首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The projections of the medial preoptic nucleus (MPN) were examined by making injections of the anterogradely transported lectin Phaseolus vulgaris leucoagglutinin (PHA-L) into the MPN and charting the distribution of labeled fibers. The evidence indicates that the MPN projects extensively to widely distributed regions in both the forebrain and brainstem, most of which also supply inputs to the nucleus. An important neuroendocrine role for the MPN is underscored by its extensive projections to almost all parts of the periventricular zone of the hypothalamus, including the anteroventral periventricular, anterior part of the periventricular, paraventricular (PVH), and arcuate nuclei, and a role in autonomic mechanisms is indicated by projections to such regions as the dorsal and lateral parvicellular parts of the PVH, the lateral parabrachial nucleus, and the nucleus of the solitary tract. Other projections of the MPN suggest participation in the initiation of specific motivated behaviors. For example, inputs to two nuclei of the medial zone of the hypothalamus, the ventromedial and dorsomedial nuclei, may be related to the control of reproductive and ingestive behaviors, respectively, although the possible functional significance of a strong projection to the ventral premammillary nucleus is presently unclear. The execution of these behaviors may involve activation of somatomotor regions via projections to the substantia innominata, zona incerta, ventral tegmental area, and pedunculopontine nucleus. Similarly, inputs to other regions that project directly to the spinal cord, such as the periaqueductal gray, the laterodorsal tegmental nucleus, certain medullary raphe nuclei, and the magnocellular reticular nucleus may also be involved in modulating somatic and/or autonomic reflexes. Finally, the MPN may influence a wide variety of physiological mechanisms and behaviors through its massive projections to areas like the ventral part of the lateral septal nucleus, the bed nucleus of the stria terminalis, the lateral hypothalamic area, the supramammillary nucleus, and the ventral tegmental area, all of which have extensive connections with regions along the medial forebrain bundle. Although the PHA-L method does not allow a clear demonstration of possible differential projections from each subdivision of the MPN, our results suggest that each of them does give rise to a unique pattern of outputs.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The circadian timing of the suprachiasmatic nucleus (SCN) is modulated by its neural inputs. In the present study, we examine the organization of the neural inputs to the rat SCN using both retrograde and anterograde tracing methods. After Fluoro-Gold injections into the SCN, retrogradely labeled neurons are present in a number of brain areas, including the infralimbic cortex, the lateral septum, the medial preoptic area, the subfornical organ, the paraventricular thalamus, the subparaventricular zone, the ventromedial hypothalamic nucleus, the posterior hypothalamic area, the intergeniculate leaflet, the olivary pretectal nucleus, the ventral subiculum, and the median raphe nuclei. In the anterograde tracing experiments, we observe three patterns of afferent termination within the SCN that correspond to the photic/raphe, limbic/hypothalamic, and thalamic inputs. The median raphe projection to the SCN terminates densely within the ventral subdivision and sparsely within the dorsal subdivision. Similarly, areas that receive photic input, such as the retina, the intergeniculate leaflet, and the pretectal area, densely innervate the ventral SCN but provide only minor innervation of the dorsal SCN. A complementary pattern of axonal labeling, with labeled fibers concentrated in the dorsal SCN, is observed after anterograde tracer injections into the hypothalamus and into limbic areas, such as the ventral subiculum and infralimbic cortex. A third, less common pattern of labeling, exemplified by the paraventricular thalamic afferents, consists of diffuse axonal labeling throughout the SCN. Our results show that the SCN afferent connections are topographically organized. These hodological differences may reflect a functional heterogeneity within the SCN. J. Comp. Neurol. 389:508–534, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
The circadian clock, located in the suprachiasmatic nucleus (SCN), receives a major afferent from the median raphe nucleus (MRN). In the Syrian hamster, only about 50% of the cells giving rise to this afferent contain serotonin. There is mixed evidence as to whether the serotonergic portion of this projection is involved in non‐photic phase shifting of circadian locomotor rhythms. In order to better characterize the non‐serotonergic projections, we conducted retrograde tract tracing using the beta subunit of cholera toxin combined with multi‐label immunohistochemistry. Similar to previous findings, almost half of the retrogradely labeled cells contained serotonin. Additionally, approximately 30% of the retrogradely labeled cells contained vesicular glutamate transporter 3 (VGLUT3), but not serotonin. Surprisingly, some dorsal raphe cholera toxin labeling was also noted, particularly in animals with central‐SCN injections. To determine if the non‐serotonergic projections were important for non‐photic phase shifts elicited by MRN stimulation, the MRN was electrically stimulated in animals pretreated with SCN injection of either the serotonin neurotoxin 5,7‐dihydroxytryptamine or vehicle control. Intact animals phase advanced to midday electrical stimulation of the raphe while lesioned animals did not. Together, these results show that although some of the non‐serotonergic raphe projections to the SCN contain VGLUT3, it is the serotonergic raphe innervation of the SCN that is critical for non‐photic phase shifting elicited by MRN stimulation.  相似文献   

4.
