首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytochrome P-450 3A4 and 2C8 are involved in zopiclone metabolism.   总被引:3,自引:0,他引:3  
Zopiclone is a widely prescribed, nonbenzodiazepine hypnotic that is extensively metabolized by the liver in humans. The aim of the present study was to identify the human cytochrome P-450 (CYP) isoforms involved in zopiclone metabolism in vitro. Zopiclone metabolism was studied with different human liver microsomes and a panel of heterologously expressed human CYPs (CYP1A2, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, and 3A4). In human liver microsomes, zopiclone was metabolized into N-desmethyl-zopiclone (ND-Z) and N-oxide-zopiclone (NO-Z) with the following K(m) and V(m) of 78 +/- 5 and 84 +/- 19 microM, 45 +/- 1 and 54 +/- 5 pmol/min/mg for ND-Z and NO-Z generation, respectively. Ketoconazole (CYP3A inhibitor) inhibited approximately 40% of the generation of both metabolites, sulfaphenazole (CYP2C inhibitor) inhibited the formation of ND-Z, whereas alpha-naphtoflavone (CYP1A), quinidine (CYP2D6), and chlorzoxazone (CYP2E1) did not affect zopiclone metabolism. The generation of ND-Z and NO-Z were highly correlated to testosterone 6beta-hydroxylation (CYP3A activity, r = 0.95 and 0.92, respectively; p =.0001), and ND-Z was highly correlated to CYP2C8 activity (paclitaxel 6alpha-hydroxylase; r = 0.76, p =.004). Recombinant CYP2C8 had the highest enzymatic activity toward zopiclone metabolism into both its metabolites, followed by CYP2C9 and 3A4. CYP3A4 is the major enzyme involved in zopiclone metabolism in vitro, and CYP2C8 contributes significantly to ND-Z formation.  相似文献   

2.
Chloroquine has been used for many decades in the prophylaxis and treatment of malaria. It is metabolized in humans through the N-dealkylation pathway, to desethylchloroquine (DCQ) and bisdesethylchloroquine (BDCQ), by cytochrome P450 (CYP). However, until recently, no data are available on the metabolic pathway of chloroquine. Therefore, the metabolic pathway of chloroquine was evaluated using human liver microsomes and cDNA-expressed CYPs. Chloroquine is mainly metabolized to DCQ, and its Eadie-Hofstee plots were biphasic, indicating the involvement of multiple enzymes, with apparent Km and Vmax values of 0.21 mM and 1.02 nmol/min/mg protein 3.43 mM and 10.47 nmol/min/mg protein for high and low affinity components, respectively. Of the cDNA-expressing CYPs examined, CYP1A2, 2C8, 2C19, 2D6 and 3A4/5 exhibited significant DCQ formation. A study using chemical inhibitors showed only quercetin (a CYP2C8 inhibitor) and ketoconazole (a CYP3A4/5 inhibitor) inhibited the DCQ formation. In addition, the DCQ formation significantly correlated with the CYP3A4/5-catalyzed midazolam 1-hydroxylation (r = 0.868) and CYP2C8-catalyzed paclitaxel 6alpha-hydroxylation (r = 0.900). In conclusion, the results of the present study demonstrated that CYP2C8 and CYP3A4/5 are the major enzymes responsible for the chloroquine N-deethylation to DCQ in human liver microsomes.  相似文献   

