首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The chromatographic separation of MeOH extract from Clerodendron trichotomum Thunberg leaves led to the isolation of three phenylpropanoid compounds. Using spectroscopic methods, the structures of these compounds were determined as β-(3′, 4′-dihydroxyphenyl)ethyl-O-α-L-rhamnopyranosyl (1→3)-β-D-(4-O-caffeoyl)-glucopyranoside, acteoside (verbascoside) (1), β-(3′, 4′-dihydroxyphenyl)ethyl-O-α-L-rhamnopyranosyl (1→3)-β-D-(6-O-caffeoyl)-glucopyranoside, isoacteoside (2), β-(3′, 4′-dihydroxyphenyl) ethyl-O-α-L-rhamnopyranosyl (1→3)-β-D-glucopyranoside, and decaffeoylacteoside (3). We measured the anti-inflammatory activity of these three phenylpropanoid compounds both in vitro (DPPH Reduction Assay, TBARS Assay on Cu 2+-induced oxidized LDL, PGE2 assay) and in vivo (acetic acidinduced vascular permeability in mice and carrageenan-induced hind paw edema in rats). 80% methanol fraction and acteoside had the activity.  相似文献   

2.
A new phenolic glycoside syringate, 4′-hydroxy-2′,6′-dimethoxyphenol 1-O-β-d-(6-O-syringoyl) glucopyranoside (1), together with two known ones, 2′-hydroxy-4′-methoxyphenol 1-O-β-d-(6-O-syringoyl) glucopyranoside (2) and 4′-hydroxy-2′-methoxyphenol 1-O-β-d-(6-O-syringoyl) glucopyranoside (3), were isolated from the bark of Juglans mandshurica MAXIM. var. sieboldiana MAKINO. Their structures were established on the basis of spectral and chemical data.  相似文献   

3.
The chromatographic separation of MeOH extract from the Quercus salicina Blume Stem led to the isolation of five phenolic compounds. Using spectroscopic methods, the structures of these compounds were determined as D-threo-guaiacylglycerol 8-O-β-D-(6′-O-galloyl)glucopyranoside (1), 9-methoxy-D-threo-guaiacylglycerol 8-O-β-D-(6′-O-galloyl)glucopyranoside (2), 6″-O-galloyl salidroside (3), methyl gallate (4), quercetin (5). We measured radical scavenging activity with the DPPH method and the anti-lipid peroxidative efficacy on human LDL with TBARS assay, with the result that all these compounds exhibited the antioxidative activity.  相似文献   

4.
Eleven compounds of interest were isolated from the aerial parts of Caryopteris incana, specifically a new acyl derivative (3) of 8-O-acetylharpagide, two new (3R)-oct-1-en-3-ol glycosides (5, 6), and 6-O-caffeoylphlinoside A (11) along with seven known compounds, 8-O-acetylharpagide (1), 6′-O-p-coumaroyl-8-O-acetylharpagide (2), (3R)-oct-1-en-3-ol (matsutake alcohol) O-α-l-arabinopyranosyl-(1″ → 6′)-O-β-d-glucopyranoside (4), apigenin 7-O-neohesperidinoside (7), 6′-O-caffeoylarbutin (8), and two phenylethanoids, leucosceptoside A (9) and phlinoside A (10). This paper deals with structural elucidation of the new compounds.  相似文献   

5.
The dichloromethane extract of air-dried leaves of Blumea lacera (Asteraceae) afforded α-pinene-7β-O-β-d-2,6-diacetylglucopyranoside (1), 5,4′-dihydroxy-6,7,3′-trimethoxyflavone (2), and 3,5,4′-trihydroxy-6,7,3′-trimethoxyflavone (3). Compounds 13 showed moderate activity against Candida albicans, low activity against Trichophyton mentagrophytes, and were inactive against Aspergillus niger. Compounds 1 and 3 indicated low activity against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus and were inactive against Bacillus subtilis, while 2 was inactive against all four bacteria tested.  相似文献   

