首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Although cannabinoid receptor agonists have analgesic activity in chronic pain states, they produce a spectrum of central cannabinoid CB(1) receptor-mediated motor and psychotropic side-effects. The actions of endocannabinoids, such as anandamide, are terminated by uptake and subsequent intracellular enzymatic degradation. In the present study, we examined the effect of acute administration of the anandamide transport inhibitor AM404 in rat models of chronic neuropathic and inflammatory pain. 2. Systemic administration of AM404 (10 mg/kg) reduced mechanical allodynia in the partial sciatic nerve ligation (PNL) model of neuropathic pain, but not in the complete Freund's adjuvant (CFA) model of inflammatory pain. 3. The effect of AM404 in the PNL model was abolished by coapplication with the selective cannabinoid CB(1) receptor antagonist AM251 (1 mg/kg). AM404 did not produce a reduction in motor performance in either the PNL or CFA models. 4. These findings suggest that acute administration of AM404 reduces allodynia in a neuropathic pain model via cannabinoid CB(1) receptor activation, without causing the undesirable motor disruption associated with cannabinoid receptor agonists.  相似文献   

2.
An attractive alternative to the use of direct agonists at the cannabinoid receptor type 1 (CB1) in the control of neuropathic pain may be to potentiate the actions of endogenous cannabinoids. Thus, the effects of AM404, an inhibitor of anandamide uptake, were assessed in an experimental model of neuropathic pain in rats. Daily treatment with AM404 prevented, time- and dose-dependently, the development of thermal hyperalgesia and mechanical allodynia in neuropathic rats. Antagonists at cannabinoid CB1 or CB2 receptors, or at the transient receptor potential vanilloid type 1 receptor, each partially reversed effects induced by AM404. A complete reversal was obtained when the three antagonists were given together, suggesting that all three receptors are involved. AM404 treatment affected two pathways involved in the generation and maintenance of neuropathic pain, one mediated by nitric oxide (NO) and the other by cytokines. AM404 completely prevented the overproduction of NO and the overexpression of nNOS, inhibited the increase in tumour necrosis factor alpha (TNFalpha) and enhanced the production of interleukin-10. Both NO and TNFalpha are known to contribute to the apoptotic process, which plays an important role in the establishment of chronic pain states. AM404 treatment prevented the increase in the ratio between pro- and anti-apoptotic gene bax/bcl-2 expression observed in the spinal cord of neuropathic rats. Taken together, these findings suggest that inhibition of endocannabinoid uptake, by blocking the putative anandamide carrier, results in the relief of neuropathic pain and may represent a novel strategy for treating chronic pain.  相似文献   

3.
While cannabinoid receptor agonists reduce the abnormal pain sensations associated with animal models of neuropathic pain states they also produce CB(1) receptor mediated side effects. Recently, a number of arachidonic acid-amino acid conjugates, including N-arachidonyl-glycine (NAGly), have been identified which are structurally related to the endocannabinoid arachidonyl ethanolamide (anandamide). In the present study we examined the effect of NAGly in a rat model of neuropathic pain. Intrathecal administration of NAGly (700 nmol) and the pan-cannabinoid receptor agonist HU-210 (30 nmol) reduced the mechanical allodynia induced by partial ligation of the sciatic nerve. The NAGly induced anti-allodynia was dose dependent and, unlike HU-210, was unaffected by the cannabinoid CB(1) and CB(2) receptor antagonists, AM251 and SR144528 (30 nmol). The NAGly degradation products, arachidonic acid and glycine (700 nmol), did not reduce allodynia. HU-210, but not NAGly produced a reduction in rotarod latency. These findings suggest that NAGly may provide a novel analgesic approach to alleviate neuropathic pain.  相似文献   

4.
Diabetes is often associated with painful neuropathy. The current treatments are symptomatic and ineffective. Cannabinoids have been proposed as promising drugs for chronic pain treatment and its antinociceptive effect has already been related in nerve injury models of neuropathic pain, but little has been investigated in painful diabetic neuropathy models. Thus, the current study aims to investigate the potential antinociceptive effect of drugs that alter endocannabinoid system when injected subcutaneously into the dorsal surface of the ipsilateral hind paw in chemical hyperalgesia induced by formalin in both normoglycemic (Ngl) and streptozotocin-diabetic (Dbt) rats. Diabetic rats exhibited exaggerated flinching behaviors during first and second phases of the formalin test, indicating the presence of hyperalgesia. AM404, an anandamide (AEA) re-uptake inhibitor, AEA (an agonist of CB1/CB2 receptors) or ACEA (a selective CB1 receptor agonist) induced antinociception in both phases of formalin test in Ngl and Dbt rats. In both groups, the antinociceptive effect of ACEA was prevented by AM251, a CB1 inverse agonist while the antinociceptive effect of AEA was prevented by AM251 or AM630, a CB2 receptor antagonist. In Ngl rats, the antinociceptive effect of AM404 was prevented by AM251 or capsazepine only during first phase of the formalin test while in Dbt rats, this effect was blocked by pretreatment with AM251 (both phases) or AM630 (second phase). Taken together, these results demonstrated broad-spectrum antinociceptive properties of cannabinoids in a model of painful diabetic neuropathy. Peripheral activation of both cannabinoid receptors seems to mediate the antinociceptive effect of exogenous or endogenous anandamide.  相似文献   

