulated with interleukin-3 (IL-3), but not when stimulated with granulocyte colony- stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), or stem cell factor (SCF) plus G-CSF. DNA-synthesizing CFU-GM was increased by IL-3, but this effect was abolished by activin A. In contrast, PB erythroid burst-forming unit (BFU-E) was accelerated by the addition of activin A only when exposed to IL-3 plus erythropoietin (Epo), but not when exposed to Epo or Epo plus SCF. DNA- synthesizing BFU-E was increased by IL-3 and activin A, alone and additively in combination. In a mixed culture of myeloid and erythroid progenitors, activin A increased the numbers of BFU-E and CFU-Mix colonies at concentrations of 1 and 10 ng/mL and decreased the number of CFU-GM colonies in a dose-dependent manner. However, in a liquid- suspension culture of erythroid progenitors, activin A decreased total cell count and the percentage of hemoglobin-containing cells only when cells were exposed to IL-3 plus Epo. These results indicate that activin A suppresses the proliferation of IL-3-responsive CFU-GM progenitors and stimulates the proliferation and differentiation of IL- 3-responsive BFU-E progenitors, and suggest that activin A acts as a commitment factor of immature hematopoietic progenitors for erythroid differentiation.  相似文献   

5.
Kobayashi  M; Laver  JH; Kato  T; Miyazaki  H; Ogawa  M 《Blood》1996,88(2):429-436
We have studied the effects of recombinant human thrombopoietin (TPO; mpl ligand) on the proliferation of human primitive hematopoietic progenitors in vitro. CD34+ cells were enriched for cell-cycle-dormant primitive progenitors by separation on the basis of expression of c-kit and CD38. In the presence of varying combinations of TPO, Steel factor (SF), and interleukin-3 (IL-3), CD34+/c-kit(low)/CD38neg/low cells produced fewer colonies than CD34+/c-kit(low)/CD38high cells. However, when cultured in suspension for 7 days and replated in methylcellulose culture for measurement of colony-forming cells, the former population generated more colony-forming cells than the latter. In suspension culture of CD34+/c-kit(low)/CD38neg/low cells, TPO acted synergistically with SF and/or IL-3 in support of the production of colony-forming cells for granulocyte/macrophage colonies, erythroid colonies, and mixed colonies. Culture studies of individual CD34+/c- kit(low)/CD38neg/low cells provided the evidence for the direct nature of the effects of TPO. When combined with SF, TPO showed stronger stimulation of production of progenitors in suspension culture than other early-acting factors, such as IL-6, IL-11, and granulocyte colony- stimulating factor (G-CSF). TPO may be an important cytokine for in vitro manipulation of human hematopoietic stem cells.  相似文献   

6.
OBJECTIVES: Ex vivo expansion of granulocyte-colony stimulating factor (G-CSF)-mobilized peripheral blood stem cells (PBSC) is a promising approach for overcoming the developmental delay of bone marrow (BM) reconstitution after transplantation. This project investigated the effects of culture duration, serum-free media, cytokine combinations, and chemotherapy on the outcomes of expansion. METHODS: Enriched CD34+ cells were cultured for 8 or 10 d in serum-free media (QBSF-60 or X-Vivo 10) and four combinations of cytokines consisting of recombinant human pegylated-megakaryocyte growth and development factor, stem cell factor, flt-3 ligand, G-CSF, interleukin (IL)-6, platelet-derived growth factor (PDGF), and IL-1beta. RESULTS: Eight days of culture in QBSF-60 significantly supported efficient expansions of CD34+ cells, CD34+ CD38- cells, colony-forming units (CFU) of myeloid, erythroid, megakaryocytic, and mixed lineages to 3.76-, 14.4-, 28.3-, 24.0-, 38.1-, and 15.7-fold, respectively. Whilst PDGF or IL-6 enhanced the expansion of early, myeloid, and erythroid progenitors, IL-1beta specifically promoted the megakaryocytic lineage. Engraftment of human CD45+ cells were detectable in all non-obese diabetic/severe-combined immunodeficient mice transplanted with expanded PBSC from donor samples, being 5.80 +/- 3.34% of mouse BM cells. The expansion and engraftment capacity of CD34+ cells from subjects postchemotherapy were significantly compromised across the panel of progenitor cells. CONCLUSION: Our results provided an optimized protocol for PBSC expansion, applicable to ameliorating neutropenia and thrombocytopenia in post-BM transplant patients by the prompt provision of progenitor cells. For postchemotherapy patients, expansion products might provide committed progenitors for improving short-term engraftment, but not self-renewable stem cells.  相似文献   