The circadian pacemaker housed in the suprachiasmatic nucleus (SCN) synchronizes daily sleep-wake cycles, presumably by modulating the sleep-wake regulatory system, including ventrolateral preoptic area (VLPO) neurons. We used whole-cell patch-clamp recording to study the projections from the SCN to the VLPO in horizontal slices of rat hypothalamus. Single-pulse stimulation of the SCN region elicited postsynaptic currents (PSCs) in 20 of 66 neurons (30%) recorded within the VLPO region as verified by intracellular biocytin labelling. At a holding potential of -60 mV, the evoked PSCs had an amplitude of 17.6 +/- 3.2 pA (SEM) and a latency of 6.3 +/- 0.5 ms (n = 10). There was a trend for simple excitatory postsynaptic currents (EPSCs) to be evoked in the VLPO cluster, simple inhibitory postsynaptic currents (IPSCs) in the extended VLPO, and a combination of EPSCs and IPSCs in both regions. IPSCs were blocked reversibly by bicuculline (10 microm, n = 11). In both the presence and absence of bicuculline, EPSCs had fast and slow components that were blocked by 6,7-dinitroquinoxaline-2,3-dione (DNQX; 10 microm; n = 7), and (+/-)3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP; 10 microm, n = 6), respectively. Reversal potentials for the evoked IPSCs and EPSCs were consistent with mediation via GABAA and ionotropic glutamate receptors, respectively. These results suggest that the SCN region provides both inhibitory and excitatory inputs to single VLPO neurons, which are mediated, respectively, by GABAA receptors and by both non-NMDA and NMDA glutamate receptors. These projections may play important roles in conveying circadian input to systems in the preoptic area that regulate sleep and waking.  相似文献   

5.
The hippocampal formation and amygdala are responsible for regulating emotion, learning, and behavior. The hippocampal projection to the amygdala has been demonstrated to originate in the subiculum and adjacent portion of field CA1 of the Ammon's horn (Sub/CA1) in the rat; however, the topographical organization of this pathway is still understudied. To make it clear, we performed anterograde and retrograde tracing with biotinylated dextran amine (BDA) and cholera toxin B subunit (CTb), respectively, in the rat. A series of BDA experiments revealed that the temporal-to-septal axis of origin determined a medial-to-lateral axis of termination in the amygdala. Briefly, the temporal region of the Sub/CA1 projects preferentially to the medial amygdaloid region including the medial, intercalated, and basomedial nuclei and the amygdalohippocampal transition area, and progressively more septal portions of the Sub/CA1 distribute their efferents in more lateral regions of the amygdala. Sub/CA1 fibers distributed in the central amygdaloid nucleus were relatively few. Retrograde tracing with CTb confirmed this topography and revealed little hippocampal innervation of the central nucleus of the amygdala. These observations suggest that distinct Sub/CA1 regions arranged along the longitudinal hippocampal axis may influence distinct modalities of the amygdala function.  相似文献   

6.