3.
Cytochrome P450 monooxygenases in crustaceans   总被引:2,自引:0,他引:2  
1. The hepatopancreas is the major site of cytochrome P450-dependent xenobiotic monooxygenation in crustacean species, but the presence of monooxygenase inhibitors in hepatopancreas microsomes and cytosol from many decapod species has impeded in vitro studies. Cytochrome P450 and monooxygenase activities have been reported in other crustacean organs including the antennal gland (green gland) and stomach. 2. NADPH cytochrome c reductase activity is often very low (typically less than 10 nmol cytochrome c reduced/min per mg microsomal protein) in hepatopancreas microsomes from crustacean species. NADPH cytochrome P450 reductase activity has not yet been detected in crustacean hepatopancreas microsomes. 3. The cytochrome P450 present in hepatopancreas of several crab species and the spiny lobster has been resolved into several fractions by chromatography on DEAE-cellulose. One form of cytochrome P450 from spiny lobster has been purified to 12 +/- 2 nmol/mg protein. 4. Reconstitution studies with spiny lobster hepatopancreas P450 have shown that the vertebrate sex steroids, progesterone and testosterone, are excellent substrates, whereas ecdysone--the crustacean molting hormone--is not a substrate. Activity was found with several xenobiotic substrates including benzphetamine, aminopyrine, benzo(a)pyrene, ethyl-, benzyl- and pentyl-phenoxazones and ethoxycoumarin. Highest activities (greater than 50 nmol/min per nmol P450) were found for N-demethylation of benzphetamine and aminopyrine. 5. The ability of agents which induce vertebrate cytochrome P450 to induce cytochrome P450 in crustaceans is still unclear. Some studies indicate that polycyclic aromatic hydrocarbons, but not phenobarbital-type inducers, could induce cytochrome P450 in crustaceans, whereas other studies showed no effect of either inducer type. Crustaceans are not as sensitive as fish to induction of P450 and monooxygenase activity.  相似文献   

4.
1. The hepatopancreas is the major site of cytochrome P450-dependent xenobiotic monooxygenation in crustacean species, but the presence of monooxygenase inhibitors in hepatopancreas microsomes and cytosol from many decapod species has impeded in vitro studies. Cytochrome P450 and monooxygenase activities have been reported in other crustacean organs including the antennal gland (green gland) and stomach.

2. NADPH cytochrome c reductase activity is often very low (typically <10nmol cytochrome c reduced/min per?mg microsomal protein) in hepatopancreas microsomes from crustacean species. NADPH cytochrome P450 reductase activity has not yet been detected in crustacean hepatopancreas microsomes.

3. The cytochrome P450 present in hepatopancreas of several crab species and the spiny lobster has been resolved into several fractions by chromatography on DEAE-cellulose. One form of cytochrome P450 from spiny lobster has been purified to 12+-2nmol/mg protein.

4. Reconstitution studies with spiny lobster hepatopancreas P450 have shown that the vertebrate sex steroids, progesterone and testosterone, are excellent substrates, whereas ecdysone—the crustacean molting hormone—is not a substrate. Activity was found with several xenobiotic substrates including benzphetamine, aminopyrine, benzo(a)pyrene, ethyl-, benzyl- and pentyl-phenoxazones and ethoxycoumarin. Highest activities (>50nmol/min per nmol P450) were found for N-demethylation of benzphetamine and aminopyrine.

5. The ability of agents which induce vertebrate cytochrome P450 to induce cytochrome P450 in crustaceans is still unclear. Some studies indicate that polycyclic aromatic hydrocarbons, but not phenobarbital-type inducers, could induce cytochrome P450 in crustaceans, whereas other studies showed no effect of either inducer type. Crustaceans are not as sensitive as fish to induction of P450 and monooxygenase activity.  相似文献   

5.
Benzene is an occupational and environmental toxicant. The major health concern for humans is acute myelogenous leukemia. To exert its toxic effects, benzene must be metabolized by cytochrome P450 to phenol and subsequently to catechol and hydroquinone. Previous research has implicated CYP2E1 in the metabolism of phenol. In this study the cytochrome P450 isozymes involved in the metabolism of phenol were examined in hepatic and pulmonary microsomes utilizing chemical inhibitors of CYP2E1, CYP2B, and CYP2F2 and using CYP2E1 knockout mice. CYP2E1 was found to be responsible for only approximately 50% of 20 microM phenol metabolism in the liver. This suggests another isozyme(s) is involved in hepatic phenol metabolism. In pulmonary microsomes both CYP2E1 and CYP2F2 were significantly involved.  相似文献   