5.
Trigeminal neuralgia is a disorder of paroxysmal and severely disabling facial pain and continues to be a real therapeutic challenge. At present there are few effective drugs. Here we have evaluated the effects of the synthetic cannabinoid WIN 55,212-2 on mechanical allodynia and thermal hyperalgesia in a rat model of trigeminal neuropathic pain produced by a chronic constriction injury (CCI) of the infraorbital branch of the trigeminal nerve (ION). Relative to sham operation controls, rats with the CCI-ION consistently displayed hyperresponsiveness to von Frey filament and heat stimulation of the vibrissal pad. Both mechanical allodynia and thermal hyperalgesia are seen both ipsilateral and contralateral to the side of nerve injury, but is significantly more severe ipsilaterally. Administration of WIN 55,212-2 (0.3-5 mg/kg i.p.) dose-dependently increased the mechanical and heat withdrawal thresholds. WIN 55,212-2 (0.3-3 mg/kg i.p.) produced no significant motor deficits in animals using the rotarod test. The effect of WIN 55,212-2 was mimicked by cannabinoid CB1 receptor agonist HU 210 and was antagonized by CB1 receptor antagonist AM 251, but not by CB2 receptor antagonist AM 630 or vanilloid receptor 1 antagonist capsazepine, suggesting the involvement of CB1 receptors. CCI-ION also induced a time-dependent upregulation of CB1 receptors primarily within the ipsilateral superficial laminae of the trigeminal caudal nucleus revealed by both Western blot and immunohistochemistry. Taken together, these results suggest that cannabinoids may be a useful therapeutic approach for the clinical management of trigeminal neuropathic pain disorders.  相似文献   

6.
AM404 [ N-(4-hydroxyphenyl)arachidonylamide] and VDM 11 [(5 Z,8 Z,11 Z,14 Z)- N-(4-hydroxy-2-methylphenyl)-5,8,11,14-eicosatetraenamide] are commonly used to prevent the cellular accumulation of the endocannabinoid anandamide, and thereby to potentiate its actions. However, it has been reported that AM404 can produce an influx of calcium into cells, which might be expected to have deleterious effects on cell proliferation. In the present study, AM404 and VDM 11 were found to reduce C6 glioma cell proliferation with IC(50) values of 4.9 and 2.7 microM, respectively. The inhibition of cell proliferation following a 96-h exposure was not accompanied by dramatic caspase activation, and was not prevented by either a combination of cannabinoid and vanilloid receptor antagonists, or by the antioxidant alpha-tocopherol, suggestive of a non-specific mode of action. Similar results were seen with palmitoylisopropylamide, although this compound only produced significant inhibition of cell proliferation at 30 microM concentrations. AM404 (1 microM), VDM 11 (1 microM) and palmitoylisopropylamide (3-30 microM), i.e. concentrations producing relatively modest effects on cell proliferation per se, reduced the vanilloid receptor-mediated antiproliferative effects of anandamide, as would be expected for compounds preventing the cellular accumulation of anandamide (and thereby access to its binding site on the vanilloid receptor). It is concluded that concentrations of AM404 and VDM 11 that are generally used to reduce the cellular accumulation of anandamide have deleterious effects upon cell proliferation, and that lower concentrations of these compounds may be more appropriate to use in vitro.  相似文献   

7.
While cannabinoid receptor agonists have analgesic activity in chronic pain states, they produce a spectrum of central CB(1) receptor-mediated motor and psychotropic side effects. The actions of endocannabinoids, such as anandamide are terminated by removal from the extracellular space, then subsequent enzymatic degradation by fatty-acid amide hydrolase (FAAH). In the present study, we compared the effect of a selective FAAH inhibitor, URB597, to that of a pan-cannabinoid receptor agonist HU210 in rat models of chronic inflammatory and neuropathic pain. Systemic administration of URB597 (0.3 mg kg(-1)) and HU210 (0.03 mg kg(-1)) both reduced the mechanical allodynia and thermal hyperalgesia in the CFA model of inflammatory pain. In contrast, HU210, but not URB597, reduced mechanical allodynia in the partial sciatic nerve-ligation model of neuropathic pain. HU210, but not URB597, produced a reduction in motor performance in unoperated rats. The effects of URB597 in the CFA model were dose dependent and were reduced by coadministration with the cannabinoid CB1 antagonist AM251 (1 mg kg(-1)), or the CB2 and SR144528 (1 mg kg(-1)). Coadministration with AM251 plus SR144528 completely reversed the effects of URB597. These findings suggest that the FAAH inhibitor URB597 produces cannabinoid CB1 and CB2 receptor-mediated analgesia in inflammatory pain states, without causing the undesirable side effects associated with cannabinoid receptor activation.  相似文献   