The rostral ventrolateral medulla (RVLM) contains neurons critical for cardiovascular, respiratory, metabolic, and motor control. The activity of these neurons is controlled by inputs from multiple identified brain regions; however, the neurochemistry of these inputs is largely unknown. Gamma‐aminobutyric acid (GABA) and enkephalin tonically inhibit neurons within the RVLM. The aim of this study was to identify all brain regions that provide GABAergic or enkephalinergic input to the rat RVLM. Neurons immunoreactive for cholera toxin B (CTB‐ir), retrogradely transported from the RVLM, were assessed for expression of glutamic acid decarboxylase (GAD67) or preproenkephalin (PPE) mRNA using in situ hybridization. GAD67 mRNA was expressed in CTB‐ir neurons in the following regions: the nucleus of the solitary tract (NTS, 6% of CTB‐ir neurons), area postrema (AP, 8%), caudal ventrolateral medulla (17%), midline raphe (40%), ventrolateral periaqueductal gray (VLPAG, 15%), lateral hypothalamic area (LHA, 25%), central nucleus of the amygdala (CeA, 77%), sublenticular extended amygdala (SLEA, 86%), interstitial nucleus of the posterior limb of the anterior commissure (IPAC, 56%), bed nucleus of the stria terminals (BNST, 59%), and medial preoptic area (MPA, 53%). PPE mRNA was expressed in CTB‐ir neurons in the following regions: the NTS (14% of CTB‐ir neurons), midline raphe (26%), LHA (22%), zona incerta (ZI, 15%), CeA (5%), paraventricular nucleus (PVN, 13%), SLEA (66%), and MPA (26%). Thus, limited brain regions contribute GABAergic and/or enkephalinergic input to the RVLM. Multiple neurochemically distinct pathways originate from these brain regions projecting to the RVLM. J. Comp. Neurol. 521:213–232, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
The lateral preoptic and lateral hypothalamic regions contain the majority of the cell groups embedded in the fibre trajectories of the medial forebrain bundle on its course through the hypothalamus. Recent studies have extended considerably the parcellation of the lateral hypothalamic region, and, therefore, the need to emphasize new insights into the anatomical organisation of projections from the neurons of the lateral hypothalamic region. In the present study we describe the anatomical organisation of efferent projections from the lateral preoptic and lateral hypothalamic regions to the hypothalamic paraventricular nucleus (PVN) on the basis of retrograde- and anterograde-tracing techniques. Iontophoretic injections of the retrograde tracer, cholera toxin subunit B, into the PVN revealed that most hypothalamic nuclei project to the PVN. Within the lateral hypothalamic region, retrogradely labelled cells were concentrated in the intermediate hypothalamic area, the lateral hypothalamic area, and the perifornical nucleus, whereas fewer retrogradely labelled cells were found in the lateral preoptic area. To determine the distribution of terminating fibres in subnuclei of the heterogeneous PVN, iontophoretic injections of the anterograde tracer Phaseolus vulgaris-leucoagglutinin were delivered into distinct areas of the lateral hypothalamic region. Neurons of the intermediate hypothalamic area projected mainly to the PVN subnuclei, which contained parvicellular neuroendocrine cells. In contrast, neurons of the rostral and tuberal parts of the lateral hypothalamic area and the perifornical nucleus projected to the PVN subnuclei, which contained parvicellular neurons that send descending projections to preganglionic cell groups in the medulla and spinal cord. The perifornical nucleus was the only area within the lateral hypothalamic region that consistently innervated magnocellular perikarya of the PVN. Finally, all areas of the lateral hypothalamic region contributed substantially to fibres terminating in the perinuclear shell of the PVN. These results demonstrate that anatomically distinct areas of the lateral hypothalamic region have distinct projections to subnuclei of the PVN and further substantiate the view that the lateral hypothalamic region as well as the PVN constitute anatomically and functionally heterogeneous structures. © 1994 Wiley-Liss, Inc.  相似文献   

8.