6.
AIMS: The present study was conducted to evaluate metabolism of the enantiomers of verapamil and norverapamil using a broad range of cytochrome P450 isoforms and measure the kinetic parameters of these processes. METHODS: Cytochrome P450 cDNA-expressed cells and microsomes from a P450-expressed lymphoblastoid cell line were incubated with 40 microm concentrations of R- or S-verapamil and R- or S-norverapamil and metabolite formation measured by h.p.l.c. as an initial screening. Those isoforms exhibiting substantial activity were then studied over a range of substrate concentrations (2.5-450 microm ) to estimate the kinetic parameters for metabolite formation. RESULTS: P450s 3A4, 3A5, 2C8 and to a minor extent 2E1 were involved in the metabolism of the enantiomers of verapamil. Estimated Km values for the production of D-617 and norverapamil by P450 s 3A4 and 3A5 were similar (range=60-127 microm ) regardless of the enantiomer of verapamil studied while the Vmax estimates were also similar (range=4-8 pmol min-1 pmol-1 P450). Only nominal production of D-620 by these isoforms was noted. Interestingly, P450 2C8 readily metabolized both S- and R-verapamil to D-617, norverapamil and PR-22 with only slightly higher Km values than noted for P450s 3A4 and 3A5. However, the Vmax estimates for P450 2C8 metabolism of S- and R-verapamil were in general greater (range=8-15 pmol min-1 pmol-1 P450) than those noted for P450 s 3A4 and 3A5 with preference noted for metabolism of the S-enantiomer. Similarly, P450 s 3A4, 3A5 and 2C8 also mediated the metabolism of the enantiomers of norverapamil with minor contributions by P450 s 2D6 and 2E1. P450s 3A4 and 3A5 readily formed the D-620 metabolite with generally a lower Km and higher Vmax for S-norverapamil than for the R-enantiomer. In contrast, P450 2C8 produced both the D-620 and PR-22 metabolites from the enantiomers of norverapamil, again with stereoselective preference seen for the S-enantiomer. CONCLUSIONS: These results confirm that P450s 3A4, 3A5 and 2C8 play a major role in verapamil metabolism and demonstrate that norverapamil can also be further metabolized by the P450s.  相似文献   

7.
OBJECTIVE: The present study was carried out to identify the cytochrome P450 enzyme(s) involved in the 6-hydroxylation and O-demethylation of melatonin. METHODS: The formation kinetics of 6-hydroxymelatonin and N-acetylserotonin were determined using human liver microsomes and cDNA yeast-expressed human enzymes (CYP1A2, 2C9 and 2C19) over the substrate concentration range 1-1000 microM. Selective inhibitors and substrates of various cytochrome P450 enzymes were also employed. RESULTS: Fluvoxamine was a potent inhibitor of 6-hydroxymelatonin formation, giving 50 +/- 5% and 69 +/- 9% inhibition at concentrations of 1 microM and 10 microM, respectively, after incubation with 50 microM melatonin. Furafylline, sulphaphenazole and omeprazole used at low and high concentrations substantially inhibited both metabolic pathways. cDNA yeast-expressed CYP1A2, CYP2C9 and CYP2C19 catalysed the formation of the two metabolites, confirming the data obtained with specific inhibitors and substrates. CONCLUSIONS: Our results strongly suggest that 6-hydroxylation, the main metabolic pathway of melatonin, is mediated mainly, but not exclusively, by CYP1A2, the high-affinity enzyme involved in melatonin metabolism, confirming the observation that a single oral dose of fluvoxamine increases nocturnal serum melatonin levels in healthy subjects. Furthermore, the results indicate that there is a potential for interaction with drugs metabolised by CYP1A2 both at physiological levels and after oral administration of melatonin, while CYP2C19 and CYP2C9 are assumed to be less important.  相似文献   