6.
A novel gallate of tannin, (−)-epigallocatechin-(2β→O→7′,4β→8′)-epicatechin-3′-O-gallate (8), together with (−)-epicatechin-3-O-gallate (4), (−)-epigallocatechin (5), (−)-epigallocatechin-3-O-gallate (6), and (+)-gallocatechin-(4α→8′)-epigallocatechin (7), were isolated from the tea plant Camellia sinensis (L.) O. Kuntze var. sinensis (cv., Yabukita). The structure of 8, including stereochemistry, was elucidated by spectroscopic methods and hydrolysis. The compounds, along with commercially available pyrogallol (1), (+)-catechin (2), and (−)-epicatechin (3), were examined for toxicity towards egg-bearing adults of Caenorhabditis elegans. The anthelmintic mebendazole (9) was used as a positive control. Neither 2 nor 3 were toxic but the other compounds were toxic in the descending order 8, 7 6, 9, 4, 5, 1. The LC50 (96 h) values of 8 and 9 were evaluated as 49 and 334 μmol L−1, respectively. These data show that many green tea polyphenols may be potential anthelmintics.  相似文献   

7.
From dried whole plants of Glechoma hederacea L. (Labiatae), seven known glycosides were isolated and identified: (6R,7E,9R)-megastigma-4,7-dien-3-one 9-O-β-d-glucopyranoside (1), apigenin 7-O-neohesperidoside (2), chrysoeriol 7-O-neohesperidoside (3), (+)-pinoresinol 4,4′-bis-O-β-d-glucopyranoside (4), (+)-syringaresinol 4,4′-bis-O-β-d-glucopyranoside (5), (+)-lariciresinol 4,4′-bis-O-β-d-glucopyranoside (6), and (7R,8R)-threo-7,9,9′-trihydroxy-3,3′-dimethoxy-8-O-4′-neolignan 4-O-β-d-glucopyranoside (7).  相似文献   

8.
Two new isoflavone glycosides, tectorigenin 7-O-β-d-glucopyranoside-4′-O-[β-d-glucopyranosyl-(1″″ → 6′′′)-β-d-glucopyranoside] (1) and iristectorigenin B 4′-O-[β-d-glucopyranosyl-(1′′′ → 6″)-β-d-glucopyranoside] (2), together with 11 known compounds, including six isoflavones, tectorigenin 7-O-β-d-glucopyranoside-4′-O-β-d-glucopyranoside (3), tectorigenin 4′-O-[β-d-glucopyranosyl-(1′′′ → 6″)-β-d-glucopyranoside] (4), tectorigenin 7-O-β-d-glucopyranoside (5), genistein 7-O-β-d-glucopyranoside (6), tectorigenin 4′-O-β-d-glucopyranoside (7), and tectorigenin (8); two phenolic acid glycosides, vanillic acid 4-O-β-d-glucopyranoside (9) and glucosyringic acid (10); a phenylpropanoid glycoside, E-coniferin (11); an auronol derivative, maesopsin 6-O-β-d-glucopyranoside (12); and a pyrrole derivative, 4-(2-formyl-5-hydroxymethylpyrrol-1-yl) butyric acid (13), were isolated from fresh Iris spuria (Calizona) rhizomes. The structures of these compounds were established on the basis of spectroscopic and chemical evidence. Inhibitory effects on the activation of Epstein–Barr virus early antigen were examined for compounds 18 and 12.  相似文献   

9.
Two new neolignan glycosides, (7R, 8R)-threo-guaiacylglycerol-8-O-4′-sinapyl ether 7-O-β-d-glucopyranoside (1) and (7S, 8R)-5-methoxydehydrodiconiferyl alcohol 4-O-β-d-glucopyranoside (2), and four known ones (36), were isolated from the leaves of Osmanthus heterophyllus. The structures of compounds 16 were established on the basis of spectral and chemical data.  相似文献   