The suprachiasmatic nuclei (SCN) contain a master clock driving the majority of circadian rhythms in mammals. It is believed that the SCN confers circadian rhythmicity as well as light responsiveness to pineal melatonin secretion via a direct projection to the paraventricular nucleus of the hypothalamus (PVN). Neurons in the SCN respond to light during subjective night with an expression of the immediate early gene c-fos. The number and distribution of c-Fos protein-containing neurons depend on the zeitgeber time (ZT) at which the light stimulus is presented. To investigate whether this phase-dependent activity is present in the SCN output neurons targeting the PVN, we combined retrograde cholera toxin subunit B (ChB) tracing from the PVN with c-Fos immunohistochemistry. Male golden hamsters were injected iontophoretically with ChB into the PVN area and 7 days later given a 1.5-hr light stimulus at either ZT 14 or ZT 19 followed by vascular fixation. Light stimulation at ZT 19 gave rise to more c-Fos containing neurons in the SCN than light presented at ZT 14. Double immunostaining for ChB and c-Fos revealed that light stimulation at ZT 14 induced c-Fos expression in 26.6% +/- 2.8% of the retrogradely filled perikarya, whereas light-stimulation at ZT 19 increased this fraction to 40.7% +/- 1.9%. This demonstrates the presence of a phase-dependent c-Fos induction in the suprachiasmatic-paraventricular projection system. Triple immunohistochemistry showed that light-activated output neurons contained both gastrin-releasing peptide and vasoactive intestinal polypeptide and to a lesser extent vasopressin. The present findings provide functional evidence of light activation of central pathways involved in the regulation of circadian output rhythms.  相似文献   

9.
The medial preoptic nucleus (MPN) is a sexually dimorphic complex with three major subdivisions. The cell-dense central (MPNc) and medial (MPNm) subdivisions are larger in male rats, while the cell-sparse lateral subdivision (MPNl) occupies a majority of the nucleus in females. In the present study we evaluated the distribution of possible monoaminergic and peptidergic cells and fibers within the MPN, as well as in adjacent regions of the medial preoptic area of the adult male rat. For this, we used an indirect immunohistochemical method with antisera to serotonin (5HT), dopamine beta-hydroxylase (DBH), tyrosine hydroxylase (TH), neuropeptide Y (NPY), cholecystokinin (CCK), vasoactive intestinal polypeptide (VIP), substance P (SP), neurotensin (NT), corticotropin-releasing factor (CRF), luteotropin-releasing hormone (LRH), somatostatin (SS), thyrotropin-releasing hormone (TRH), oxytocin (OXY), vasopressin (VAS), adrenocorticotropic hormone (1-24; ACTH), alpha-melanocyte-stimulating hormone (alpha-MSH), leucine-enkephalin (L-ENK), and calcitonin gene-related peptide (CGRP). The results suggest that cell bodies and/or fibers crossreacting with all of these putative neurotransmitters are differentially distributed within the MPN. Within the MPNm, the densest plexuses of fibers were stained with antisera to SP and NPY, while moderate densities of fibers were stained with anti-DBH, SS, CCK, CGRP, ACTH, and alpha-MSH, and only a few fibers were stained with anti-5HT, TH, NT, VAS, and L-ENK. Moderate numbers of SP- and L-ENK-immunoreactive cell bodies, and a few SS-, NT-, CRF-, and TRH-stained cell bodies were also found within the MPNm. The MPNc contained a dense plexus of CCK-immunoreactive fibers, as well as a few CRF-immunoreactive fibers. Both fiber types were localized almost exclusively to this subdivision, while most of the others studied here appeared to avoid it selectively. This suggests that there are relatively few inputs to the MPNc, and that they tend to avoid other parts of the nucleus, although moderate densities of DBH- and NPY-immunoreactive fibers were found in both the MPNm and MPNc. The MPNc contained several CCK-immunoreactive cell bodies as well as a moderate number of TRH-stained cell bodies. Both cell types were nearly completely localized to the MPNc. The major inputs to the MPNl studied here appear to be stained with antisera to 5HT and L-ENK, although moderate numbers of NT- and CRF- immunoreactive fibers were also found in this part of the nucleus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