8.
It was demonstrated that trans-stilbene was metabolically activated to the estrogenic compound by rat liver microsomes (Sugihara et al., Toxicol. Appl. Pharmacol., 167, 46-54 (2000)). In this study, determination of the isoforms of cytochrome P450 involved in the oxidation of the proestrogen, trans-stilbene, to its hydroxylated metabolites was examined. When trans-stilbene was incubated with rat liver microsomes in the presence of NADPH, estrogenic compounds, trans4-hydroxystilbene and trans-4,4'-dihydroxystilbene were formed. Comparison of the oxidase activity among liver microsomes of untreated, 3-methylcholanthrene-treated, acetone-treated, clofibrate-treated, dexamethasone-treated and phenobarbital-treated rats toward trans-stilbene showed that those from 3-methylcholanthrene-treated rats exhibited the highest activity. Human liver microsomes also catalyzed the oxidation in varying degrees. Variation in trans-stilbene oxidase activity was closely correlated to that of phenacetin O-deethylase activity. The oxidase activity was inhibited by alpha-naphthoflavone; however, in this case trans-4,4'-dihydroxystilbene was not detected. The oxidase activity toward trans-stilbene was exhibited by recombinant human cytochrome P450 1A1 and 1A2 expressed in a human B lymphoblastoid cell line.  相似文献   

9.
The calcium channel blocker verapamil [2,8-bis-(3,4-dimethoxyphenyl)-6-methyl-2-isopropyl-6-azaoctanitrile] undergoes extensive biotransformation in man. We have previously demonstrated cytochrome P450 (CYP) 3A4 and 1A2 to be the enzymes responsible for verapamil N-dealkylation (formation of D-617 [2-(3,4-dimethoxyphenyl)-5-methylamino-2-isopropylvaleronitrile]), and verapamil N-demethylation (formation of norverapamil [2,8-bis(3,4-dimethoxyphenyl)-2-isopropyl-6-azaoctanitrile]), while there was no involvement of CYP3A4 and CYP1A2 in the third initial metabolic step of verapamil, which is verapamil O-demethylation. This pathway yields formation of D-703 [2-(4-hydroxy-3-methoxyphenyl)-8-(3,4-dimethoxyphenyl)-6-methyl-2-isopropyl-6-azaoctanitrile] and D-702 [2-(3,4-dimethoxyphenyl)-8-(4-hydroxy-3-methoxyphenyl)6-methyl-2-isopropyl-6-azaoctanitrile]. The enzymes catalyzing verapamil O-demethylation have not been characterized so far. We have therefore identified and characterized the enzymes involved in verapamil O-demethylation in humans by using the following in vitro approaches: (I) characterization of O-demethylation kinetics in the presence of the microsomal fraction of human liver, (II) inhibition of verapamil O-demethylation by specific antibodies and selective inhibitors and (111) investigation of metabolite formation in microsomes obtained from yeast strain Saccharomyces cerevisiae W(R), that was genetically engineered for stable expression of human CYP2C8, 2C9 and 2C18.In human liver microsomes (n=4), the intrinsic clearance (CLint), as derived from the ratio of V max/Km, was significantly higher for O-demethylation to D-703 compared to formation of D-702 following incubation with racemic verapamil (13.9±1.0 vs 2.4±0.6 ml*min-1 *g-1 mean±SD; p<0.05), S-Verapamil (16.8±3.3 vs 2.2±1.2 ml* mini*g-1, p<0.05) and R-verapamil (12.1±2.9 vs 3.6 ±1.3 ml*min-1 * g-1; p<0.05), thus indicating regioselectivity of verapamil O-demethylation process. The CLint of D-703 formation in human liver microsomes showed a modest but significant degree of stereo selectivity (p<0.05) with a S/R-ratio of 1.41±0.17. Anti-LKM2 (anti-liver/kidney microsome) autoantibodies (which inhibit CYP2C9 and 2C19) and sulfaphenazole (a specific CYP2C9 inhibitor) reduced the maximum rate of formation of D-703 by 81.5±4.5% and 45%, that of D-702 by 52.7±7.5% and 72.5%, respectively. Both D-703 and D-702 were formed by stably expressed CYP2C9 and CYP2C18, whereas incubation with CYP2C8 selectively yielded D-703.In conclusion, our results show that enzymes of the CYP2C subfamily are mainly involved in verapamil O-demethylation. Verapamil therefore has the potential to interact with other drugs which inhibit or induce these enzymes.  相似文献   