7.
Rusten  LS; Lyman  SD; Veiby  OP; Jacobsen  SE 《Blood》1996,87(4):1317-1325
The present studies investigated the effects of the recently cloned flt3 ligand (FL) on the in vitro growth and differentiation of primitive and committed subsets of human CD34+ bone marrow (BM) progenitor cells. FL alone was a weak growth stimulator of CD34+ BM cells, but synergistically and directly enhanced colony formation in combination with interleukin (IL) 3, granulocyte colony-stimulating factor (G-CSF), CSF-1, granulocyte macrophage (GM) CSF stem cell factor (SCF), and IL-6. FL and SCF were equally effective in stimulating colony formation in combination with IL-3. However, the tri-factor combination of FL + IL-3 + SCF stimulated 2.3-fold and 2.5-fold more colonies than FL + IL-3 and SCF + IL-3, respectively. These additional recruited progenitors appeared to be predominantly located in a primitive (CD71-) subset of the CD34+ progenitors, as 4.5-fold more colonies were formed by CD34+CD71- cells in response to FL + IL-3 + SCF than to FL + IL-3 or SCF + IL-3. Similar findings were observed in serum-containing and serum-deprived cultures. Whereas FL did not enhance burst-forming unit-erythroid (BFU-E) colony formation of CD34+ BM cells in the presence of serum, a low number of BFU-E colonies were formed in response to FL plus erythropoietin (Epo) under serum-deprived conditions. In addition, FL both in serum-containing and serum-deprived cultures stimulated colony formation of more committed myeloid progenitors in CD34+CD71+ BM cells. Thus, FL potently stimulates the growth of primitive and more committed human BM progenitor cells.  相似文献   

8.
Previous studies have shown that retinoic acid (RA), similar to tumor necrosis factor-alpha (TNF-alpha), can act as a bifunctional regulator of the growth of bone marrow progenitors, in that it can stimulate granulocyte-macrophage colony-stimulating factor (GM-CSF)- or interleukin-3 (IL-3)-induced GM colony formation, but potently inhibit G-CSF-induced growth. The present study, using highly enriched human CD34+ as well as Lin- murine bone marrow progenitor cells, demonstrates a potent inhibitory effect of 9-cis-RA on burst-forming unit-erythroid (BFU-E) colony formation regardless of the cytokine stimulating growth. Specifically, 9-cis-RA potently inhibited the growth of BFU-E response to erythropoietin (Epo) (100%), stem cell factor (SCF) + Epo (92%), IL- 3 + Epo (97%), IL-4 + Epo (88%), and IL-9 + Epo (100%). Erythroid colony growth was also inhibited when CD34+ progenitors were seeded at one cell per well, suggesting a direct action of RA. Using synthetic ligands to retinoic acid receptors (RARs) and retinoid X receptors (RXRs) that selectively bind and activate RAR-RXR or RXR-RXR dimers, respectively, we dissected the involvement of the two retinoid response pathways in the regulation of normal myeloid and erythroid progenitor cell growth. Transactivation studies showed that both the RAR (Ro 13- 7410) and RXR (Ro 25-6603 and Ro 25-7386) ligands were highly selective at 100 nmol/L. At this concentration, Ro 13-7410 potently inhibited G- CSF-stimulated myeloid as well as SCF + Epo-induced erythroid colony growth. At the same concentration, Ro 25-6603 and Ro 25-7386 had little or no effect on G-CSF-induced colony formation, whereas they inhibited 75% and 53%, respectively, of SCF + Epo-stimulated BFU-E colony growth. Thus, the RAR-RXR response pathway can signal growth inhibition of normal bone marrow myeloid and erythroid progenitor cells. In addition, we demonstrate a unique involvement of the RXR-RXR pathway in mediating growth inhibition of erythroid but not myeloid progenitor cells.  相似文献   