In an effort to understand better how the zona incerta may influence neocortical activity, this study has examined the patterns of projection that this nucleus has to the dorsal thalamus, the “gateway” to the neocortex. To this end, Sprague-Dawley rats were anaesthetised with Ketamil (100 mg/kg) and Rompun (10 mg/kg), and injections of biotinylated dextran or cholera toxin subunit B (CTB) were made into various dorsal thalamic nuclei, including the primary relay (dorsal lateral geniculate, medial geniculate, ventral posterior), association (lateral dorsal, lateral posterior, posterior thalamic), and intralaminar (central lateral, parafascicular) nuclear groups, by using stereotaxic coordinates. Brains were aldehyde fixed and processed with standard methods. Our results show that there is a large projection from the zona incerta to the dorsal thalamus. This projection does not blanket all nuclei of the dorsal thalamus but, rather, shows a clear preference for some nuclei over others. After CTB or dextran injections into the primary relay nuclei, very few cells are labelled in the zona incerta. After similar injections are made into the association or intralaminar nuclei, however, many more labelled incertal cells are seen. There are some differences in the distribution of labelled cells within the zona incerta after injections into the association nuclei compared with injections into the intralaminar nuclei. The association nuclei relate strongly to the ventral sector, whereas the intralaminar nuclei relate strongly to the dorsal sector of the zona incerta. After each of these injections into the dorsal thalamus, labelled terminals are seen in the zona incerta also, and their distribution mirrors the distribution of the labelled incertal cells described above. Thus, in summary, our results indicate that the zona incerta has a large and preferential projection to the dorsal thalamus, in particular from the association and intralaminar nuclei. Through this dorsal thalamic projection, the zona incerta is in a position to influence large areas of the neocortex. J. Comp. Neurol. 404:554–565, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

11.
The axonal projections of the dorsomedial nucleus of the hypothalamus were investigated by using Phaseolous vulgaris-leucoagglutinin. The main conclusion of this work is that these projections are largely intrahypothalamic, with smaller components directed toward the brainstem and telencephalon. Although the intrahypothalamic pathways are very complex and intermix at various levels, we conclude that dorsomedial nucleus outputs follow three distinct ascending pathways: periventricular, coursing through the hypothalamic periventricular zone; ventral, traveling beneath the medial zone; and lateral, ascending in medial parts of the lateral hypothalamic area. Within the hypothalamus, the most densely innervated areas are the paraventricular nucleus, other dorsal regions of the periventricular zone, the preoptic suprachiasmatic nucleus, and the parastrial nucleus. Other significant terminal fields include the median preoptic, anteroventral periventricular, lateral part of the medial preoptic, and anteroventral preoptic nuclei; and the retrochiasmatic (including perisuprachiasmatic) area. Descending projections follow two pathways that also converge at various levels: a dorsal pathway in the midbrain periventricular system travels through, and primarily innervates, the periaqueductal and pontine gray, and a ventral pathway extends through ventromedial regions of the brainstem. Although sparse, fibers in the later pathway can be traced as far caudally as the nucleus of the solitary tract. The results are discussed relative to the pathways and properties of nearby hypothalamic medial zone nuclei. Dorsomedial nucleus projections are similar to certain other nuclei (e.g., anteroventral periventricular and parastrial) with predominantly intrahypothalamic projections, and different from those arising in the medial zone nuclei (medial preoptic, anterior hypothalamic, ventromedial, and mammillary). © 1996 Wiley-Liss, Inc.  相似文献   

12.
To study the cells of origin and area of termination of the projection from the nucleus reuniens thalami (NRe) to the piriform cortex (PC) we used anterograde and retrograde tracing with the B subunit of the cholera toxin. Tracer injections in the NRe resulted in anterogradely labeled fibers in the dorsolateral part of the PC layers I and III. Following injections in the PC, retrogradely labeled cells were observed primarily in the dorsal subdivision of the NRe. Moreover, a topographical organization was observed in this subdivision: its anterior part projects to the posterior part of the PC, whereas its middle part projects to the anterior part of the PC. The present findings suggest that the NRe may exert different modulatory influences on the dorsolateral part of both anterior and posterior PC areas. The possible role of the NRe in the olfactory information processing is discussed.  相似文献   

13.