10.
OBJECTIVES: To compare cytochrome P450 activity in people with and without cancer and examine the relationship between CYP2C9 activity and serum cytokine levels. PATIENTS AND METHODS: 10 subjects with cancer who were currently receiving treatment and 10 additional subjects without cancer who were matched to the subjects with cancer based on gender and race were enrolled into the study. Serial blood samples were drawn to measure tolbutamide in the plasma before and after oral tolbutamide 500 mg. Total urine excreted was collected from 0 to 12 h following the dose. Tolbutamide and its metabolites were measured in plasma and urine by HPLC. CYP2C9 genotype was determined by PCR and pyrosequencing and cytokine values were determined by ELISA. RESULTS: The mean apparent oral clearance (cancer, 19.5 +/- 10.5 vs. non-cancer, 15.8 +/- 5.0 ml/min) and the mean urinary metabolic ratio from 0 to 12 h were similar (838 +/- 693 vs. 775 +/- 390). Neither age nor genotype statistically affected the outcomes. Mean interleukin-6 (7.2 +/- 9.4 vs. 1.5 +/- 1.3 pg/ml) and tissue necrosis factor-a (26.2 +/- 71.2 vs. 1.5 +/- 1.3 pg/ml) were 5- to 7-fold higher, respectively, in subjects with cancer. No statistically significant correlation between cytokine values and oral clearance or urinary metabolic ratio was found. CONCLUSIONS: CYP2C9 activity as measured by apparent oral clearance and urinary metabolic ratio following oral tolbutamide appear similar in people with and without cancer. Serum cytokine values appear higher in patients with cancer, although the differences did not reach statistical significance.  相似文献   

11.
Cytochrome P450, initially perceived as a type of cell pigment, was soon identified as a hemoprotein with an enzymatic activity characteristic for monooxygenases with an affinity for differentiated endo- or exogenous substrates, including drugs. So far in the human organism 58 CYP isoenzymes belonging to 18 families have been described. Most from the CYP monooxygenases superfamily turned out to be integral elements of hepatocytic reticular monooxygenase complexes which also contain NADPH-dependent cytochrome P450 reductase (CPR). Later investigations indicated the possibility of the participation in electron transport for reticular CYP isoenzymes, alternative NADH-dependent reticular system composed of cytochrome b5 reductase (CBR) and cytochrome b5. The demonstration of the activity of some CYP superfamily isoenzymes not only in hepatocytes but also in many other cells of the human organism, numerous plant and animal tissues and even in cells of fungi, protists and prokaryotes has contributed to the significantly increased understanding of the role of CYP in biological systems. In addition, some CYP isoenzymes were found to be characteristic for the inner mitochondrial membrane monooxygenase complexes which contain NADPH-dependent adrenodoxin reductase (AR) and adrenodoxin (Ad), which is identical with ferredoxin-1 (Fd-1) and hepatoredoxin (Hd).  相似文献   