9.
Thrombopoietin (Tpo), the ligand for c-mpl, has been shown to be the principal regulator of megakaryocytopoiesis and platelet production. The ability of Tpo to potently stimulate the growth of committed megakaryocyte (Mk) progenitor cells has been studied in detail. Murine fetal liver cells, highly enriched in primitive progenitors, have been shown to express c-mpl, but little is known about the ability of Tpo to stimulate the growth and differentiation of primitive multipotent bone marrow (BM) progenitor cells. Here, we show that Tpo alone and in combination with early acting cytokines can stimulate the growth and multilineage differentiation of Lin- Sca-1+ BM progenitor cells. In particular, Tpo potently synergized with the ligands for c-kit (stem cell factor [SCF]) and flt3 (FL) to stimulate an increase in the number and size of clones formed from Lin- Sca-1+ progenitors. When cells were plated at 1 cell per well, the synergistic effect of Tpo was observed both in fetal calf serum-supplemented and serum-depleted medium and was decreased if the addition of Tpo to cultures was delayed for as little as 24 hours, suggesting that Tpo is acting directly on the primitive progenitors. Tpo added to SCF + erythropoietin (Epo)-supplemented methylcellulose cultures potently enhanced the formation of multilineage colonies containing granulocytes, macrophages, erythrocytes, and Mks. SCF potently enhanced Tpo-stimulated production of high-ploidy Mks from Lin- Sca-1+ progenitors, whereas the increased growth response obtained when combining Tpo with FL did not translate into increased Mk production. The ability of Tpo and SCF to synergistically enhance the growth of Lin- Sca-1+ progenitors was predominantly observed in the more primitive rhodamine 123(lo) fraction. Tpo also enhanced growth of Lin- Sca-1+ progenitors when combined with interleukin-3 (IL-3) and IL-11 but not with IL-12, granulocyte colony-stimulating factor, granulocyte-macrophage colony- stimulating factor, or Epo. Epo, which has high homology to Tpo, was unable to stimulate the growth of Lin- Sca-1+ progenitors alone or in combination with SCF or FL, suggesting that c-mpl is expressed on more primitive stages of progenitors than the Epo receptor. Thus, the present studies show the potent ability of Tpo to enhance the growth of primitive multipotent murine BM progenitors in combination with multiple early acting cytokines and documents its unique ability to synergize with SCF to enhance Mk production from such progenitors.  相似文献   

10.
Mayani  H; Lansdorp  PM 《Blood》1994,83(9):2410-2417
We have previously shown that the most primitive human hematopoietic cells are included within a cell subpopulation expressing high levels of CD34 and low or undetectable levels of CD45RA and CD71. In this study, cord blood cells with this phenotype were sorted and further separated based on their expression on the Thy-1 antigen. The proliferation and differentiation of the purified cell fractions in response to a mixture of hematopoietic cytokines was analyzed in serum- and stroma-free liquid cultures. Thy-1+ cells (25% of CD34+ CD45RAlo CD71lo cells) were particularly enriched for high proliferative potential colony-forming cells (HPP-CFC; up to 45% of the clonogenic cells), whereas Thy-1- cells were enriched for multipotential colony- forming cells (CFU-MIX; up to 46% of the clonogenic cells). When both subpopulations were cultured in serum-free liquid cultures supplemented with a cytokine mixture that included steel factor, interleukin-6 (IL- 6), granulocyte-macrophage colony-stimulating factor (GM-CSF)/IL-3 fusion protein, M-CSF, G-CSF, and erythropoietin, Thy-1+ cells showed a much higher numerical expansion of CD34+ cells (30,000-fold) and colony- forming cells (4,700-fold) than was observed in cultures initiated with Thy-1- cells (900-fold increase in CD34+ cell numbers and 241-fold increase in CFC numbers). Cells coexpressing CD34 and Thy-1 were only transiently expanded (up to 29-fold) and were not detected after day 22 of culture. When CD34+ CD45RAlo CD71lo Thy-1+ cells were cultured, either in semi-solid or liquid cultures, in the presence of anti-Thy-1 antibody, a significant reduction in progenitor cell numbers (particularly HPP-CFC) was observed. In contrast, CD34+ CD45RAlo CD71lo Thy-1- cells were not affected by anti-Thy-1. The results of this study indicate that Thy-1 is expressed on primitive cord blood progenitors with the highest in vitro proliferative potential, and further suggest that Thy-1 is involved in hematopoietic cell development, possibly by mediating a negative signal that results in inhibition of primitive cell proliferation.  相似文献   