10.
The purification of the MeOH extract from the rhizome of Sparganium stoloniferum Buch.-Hamil. (Sparganiaceae) using column chromatography furnished one new phenylpropanoid glycoside (7) and known phenolic compounds (1–6, and 8–13). The structural elucidation of 7 was based on 1D- and 2D-NMR spectroscopic data analysis to be β-d-(6-O-trans-feruloyl) fructofuranosyl-α-d-O-glucopyranoside. Compounds 1–6, and 8–13 were elucidated by spectroscopy and confirmed by comparison with reported data; 24-methylenecycloartanol (1), p-hydroxybenzaldehyde (2), ferulic acid (3), p-coumaric acid (4), vanillic acid (5), β-d-(1-O-acetyl-3-O-trans-feruloyl)fructofuranosy-α-d-2′,4′,6′.-O-triacetyglucopyranoisde (6), β-d-(1-O-acetyl-3,6-O-trans-diferuloyl)fructofuranosyl-β-d-2′,4′,6′.-O-triacetylglucopyranoisde (8), hydroxytyrosol acetate (9), hydroxytyrosol (10), isorhamnetin-3-O-rutinoside (11), n-butyl-α-d-fructofuranoside (12), and n-butyl-β-d-fructopyranoside (13). Compounds 3 and 9–13 were isolated for the first time from this plant. The isolated compounds were tested for cytotoxicity against four human tumor cell lines in vitro using a Sulforhodamin B bioassay.  相似文献   

11.
Two new phenolic glycosides—3′-O-β-d-glucopyranosysalidroside (1) and cis-echinacoside (2)—together with four known ones—forsythoside B (3), decaffeoylacteoside (4), osmanthuside F (5) and (−)-olivil-4′-O-β-d-glucopyranoside (6)—were isolated from the leaves of Syringa reticulata. Their structures were established on the basis of spectral and chemical data.  相似文献   

12.
Five new glycosides, quercetin 3′-O-β-d-galactopyranoside (1), quercetin 3-O-(2″-acetyl)-β-d-glucopyranoside (2), 4,6-dihydroxy-2-methoxyphenyl 1-O-β-d-glucopyranoside (3), 4-hydroxy-2,6-dimethoxyphenyl 1-O-α-l-rhamnopyranosyl (1 → 6)-β-d-glucopyranoside (4) and 3-methyl-but-2-en-1-yl β-d-glucopyranosyl (1 → 6)-β-d-glucopyranoside (5), were isolated from Hypericum erectum Thunb. Their structures were established on the basis of spectral and chemical data.  相似文献   

13.
The purification of a MeOH extract from the rhizome of Acorus gramineus (Araceae) using column chromatography furnished two new stereoisomers of phenylpropanoid, acoraminol A (1) and acoraimol B (2). It also furnished 17 known phenolic compounds, β-asarone (3), asaraldehyde (4), isoacoramone (5), propioveratrone (6), (1′R,2′S)-1′,2′-dihydroxyasarone (7), (1′S,2′S)-1′,2′-dihydroxyasarone (8), 3′,4′-dimethoxycinnamyl alcohol (9), 3′,4′,5′-trimethoxycinnamyl alcohol (10), kaempferol 3-methyl ether (11), 2-[4-(3-hydroxypropyl)-2-methoxyphenoxy]-1,3-propanediol (12), hydroxytyrosol (13), tyrosol (14), (2S,5S)-diveratryl-(3R,4S)-dimethyltetrahydrofuran (15), (7S,8R)-dihydrodehydrodiconiferyl alcohol (16), 7S,8S-threo-4,7,9,9′-tetrahydroxy-3,3′-dimethoxy-8-O-4′-neolignan (17), 7S,8R-erythro-4,7,9,9′-tetrahydroxy-3,3′-dimethoxy-8-O-4′-neolignan (18), and dihydroyashsbushiketol (19). The structures of the new compounds were elucidated by analysis of spectroscopic data including 1D and 2D NMR data. The absolute configurations of 1 and 2 were determined using the convenient Mosher ester procedure. Compounds 5–19 were isolated for the first time from this plant source. The isolated compounds were tested for cytotoxicity against four human tumor cell lines in vitro using a Sulforhodamine B (SRB) bioassay.  相似文献   