12.
Summary The calcium channel blocker verapamil[2,8-bis-(3,4-dimethoxyphenyl)-6-methyl-2-isopropyl-6-azaoctanitrile] is widely used in the treatment of hypertension, angina pectoris and cardiac arrythmias. The drug undergoes extensive and variable hepatic metabolism in man with the major metabolic steps comprising formation of D-617 [2-(3,4-dimethoxyphenyl)-5-methylamino-2-isopropylvaleronitrile] and norverapamil [2,8-bis-(3,4-dimethoxyphenyl)-2-isopropyl-6-azaoxtanitrile]. The enzymes involved in metabolism of verapamil have not been characterized so far. Identification of these enzymes would enable estimation of both interindividual variability in verapamil metabolism introduced by the respective pathway and potential for metabolic interactions. We therefore characterized the enzymes involved in formation of D-617 and norverapamil.The maximum rate of formation of D-617 and norverapamil was determined in the microsomal fraction of 21 human livers which had been previously characterized for the individual expression of various P450 enzymes (CYP1A2, CYP2C, CYP2D6, CYP2E1 and CYP3A3/4) by means of Western blotting. Specific antibodies directed against CYP3A were used to inhibit formation of D-617 and norverapamil. Finally, formation of both metabolites was investigated in microsomes obtained from yeast cells which were genetically engineered for stable expression of human P450.Formation of D-617 was correlated with the expression of CYP3A (r=0.85; P<0.001) and CYP1A2 (r=0.57; P<0.01) in the microsomal fraction of 21 human livers after incubation with racemic verapamil. Formation of norverapamil was correlated with the expression of CYP3A (r=0.58; P<0.01) and CYP1A2 (r=0.5; P<0.05) in the same preparations after incubation with racemic verapamil. Antibodies against CYP3A reduced maximum rate of formation of D-617 (to 37.1±11% and 40.6±6.801o of control after incubation with S- and R-verapamil, respectively) and norverapamil (to 38.2±4.5% and 29.2±5.5% of control after incubation with S- and R-verapamil, respectively). Both D-617 and norverapamil were formed by stable expressed CYP3A4 (16.6 pmol/mg protein/min and 22.6 pmol/mg protein/min, respectively). In summary, formation of D-617 and norverapamil is catalyzed mainly by CYP3A4. D-617 is also formed by CYP1A2. Veraparnil therefore has the potential to interact with other drugs which are substrates or inducers of CYP3A and CYP1A2.Part of this work has been presented at the 32 Annual Spring Meeting of the German Society for Pharmacology and Toxicology, 1991, The abstract was published in Naunyn-Schmiedeberg's Archives of Pharmacology (1991) 343:R124 Correspondence to H. K. Kroemer at the above address  相似文献   

13.
Studies are described on the cytochrome P450 (CYP) isoenzyme dependence of the main metabolic steps of the Eschscholtzia californica alkaloids californine and protopine using rat liver microsomes. Preparations of E. californica are in use as phytopharmaceuticals and as herbal drugs of abuse. CYP isoenzyme dependences were studied using specific chemical inhibitors for CYP1A2, CYP2D1, and CYP3A2 (alpha-naphthoflavone, quinine, and ketoconazole, respectively). CYP2C11 was inhibited by specific antibodies for lack of specific chemical inhibitors. Californine N-demethylation was mainly catalyzed by CYP3A2 and to a minor extent by CYP1A2 and CYP2D1, but not by CYP2C11. CYP2D1 and CYP2C11 were shown to be mainly involved in demethylenation of both, californine and protopine, while CYP1A2 and CYP3A2 showed only minor contribution. Kinetic parameters of the reactions were established. K(m) and V(max) values for the californine N-demethylation were 4.5+/-4.7 microM and 22.9+/-13.7 min/mg protein (high affinity) and 161.3+/-16.7 microM and 311.8+/-39.4 min/mg protein (low affinity), respectively. Californine demethylenation and protopine demethylenation showed substrate inhibition and K(m) and V(max) values were 5.0+/-0.5 and 7.1+/-0.6 microM and 83.3+/-2.6 and 160.7+/-4.0 min/mg protein, respectively.  相似文献   

14.
1. The metabolism of thioridazine by the flavin-containing monooxygenase (FMO) of mouse liver and several P450 isozymes was examined using microsomes, purified FMO, and expressed P450 isozymes. Metabolites were identified by hplc.