11.
The significance of interleukin 6 receptor (IL-6R) expression by cord blood (CB)- and peripheral blood (PB)-derived primitive haematopoietic progenitors was investigated. IL-6R was preferentially expressed by PB-derived myeloid progenitors. Most PB-derived erythroid bursts (BFU-E) and mixed colony-forming cells (CFU-Mix) did not express this receptor. However, CB-derived primitive progenitor cells possessed multipotentiality, irrespective of IL-6R expression. Interestingly, the long-term culture-initiating cell (LTC-IC) population was enriched in PB-derived CD34+ IL-6R+ cells, but the extended LTC-IC (ELTC-IC) population, which represents a less mature class of haematopoietic progenitors, seemed to be equally distributed in the IL-6R+ and IL-6R- cell populations. In contrast, the number of LTC-ICs and ELTC-ICs was similar in CB-derived CD34+ IL-6R+ or IL-6R- cells. It is noteworthy that the number of LTC-ICs and ELTC-ICs in CB-derived CD34+ cells was markedly higher than that in PB-derived CD34+ cells regardless of IL-6R expression. Telomerase activity was consistently lower in PB-derived CD34+ IL-6R- cells than in CD34+ IL-6R+ cells. In contrast, telomerase activity was similar in CB-derived CD34+ IL-6R+ or IL-6R- cells. The pattern of telomerase induction upon cytokine stimulation differed between CB- and PB-derived CD34+ IL-6R+ or IL-6R- cells. However, overall telomerase activity per dish was well correlated with the proliferative potential of both cell populations, suggesting that induction of telomerase plays an important role in the escape from replicative senescence of primitive haematopoietic progenitors. Collectively, these results suggest that CB-derived primitive progenitors are less mature than PB-derived progenitors and that the expression of IL-6R by primitive haematopoietic progenitors may have different implications for PB- and CB-derived CD34+ cells.  相似文献   

12.
Haemopoietic cultures may experience pH variations of as much as 0.5 units depending on culture duration and cell density. Since pH is a potent modulator of cellular proliferation and differentiation, we examined its effects on the performance of both semisolid and liquid haemopoietic cultures. Culture pH was found to have substantial effects both on progenitor cloning efficiency (as measured in liquid cultures) and on progenitor cell differentiation (as measured in methylcellulose cultures). Liquid cultures were conducted with both peripheral blood (PB) mononuclear cells (MNCs) and cord blood (CB) MNCs using growth factor combinations that promote either erythroid expansion (IL-3/IL-6/SCF/Epo) or granulocyte/macrophage expansion (IL-3/IL-6/SCF/G-CSF/GM-CSF). Reduced pH was found to have either a positive or neutral effect on the expansion and cloning efficiency of progenitors in ex vivo liquid cultures. Cloning efficiencies of PB BFU-E in the erythroid combination were 9-fold higher at low pH (7.1) when compared to high pH (7.6). A small pH increase of 0.2 units over physiological values consistently produced significant reductions (42–85%) in cloning efficiencies for all cell types and cytokine combinations tested. Methylcellulose cultures conducted using CB MNC and PB MNC indicated that differentiation of CFU-GM into progeny was optimal between pH 7.2 and 7.4. The differentiation of erythroid progenitors (BFU-E) progressively increased as pH was increased from 6.95 (no colonies detected) to 7.4 (maximum colonies detected), to 7.6 (maximum haemoglobin content). Methylcellulose cultures using PB CD34+ cells exhibited similar patterns to the MNC cultures. We conclude that even small variations in pH substantially affected the performance of human haemopoietic cultures. The erythroid lineage was particularly sensitive, with its extent of differentiation increasing with increasing pH. PB progenitors are more sensitive to pH variations than CB progenitors.  相似文献   