The nucleolus is directly involved in RNA and protein metabolism and may serve both as an indicator of growth and of increased metabolic activity. Neurons in the medial preoptic area (POA), the suprachiasmatic nuclei (SCN), and the caudate nucleus of the rat were examined at ages ranging from 1 day to 70 days. Mean cross-sectional areas of nucleoli were determined at each age, including samples taken from animals killed at the time of vaginal opening. The pattern of changes for the mean nucleolar area of the caudate nucleus, POA, and SCN indicated that the primary growth phase was completed between 15 and 25 days of age. In each of the hypothalamic nuclei, but not the caudate nucleus, the nucleoli were found to be significantly increased at the age of vaginal opening. An estrogen-induced early vaginal opening also resulted in an increase in the area of the nucleolus in the hypothalamic nuclei. The position of the nucleolus in relation to the nuclear membrane does not appear to be as labile as the size of the nucleolus. The data show that significant changes in the cross-sectional areas of these neuronal nucleoli may be associated with the onset of puberty.  相似文献   

14.
To determine whether the suprachiasmatic nucleus can drive a circadian release of gonadotropin-releasing hormone (GnRH) in the preoptic area, we measured the release of GnRH, arginine-vasopressin and vasoactive intestinal polypeptide (VIP) in cocultures of the preoptic area and the suprachiasmatic nucleus at 2-h intervals over a period of 120 h. The release of GnRH in cocultures exhibited a significant circadian rhythm in the presence of oestrogen but not in the absence of oestrogen. The period of the GnRH circadian rhythm was the same as that of the arginine-vasopressin circadian rhythm, and different from the VIP circadian rhythm in each coculture. Furthermore, the peak phase of the GnRH rhythm occurred at the time same as that of the arginine-vasopressin rhythm in each coculture. However, the peak phase of the GnRH rhythm was not always the same as that of the VIP rhythm. Administration of arginine-vasopressin significantly increased GnRH release in single preoptic area cultures in the presence of oestrogen, but VIP did not. The result suggests that, in cocultures of the suprachiasmatic nucleus and the preoptic area, arginine-vasopressin neurones drive the circadian release of GnRH in the presence of oestrogen. We suggest that arginine-vasopressin neurones in the suprachiasmatic nucleus mediate the clock information to GnRH neurones in vivo as well.  相似文献   

15.
Novak CM  Nunez AA 《Neuroreport》2000,11(1):93-96
The circadian clock of the suprachiasmatic nucleus (SCN) may control the sleep-wake cycle by modulating the activity of brain regions important in sleep onset and maintenance, such as the ventrolateral preoptic area (VLPO). The aim of this study was to determine whether the VLPO receives direct projections from the SCN. The retrograde tracer cholera toxin (beta subunit; CT beta) was injected into the VLPO of male rats and the SCN was examined for the presence of labeled, VLPO-projecting neurons. After injections restricted to the VLPO only a few labeled cells were found within the SCN, with more labeled cells located around the nucleus. Therefore, the circadian regulation of the VLPO is likely to be achieved through multisynaptic pathways or via a diffusible signal, rather than by direct axonal outputs from the SCN to the VLPO.  相似文献   

16.