14.
The water extract of Juglans mandshurica fruit has been shown to strongly inhibit pancreatic lipase in vitro in a dose-dependent manner. The extract was observed to inhibit the normal elevation in the level of plasma triacylglycerol in rats 2–4 h after oral administration of a lipid emulsion. Fourteen compounds isolated from J. mandshurica fruit were evaluated for their inhibitory activity against pancreatic lipase. Of these, 1,4,8-trihydroxynaphthalene-1-O-β-d-[6′-O-(3″,4″,5″-trihydroxybenzoyl)]glucopyranoside (1) showed the strongest inhibitory activity.  相似文献   

15.
Microbial metabolism studies of the phyto-estrogen (±)-8-prenylnaringenin (8-PN) (1) has led to the isolation of three pairs of metabolites (2–4). The structures of these compounds were identified as 5,4′-dihydroxy-7,8-[2-(1-hydroxy-1-methylethyl)-2,3-dihydrofurano]flavanones (2), 8-prenylnaringenin 7-O-β-D-glucopyranosides (3), and 8-prenylnaringenin 7-O-β-D-(6‴-O-α-hydroxypropionyl)-glucopyranosides (4) on the basis of the spectroscopic analysis.  相似文献   

16.
From the fruits of Phaleria macrocarpa, icariside C3 (1), phalerin (2), and mangiferin (3) were isolated and their structures were identified on the basis of spectroscopic data. Icariside C3 (1) showed a slow vasorelaxant activity against noradrenaline-induced contraction of isolated rat aorta. The structure of phalerin (2) was revised as 2,4′,6-trihydroxy-4-methoxybenzophenone-2-O-β-d-glucoside.  相似文献   

17.
Constituents from leaves of Apocynum venetum L.   总被引:1,自引:0,他引:1  
An analysis using HPLC–MS revealed that an extract from dried leaves of Apocynum venetum L. contained more than 15 kinds of phenolic constituents. Two malonated flavonol glycosides were further isolated, and their structures were determined to be quercetin 3-O-(6′′-O-malonyl)-β-d-glucoside (1) and quercetin 3-O-(6′′-O-malonyl)-β-d-galactoside (2) by NMR spectroscopic analysis. This is the first report describing the isolation of these malonated flavonol glycosides from A. venetum L. Both glycosides showed strong scavenging activity against 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical.  相似文献   

18.
Two new triterpene saponins, named stellatoside B (1) and erucasaponin A (2), were isolated from a cactaceous plant, Stenocereus eruca A. C. Gibson & K. E. Horak (Machaerocereus eruca Br. & R.). The structures of 1 and 2 were elucidated as 3-O-β-d-xylopyranosyl-(1→2)-β-d-glucopyranosyl-(1→2)-β-d-glucuronopyranosyl stellatogenin and 3-O-α-l-rhamnopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→3)]-β-d-glucuronopyranosyl betulinic acid 28-O-α-l-rhamnopyranosyl ester, respectively, on the basis of their spectroscopic data.  相似文献   

19.
Thirteen compounds (113) were isolated from a MeOH extract of leaves of Glochidion rubrum. The structures of four new compounds were elucidated to be (−)-isolariciresinol 2a-O-β-d-glucopyranoside (1), (7R,8S)- and (7R,8R)-4,7,9,9′-tetrahydroxy-3,3′-dimethoxy-8-O-4′-neolignan 7-O-β-d-glucopyranosides (2 and 3, respectively), and tachioside 2′-O-4″-O-methylgallate (4) on detailed inspection of one- and two-dimensional NMR spectral data.  相似文献   

20.
A new ceramide, (2S,2′R,3R,4E,8E)-N-2′-hydroxyoctadecanoyl-2-amino-9-methyl-4,8-heptadecadiene-1,3-diol (1), was isolated together with four known sterols, 5α,6α-epoxy-3β-hydroxy-(22E)-ergosta-8(14),22-dien-7-one (2), ergosterol peroxide (3), cerevisterol (4) and 9α-hydroxycerevisterol (5), from the fruiting bodies of Ramaria botrytis (Pers.) Ricken (Ramariaceae). The structure of the new compound was elucidated based on spectral data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号