8.
The purpose of this study was to investigate the effect of the endogenous cannabinoid anandamide on the nonadrenergic noncholinergic (NANC) relaxant responses to electrical field stimulation in isolated rat corpus cavernosum. The corporal strips were mounted under tension in a standard oxygenated organ bath with guanethidine sulfate (5 microM) and atropine (1 microM) (to produce adrenergic and cholinergic blockade). The strips were precontracted with phenylephrine hydrochloride (7.5 microM) and electrical field stimulation was applied at different frequencies to obtain NANC-mediated relaxation. The expression of CB1, CB2 and vanilloid receptor proteins within the rat corpus cavernosum was evaluated using western blot analysis. The results showed that the relaxant responses to electrical stimulation were significantly enhanced in the presence of anandamide at 1 and 3 microM. The potentiating effect of anandamide (1 microM) on relaxation responses was significantly attenuated by either the selective cannabinoid CB1 receptor antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2, 4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251; 1 microM) or the vanilloid receptor antagonist capsazepine (3 microM), but not by the selective cannabinoid CB2 receptor antagonist 6-iodo-2-methyl-1-[2-(4-morpholinyl) ethyl]-1H-indol-3-yl (4-methoxyphenyl)methanone (AM630; 1 microM). Neither of these antagonists had influence on relaxation responses. Indomethacin (20 microM) had no effect on NANC-mediated relaxation in the presence or absence of anandamide (1 microM). Preincubation with Nw-Nitro-L-Arginine Methyl Ester (L-NAME; 1 microM) significantly inhibited the relaxation responses in the presence or absence of 1 microM anandamide. Although at 30 nM, L-NAME did not cause a significant inhibition of relaxant responses individually, it significantly inhibited the potentiating effect of anandamide (1 microM) on relaxation responses. Anandamide (1 microM) had no influence on concentration-dependent relaxant responses to sodium nitroprusside (10 nM-1 mM), a nitric oxide (NO) donor. The western blotting of corporal tissues demonstrated the existence of both vanilloid and CB1 receptors in corporal strips. In conclusion, our results showed that anandamide has a potentiating effect on NANC-mediated relaxation of rat corpus cavernosum through both CB1 and vanilloid receptors and the NO-mediated component of the NANC relaxant responses to electrical stimulation is involved in this enhancement.  相似文献   

9.
Neuropathic pain is a clinical manifestation characterized by the presence of spontaneous pain, allodynia and hyperalgesia. Here, we have evaluated the involvement of CB1 cannabinoid receptors in the development and expression of neuropathic pain. For this purpose, partial ligation of the sciatic nerve was performed in CB1 cannabinoid receptor knockout mice and their wild-type littermates. The development of mechanical and thermal allodynia, and thermal hyperalgesia was evaluated by using the von Frey filaments, cold-plate and plantar tests, respectively. Pre-surgical tactile and thermal withdrawal thresholds were similar in both genotypes. In wild-type mice, sciatic nerve injury led to a neuropathic pain syndrome characterized by a marked and long-lasting reduction of the paw withdrawal thresholds to mechanical and thermal stimuli. These manifestations developed similarly in mice lacking CB1 cannabinoid receptors. We have also investigated the consequences of gabapentin administration in these animals. Gabapentin (50 mg/kg/day, i.p.) induced a similar suppression of mechanical and thermal allodynia in both wild-type and CB1 knockout mice. Mild differences between genotypes were observed concerning the effect of gabapentin in the expression of thermal hyperalgesia. Taken together, our results indicate that CB1 cannabinoid receptors are not critically implicated in the development of neuropathic pain nor in the anti-allodynic and anti-hyperalgesic effects of gabapentin in this model.  相似文献   