The organization of neural inputs to the medial preoptic nucleus of the rat   总被引:5,自引:0,他引:5  
There is general agreement that the medial preoptic nucleus (MPN) receives projections from widespread regions of the brain, although there are significant discrepancies in the literature with regard to certain specific inputs. Therefore, we have reexamined the inputs to this nucleus with both retrograde and anterograde axonal transport techniques. First, injections of the retrograde tracers true blue, SITS, or wheat germ agglutinin were made into the region of the MPN and the distribution of retrogradely labeled cells was charted. Then, autoradiographic material was used to confirm the results of the retrograde studies, to identify the route taken by fibers projecting to the MPN, and to describe the distribution of projections with respect to the three cytoarchitectonic subdivisions of the nucleus. The results indicate that the MPN receives inputs from widely distributed areas in both the forebrain and brainstem, and that these inputs appear to be distributed topographically within the three cytoarchitectonic subdivisions of the nucleus. Direct inputs to the MPN arise from all major areas of the hypothalamus (except for the median and magnocellular preoptic nuclei, the supraoptic and suprachiasmatic nuclei, and the medial and lateral mammillary nuclei). Projections from nuclei within the periventricular zone of the hypothalamus end primarily in the medial part of the MPN, while inputs from the lateral zone are mainly confined to the lateral part of the nucleus, as are projections from the nuclei within the medial zone, except for those from the anterior and ventromedial nuclei, which appear to be more widespread. The MPN receives major inputs from limbic regions including the amygdala, ventral subiculum, and ventral lateral septal nucleus, all of which end preferentially in the lateral part of the MPN. In contrast, the projection from the encapsulated part of the bed nucleus of the stria terminalis appears to end preferentially in the central part of the MPN and in immediately adjacent regions of the medial subdivision. In addition, the MPN may receive relatively sparse inputs from infralimbic and insular cortical areas, the nucleus accumbens, and the substantia innominata. Finally, ascending serotoninergic projections from the raphe nuclei appear to terminate principally in the lateral part of the MPN, whereas inputs from regions containing noradrenergic cell groups are chiefly distributed to the central and medial parts of the nucleus. Other brainstem regions that appear to provide modest inputs include the ventral tegmental area, central tegmental field, periaqueductal gray, pedunculopontine nucleus, and the peripeduncular nucleus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The dorsal lateral subnucleus of the rat pontine parabrachial nucleus is a major target for ascending nociceptive information from the spinal cord. With in situ hybridization histochemistry, using a radiolabelled cRNA probe, we demonstrate that neurones in and near the dorsal lateral subnucleus express preprodynorphin mRNA. The cRNA probe was constructed from a PCR product amplified from rat genomic DNA. Sequencing of the PCR product revealed that it corresponded to the sequence 466–1101 of the rat preprodynorphin gene exon 4. Tract tracing experiments, using injection of cholera toxin subunit B into the hypothalamic median preoptic nucleus, showed a retrograde labelling pattern of neurones in the parabrachial nucleus that was almost identical to that of the preprodynorphin mRNA expressing neurones. Double-labelling, combining immunohistochemical detection of tracer and in situ hybridization, revealed that the retrogradely labelled neurones expressed preprodynorphin mRNA. A similar double-labelling, combining in situ hybridization with immunohistochemical detection of noxious-evoked fos following formalin injection into one hindpaw of awake animals, showed that almost all fos-immunoreactive neurones in the dorsal lateral parabrachial subnucleus also expressed preprodynorphin mRNA. Quantitative analysis suggested that the evoked fos immunoreactivity was accompanied by an increased preprodynorphin mRNA expression. The findings provide evidence that neurones in the dorsal lateral subnucleus produce dynorphin and project to the median preoptic nucleus, and that noxious stimulation in awake animals synaptically activates the dynorphinergic neurones in this subnucleus. These observations are consistent with the idea of a functional and chemical heterogeneity among different parabrachial subnuclei that serves to produce specific homeostatic responses to stimuli that changes the physiological status of the organism, including tissue damage.  相似文献   

18.
19.
20.
Neurones in nucleus raphe magnus (NRM) and the adjacent reticular formation with rostral projections were identified by their antidromic responses to stimulation at periventricular forebrain sites in rats and cats. In subsequent experiments, the effects of stimulation in the midline of the ventral medulla were tested on the activities of periventricular forebrain neurones. Taken together, the results of these experiments suggest that a direct inhibitory projection may exist from NRM to ventromedial forebrain structures including the anterior hypothalamus/preoptic region in rats in addition to polysynaptic pathways which mediate both excitations and inhibitions in rats and cats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号