13.
Pech  N; Hermine  O; Goldwasser  E 《Blood》1993,82(5):1502-1506
We have extended the study of the effects of antisense oligodeoxynucleotides on hematopoietic colony formation to include the effects of antisense to granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), and macrophage colony-stimulating factor (M-CSF) on bone marrow cultures. GM-CSF antisense and GM-CSF receptor antisense cause an increase in mixed erythroid:nonerythroid colonies and a decrease in mixed nonerythroid colonies, which is an effect opposite to that described previously for erythropoietin (Epo) and Epo receptor antisense. The effect of GM-CSF antisense oligomer is not abrogated by the presence of the ligand in the culture. Antisense oligomers to G-CSF and M-CSF have no effect. When Epo and GM-CSF antisense oligomers are added simultaneously, the effects seem to be independent, with the GM-CSF antisense predominating. These data support the hypothesis of internal autocrine regulation of multipotent hematopoietic precursor cells, and extend the concept to myeloid as well as erythroid differentiation.  相似文献   

14.
Retroviral vector-mediated gene transfer into human hematopoietic stem cells may permit gene therapy of numerous genetic diseases. Stimulation of marrow with hematopoietic growth factors (HGFs) has been shown to increase the level of retroviral transduction. We have examined the effects of recombinant human mast cell growth factor (MGF), alone and in combination with other HGFs, on the efficiency of gene transfer into human hematopoietic progenitor cells. MGF acts in concert with interleukin 3 (IL-3) and interleukin 6 (IL-6) to increase the percentage of CD34+ progenitors transduced with a retroviral vector expressing the neo gene. The most potent combination of growth factors that we examined, interleukin 1 (IL-1)/IL-3/IL-6/MGF, resulted in the conferral of G418 resistance to 45% of progenitors and long-term culture-initiating cells. Extending the time of cocultivation of the marrow cells with the vector-producing cells did not further increase gene transfer frequency, suggesting that the amount of available vector is not limiting. To analyze the effects of the HGF on gene transfer into more primitive hematopoietic progenitors, CD34+ cells were isolated from marrow samples that were purged of committed progenitor cells by treatment with 4-hydroperoxycyclophosphamide (4-HC). Preculturing the CD34+ 4-HC-treated cells with the combination of four HGF (IL-1/IL-3/IL-6/MGF) permitted transduction of 20%-28% of the progenitors that formed colonies after 30 days in culture. These results demonstrate that MGF in combination with other HGFs enhances gene transduction of human hematopoietic progenitor cells.  相似文献   

15.
T Egeland  R Steen  H Quarsten  G Gaudernack  Y C Yang  E Thorsby 《Blood》1991,78(12):3192-3199
CD34+ cells isolated from bone marrow or umbilical cord blood from healthy donors were studied for proliferation and differentiation in liquid cultures in the presence of recombinant human granulocyte-monocyte colony-stimulating factor (GM-CSF), granulocyte CSF (G-CSF), monocyte CSF (M-CSF), and interleukin-3 (IL-3), followed by immunophenotyping for myeloid and myeloid-associated cell surface markers. IL-3, either alone or together with GM-CSF, G-CSF, or M-CSF, induced, on average, 50-fold cell multiplication, GM-CSF five fold to 10-fold, and G-CSF and M-CSF less than fivefold. Cells from cultures stimulated with GM-CSF, G-CSF, or M-CSF alone contained cells with a "broad" myeloid profile, "broader" than observed in cultures with IL-3. However, since IL-3 induced rapid cell multiplication, high numbers of cells expressing early (CD13, CD33) and late myeloid markers (CD14, CD15) were recovered. The presence of other CSFs together with IL-3 did not alter the IL-3-induced effect on the cells. When 5,000 CD34+ cells were cultured with IL-3 alone, the cultures still contained 2,000 to 5,000 CD34+ cells after 14 days of culture, while cells cultured with GM-CSF, G-CSF, or M-CSF contained less than 1,000 CD34+ cells. Furthermore, 1,000 to 3,000 cells were positive for the megakaryocytic lineage marker CD41b after cultures with GM-CSF or IL-3, while cultures with G-CSF or M-CSF did not contain detectable numbers of CD41b+ cells. Finally, erythroid cells could also be generated from purified CD34+ cells. The results show that IL-3 and GM-CSF can induce rapid proliferation of purified CD34+ cells in vitro with differentiation to multiple myeloid lineages, while certain subsets maintain expression of CD34.  相似文献   