2. Thermal inactivation and antibodies to NADPH P450 reductase were used to selectively inactivate FMO and P450 respectively. Inactivation of FMO by heat-treatment reduced the formation of thioridazine-N-oxide and northioridazine, whereas inactivation of P450 resulted in decreased amounts of thioridazine-2-sulphoxide, northioridazine, and thioridazine-5-sulphoxide.

3. Liver microsomes from mouse induced with phenobarbital, 3-methylcholanthrene, or acetone were compared with control microsomes. Phenobarbital induction resulted in increased formation of all metabolites except thioridazine-N-oxide, while retaining a general metabolic profile similar to that achieved with control microsomes. Neither 3-methylcholanthrene nor acetone induction had any effect on the in vitro metabolism of thioridazine.

4. FMO purified from mouse liver produced thioridazine-N-oxide as the major metabolite.

5. Preliminary experiments with commercially prepared microsomes made from cells expressing recombinant human liver P450 2D6 and 3A4 suggested that thioridazine is metabolized by 2D6 but not 3A4.  相似文献   

15.
Lorcaserin, a selective serotonin 5-hydroxytryptamine 2C receptor agonist, is being developed for weight management. The oxidative metabolism of lorcaserin, mediated by recombinant human cytochrome P450 (P450) and flavin-containing monooxygenase (FMO) enzymes, was examined in vitro to identify the enzymes involved in the generation of its primary oxidative metabolites, N-hydroxylorcaserin, 7-hydroxylorcaserin, 5-hydroxylorcaserin, and 1-hydroxylorcaserin. Human CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2D6, CYP3A4, and FMO1 are major enzymes involved in N-hydroxylorcaserin; CYP2D6 and CYP3A4 are enzymes involved in 7-hydroxylorcaserin; CYP1A1, CYP1A2, CYP2D6, and CYP3A4 are enzymes involved in 5-hydroxylorcaserin; and CYP3A4 is an enzyme involved in 1-hydroxylorcaserin formation. In 16 individual human liver microsomal preparations (HLM), formation of N-hydroxylorcaserin was correlated with CYP2B6, 7-hydroxylorcaserin was correlated with CYP2D6, 5-hydroxylorcaserin was correlated with CYP1A2 and CYP3A4, and 1-hydroxylorcaserin was correlated with CYP3A4 activity at 10.0 μM lorcaserin. No correlation was observed for N-hydroxylorcaserin with any P450 marker substrate activity at 1.0 μM lorcaserin. N-Hydroxylorcaserin formation was not inhibited by CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2D6, and CYP3A4 inhibitors at the highest concentration tested. Furafylline, quinidine, and ketoconazole, selective inhibitors of CYP1A2, CYP2D6, and CYP3A4, respectively, inhibited 5-hydroxylorcaserin (IC(50) = 1.914 μM), 7-hydroxylorcaserin (IC(50) = 0.213 μM), and 1-hydroxylorcaserin formation (IC(50) = 0.281 μM), respectively. N-Hydroxylorcaserin showed low and high K(m) components in HLM and 7-hydroxylorcaserin showed lower K(m) than 5-hydroxylorcaserin and 1-hydroxylorcaserin in HLM. The highest intrinsic clearance was observed for N-hydroxylorcaserin, followed by 7-hydroxylorcaserin, 5-hydroxylorcaserin, and 1-hydroxylorcaserin in HLM. Multiple human P450 and FMO enzymes catalyze the formation of four primary oxidative metabolites of lorcaserin, suggesting that lorcaserin has a low probability of drug-drug interactions by concomitant medications.  相似文献   

16.
17.
The in vitro metabolism of [(14)C]-gefitinib (1-3 microM) was investigated using human liver microsomes and a range of expressed human cytochrome P450 enzymes, with particular focus on the formation of O-desmethyl-gefitinib (M523595), the major metabolite observed in human plasma. High-performance liquid chromatography with ultraviolet light, radiochemical and mass spectral analysis, together with the availability of authentic standards, enabled quantification and structural identification of metabolites. On incubation with pooled human liver microsomes, [(14)C]-gefitinib underwent rapid and extensive metabolism to a number of metabolites, although M523595 was only a minor microsomal product. Formation of most metabolites was markedly decreased by ketoconazole, but M523595 production was inhibited only by quinidine. Gefitinib was metabolized extensively by expressed CYP3A4, producing a similar range of metabolites to liver microsomes, but M523595 was not formed. CYP1A2, 2C9 and 2C19 produced no measurable metabolism of gefitinib, while CYP3A5 produced a range of metabolites similar to CYP3A4, but to a much lower degree. In contrast, CYP2D6 catalysed rapid and extensive metabolism of gefitinib to M523595. While formation of M523595 was CYP2D6 mediated, the overall metabolism of gefitinib was dependent primarily on CYP3A4, and this was not obviously diminished in liver microsomes from CYP2D6 poor metabolizers.  相似文献   

18.
细胞色素氧化酶CYP2C9的研究进展   总被引:14,自引:0,他引:14  
CYP2C9是人类肝脏中含量丰富的一种CYP450酶,它能代谢和/或活化许多种药物、前致癌物、前毒物和致突变剂。CYP2C9基因具有遗传多态性,在人类存在几种等位基因的突变体。本文从基因结构、底物和探针药、影响其活性的因素、遗传多态性的分子机制等方面综述CYP2C9的研究进展。  相似文献   

19.
Introduction: Flavin-containing monooxygenases (FMOs) play an important role in drug metabolism.

Areas covered: We focus on the role of FMOs in the metabolism of drugs in human and mouse. We describe FMO genes and proteins of human and mouse; the catalytic mechanism of FMOs and their significance for drug metabolism; differences between FMOs and CYPs; factors contributing to potential underestimation of the contribution of FMOs to drug metabolism; the developmental and tissue-specific expression of FMO genes and differences between human and mouse; and factors that induce or inhibit FMOs. We discuss the contribution of FMOs of human and mouse to the metabolism of drugs and how genetic variation of FMOs affects drug metabolism. Finally, we discuss the utility of animal models for FMO-mediated drug metabolism in humans.

Expert opinion: The contribution of FMOs to drug metabolism may be underestimated. As FMOs are not readily induced or inhibited and their reactions are generally detoxifications, the design of drugs that are metabolized predominantly by FMOs offers clinical advantages. Fmo1(-/-),Fmo2(-/-),Fmo4(-/-) mice provide a good animal model for FMO-mediated drug metabolism in humans. Identification of roles for FMO1 and FMO5 in endogenous metabolism has implications for drug therapy and initiates an exciting area of research.  相似文献   


20.
The in vitro metabolism of [14C]-gefitinib (1–3 µM) was investigated using human liver microsomes and a range of expressed human cytochrome P450 enzymes, with particular focus on the formation of O-desmethyl-gefitinib (M523595), the major metabolite observed in human plasma. High-performance liquid chromatography with ultraviolet light, radiochemical and mass spectral analysis, together with the availability of authentic standards, enabled quantification and structural identification of metabolites. On incubation with pooled human liver microsomes, [14C]-gefitinib underwent rapid and extensive metabolism to a number of metabolites, although M523595 was only a minor microsomal product. Formation of most metabolites was markedly decreased by ketoconazole, but M523595 production was inhibited only by quinidine. Gefitinib was metabolized extensively by expressed CYP3A4, producing a similar range of metabolites to liver microsomes, but M523595 was not formed. CYP1A2, 2C9 and 2C19 produced no measurable metabolism of gefitinib, while CYP3A5 produced a range of metabolites similar to CYP3A4, but to a much lower degree. In contrast, CYP2D6 catalysed rapid and extensive metabolism of gefitinib to M523595. While formation of M523595 was CYP2D6 mediated, the overall metabolism of gefitinib was dependent primarily on CYP3A4, and this was not obviously diminished in liver microsomes from CYP2D6 poor metabolizers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号