16.
The effects of recombinant products of granulocyte colony-stimulating factors (G-CSF), granulocyte/macrophage CSF (GM-CSF), human interleukin-3 (IL-3), and interleukin-1 (IL-1) were studied using purified target cell populations from patients undergoing peripheral blood stem cell transplantation after myeloablative therapy. Cells were subjected to combined purification procedures including negative selection with a panel of monoclonal antibodies (CD2, 3, 5, 10, and 20). The purified cells were enriched for HLA-DR+ (51% to 71%) and My-10+ (CD34; 37% to 54%) and had a plating efficiency of up to 20%. In the liquid-suspension limiting dilution clonal assay (LDA), purified progenitors responded directly to IL-3 by proliferation with single-hit kinetics. The ability of GM-CSF to support progenitor growth was inferior to that of IL-3, and the cells were virtually unresponsive when cultured with G-CSF, supporting the notion that these blood-derived progenitors belong to a primitive population of hematopoietic progenitor cells. The results obtained in simultaneous methycellulose cultures (MC) showed the same trend and provided additional information on the ability of GM-CSF and IL-3 to support erythroid progenitor growth. The combination of IL-3 plus G-CSF, but not IL-3 plus GM-CSF, resulted in a synergistic increase in colony number. IL-1 alpha increased both the size and number of colonies when added to IL-3 or G-CSF. Study of this enriched progenitor cell population in MC and LDA represents an excellent model for the investigation of myeloid and erythroid differentiation and for evaluating the influence of various cytokines on human hematopoiesis.  相似文献   

17.
To provide sufficient numbers of peripheral blood progenitor cells (PBPCs) for repetitive use after high-dose chemotherapy, we investigated the ability of hematopoietic growth factor combinations to expand the number of clonogenic PBPCs ex vivo. Chemotherapy plus granulocyte colony-stimulating factor (G-CSF) mobilized CD34+ cells from 18 patients with metastatic solid tumors or refractory lymphomas were cultured for up to 28 days in a liquid culture system. The effects of interleukin-1 beta (IL-1), IL-3, IL-6, granulocyte-macrophage-CSF (GM-CSF), G-CSF, macrophage-CSF (M-CSF), stem cell factor (SCF), erythropoietin (EPO), leukemia inhibitory factor (LIF), and interferon- gamma, as well as 36 combinations of these factors were tested. A combination of five hematopoietic growth factors, including SCF, EPO, IL-1, IL-3, and IL-6, was identified as the optimal combination of growth factors for both the expansion of total nucleated cells as well as the expansion of clonogenic progenitor cells. Proliferation peaked at days 12 to 14, with a median 190-fold increase (range, 46- to 930- fold) of total clonogenic progenitor cells. Expanded progenitor cells generated myeloid (colony-forming unit-granulocyte-macrophage), erythroid (burst-forming unit-erythroid), as well as multilineage (colony-forming unit-granulocyte, erythrocyte, monocyte, megakaryocyte) colony-forming units. The number of multilineage colonies increased 250- fold (range, 33- to 589-fold) as compared with pre-expansion values. Moreover, the absolute number of early hematopoietic progenitor cells (CD34+/HLA-DR-; CD34+/CD38-), as well as the number of 4-HC-resistant progenitors within expanded cells increased significantly. Interferon- gamma was shown to synergize with the 5-factor combination, whereas the addition of GM-CSF significantly decreased the number of total clonogenic progenitor cells. Large-scale expansion of PB CD34+ cells (starting cell number, 1.5 x 10(6) CD34+ cells) in autologous plasma supplemented with the same 5-factor combination resulted in an equivalent expansion of progenitor cells as compared with the microculture system. In summary, our data indicate that chemotherapy plus G-CSF-mobilized PBPCs from cancer patients can be effectively expanded ex vivo. Moreover, our data suggest the feasibility of large- scale expansion of PBPCs, starting from small numbers of PB CD34+ cells. The number of cells expanded ex vivo might be sufficient for repetitive use after high-dose chemotherapy and might be candidate cells for therapeutic gene transfer.  相似文献   

18.
Erythropoietin (Epo)-independent differentiation of erythroid progenitors is a major characteristic of myeloproliferative disorders, including chronic myeloid leukemia. Epo receptor (EpoR) signaling is crucial for normal erythroid development, as evidenced by the properties of Epo(-/-) and EpoR(-/-) mice, which contain a normal number of fetal liver erythroid progenitors but die in utero from a severe anemia attributable to the absence of red cell maturation. Here we show that two constitutively active cytoplasmic protein tyrosine kinases, P210(BCR-ABL) and v-SRC, can functionally replace the EpoR and support full proliferation, differentiation, and maturation of fetal liver erythroid progenitors from EpoR(-/-) mice. These protein tyrosine kinases can also partially complement the myeloid growth factors IL-3, IL-6, and Steel factor, which are normally required in addition to Epo for erythroid development. Additionally, BCR-ABL mutants that lack residues necessary for transformation of fibroblasts or bone marrow cells can fully support normal erythroid development. These results demonstrate that activated tyrosine kinase oncoproteins implicated in tumorigenesis and human leukemia can functionally complement for cytokine receptor signaling pathways to support normal erythropoiesis in EpoR-deficient cells. Moreover, terminal differentiation of erythroid cells requires generic signals provided by activated protein tyrosine kinases and does not require a specific signal unique to a cytokine receptor.  相似文献   

19.
Interleukin-11 stimulates multiple phases of erythropoiesis in vitro.   总被引:4,自引:1,他引:4  
V F Quesniaux  S C Clark  K Turner  B Fagg 《Blood》1992,80(5):1218-1223
Interleukin-11 (IL-11), a pleiotropic cytokine originally isolated from a primate bone marrow stromal cell line, has been shown to stimulate T-cell-dependent B-cell maturation, megakaryopoiesis, and various stages of myeloid differentiation, but to inhibit adipogenesis. Because stromal cells are essential for the maintenance of early hematopoietic progenitor cells in long-term culture, we investigated the effects of IL-11 on multipotent and erythroid precursors from murine bone marrow in vitro in suspension and semisolid cultures. Our results show that in the presence of IL-3 or c-kit ligand (KL), IL-11 has profound stimulatory effects on primitive multilineage hematopoietic progenitors, pre-CFC(multi), as well as on precursors representing various stages of erythroid differentiation observable in vitro, including CFC(multi), BFU-E, and CFU-E. In addition, the combination of KL with IL-11 also stimulated highly proliferative erythroid progenitors that yield remarkable macroscopic erythroblast colonies in culture. These results indicate that IL-11 is likely to play a pivotal role in early hematopoiesis and at multiple stages of erythropoiesis.  相似文献   

20.
Olweus  J; Thompson  PA; Lund-Johansen  F 《Blood》1996,88(10):3741-3754
The present study investigated the possibility that macrophage colony- stimulating factor (M-CSF) responsiveness of hematopoietic progenitor cells is regulated at the level of receptor expression and that M-CSF receptor (M-CSFR) may be used as an early marker of monocyte lineage commitment. Immunofluorescence measurements with an anti-M-CSFR antibody showed that 44% +/- 5% of CD34hi cells expressed the receptor. The M-CSFR was present on progenitor cells that were positive for the granulo-monocytic marker CD64, but not on primitive, erythroid, or lymphoid progenitors. The CD34hiCD64+ population could be divided into subsets of M-CSFRhi and M-CSFRlo cells. In addition, a subset of CD34hiCD64-M-CSFRhi cells was found. CD34+ cells that were positive for M-CSFR, CD64, or both gave rise exclusively to granulo-monocytic cells, and 65% of the granulomonocytic colony-forming cells in the CD34+ population were recovered from these cells. Approximately 70% of the colony-forming cells (CFCs) derived from CD34hiM-CSFRhi cells were macrophage colony-forming units (CFU-M), whereas 91% of the CFCs in the CD34hiCD64+M-CSFRlo population were granulocyte colony-forming units (CFU-G). The M-CSFRhi cells with the highest frequency of colony- forming and bipotent cells and largest average colony size were found in the CD64- subset, indicating that M-CSFR appears earlier than CD64 during monocyte development. After 60 hours in culture, a subset of the CD34hiM-CSFRhi cells had downmodulated M-CSFR (29% to 38%). This population gave rise almost exclusively to granulocytes, whereas the cells that remained M-CSFRhi gave rise exclusively to monocytes. In all experiments, the M-CSFRhi population responded to M-CSF, whereas minimal responses were observed among M-CSFRlo cells. These results suggest that M-CSF target specificity among human hematopoietic progenitor cells is determined by lineage-specific regulation of the M- CSFR and show that M-CSFR is a useful marker to discriminate between monocytic and granulocytic progenitor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号