10.
The effect of 2-arachidonoylglycerol, a cannabimimetic eicosanoid, was studied on mucosa-free longitudinal muscle strips isolated from the guinea-pig distal colon. In the presence of indomethacin (3 microM) and N(G)-nitro-L-arginine (100 microM), 2-arachidonoylglycerol (10 nM-10 microM) produced concentration-dependent and tetrodotoxin (1 microM)-sensitive contractions of the longitudinal muscle strips. The contractions were markedly attenuated in the presence of atropine (0.2 microM), and partially by hexamethonium (100 microM) pretreatment. The response to 2-arachidonoylglycerol was mimicked with N-arachidonoylethanolamine (anandamide, 0.1-30 microM), another cannabimimetic eicosanoid, but the cannabinoid CB(1)/CB(2) receptor agonist, R-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3,-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone (WIN55,212-2) (0.1-10 microM), and the vanilloid receptor agonist, (all Z)-(4-hydroxyphenyl)-5,8,11,14-eicosatetraenamide (AM 404) (10-30 microM), were without effect. The cannabinoid CB(1) receptor antagonist, N-piperidino-5-(4-chlorophenyl)-l-(2,4-dichlorophenyl)-4-methyl-3-pyrazole-caroxamide (SR141716A) (1 microM), the cannabinoid CB(2) receptor antagonist, [N-[1S]-endo-1,3,3-trimethyl bicyclo [2.2.1] heptan-2-yl]-5-(4-chloro-3-methylphenyl)-l-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528) (1 microM), and the vanilloid receptor antagonist, capsazepine (10 microM), did not shift the concentration-response curve for 2-arachidonoylglycerol to the right. The contractile action of 2-arachidonoylglycerol was also partially attenuated in the presence of nordihydroguaiaretic acid (10 microM), a lipoxygenase inhibitor. These results indicate that 2-arachidonoylglycerol produces contraction of longitudinal muscle of the guinea-pig distal colon via mainly stimulation of myenteric cholinergic neurones, and that neither cannabinoid CB(1)/CB(2) receptors nor vanilloid receptors contributed to the response. The present results suggest the possibility that lipoxygenase metabolites may also contribute, at least in part, to the contractile action of 2-arachidonoylglycerol.  相似文献   

11.
Sensory neural dysfunction is common in patients with peripheral neuropathy, a major complication of diabetes mellitus. In animal models of inflammatory and neuropathic pain cannabinoids potently attenuate pain behaviour, cannabinoid (CB) receptors located on nociceptive primary afferent neurones being important in their anti-hyperalgesic actions. A key measure of sensory neurone function is stimulus-evoked neuropeptide release. We investigated the effect of cannabinoid on capsaicin-evoked release of calcitonin gene-related peptide (CGRP) from the rat paw skin in vitro, comparing non-diabetic and streptozotocin-induced diabetic animals. Diabetes caused a greater than two-fold increase in basal and capsaicin-evoked CGRP release. The synthetic CB(1)/CB(2) receptor agonist, CP55940 (100 nM), inhibited capsaicin-evoked CGRP release in both non-diabetic (30.92+/-7.69%, P<0.05) and diabetic animals (37.82+/-9.85%, P<0.05). The CB(1) receptor antagonist SR141716A (100 nM), but not the CB(2) receptor antagonist SR144528 (100 nM), significantly attenuated the inhibitory action of CP55940. The endogenous cannabinoid, anandamide (100 nM) inhibited capsaicin-evoked CGRP release in non-diabetic animals (28.88+/-7.12%, P<0.05) but neither the CB(1) nor the CB(2) receptor antagonist attenuated this action of anandamide. Anandamide (100 nM) did not significantly inhibit capsaicin-evoked CGRP release from the paw skin of diabetic animals, but it did produce a small stimulation of CGRP release at high concentrations (10 microM). These data suggest that peripheral CB(1) receptors mediate inhibition of capsaicin-evoked neuropeptide release from the paw skin of both non-diabetic and diabetic animals. However, pathological changes in the diabetic animals appear to preclude the non-CB(1) receptor mediated inhibitory action of the endogenous cannabinoid, anandamide.  相似文献   

12.
The development of neuropathic pain is associated with multiple changes in gene expression occurring in the dorsal root ganglia (DRG) and spinal cord. The goal of this study was to evaluate whether the disruption of CB1 cannabinoid receptor gene modulates the changes induced by neuropathic pain in the expression of mu- (MOR), delta- (DOR) and kappa-opioid receptors (KOR) mRNA levels in the DRG and spinal cord. The induction of c-fos expression in the lumbar and sacral regions of the spinal cord was also evaluated in these animals. Opioid receptors mRNA levels were determined by using real-time PCR and Fos protein levels by immunohistochemistry. Nerve injury significantly reduced the expression of MOR in the DRG and the lumbar section of the spinal cord from CB1 cannabinoid knockout (KO) mice and wild-type littermates (WT). In contrast, mRNA levels of DOR and KOR were not significantly changed in any of the different sections analysed. Furthermore, sciatic nerve injury evoked a similar increase of c-fos expression in lumbar and sacral regions of the spinal cord of both KO and WT. In all instances, no significant differences were observed between WT and KO mice. These data revealed specific changes induced by neuropathic pain in MOR expression and c-fos levels in the DRG and/or spinal cord that were not modified by the genetic disruption of CB1 cannabinoid receptors.  相似文献   

13.
Contradictory results exist concerning the effects of systemic injections of CB(1) cannabinoid receptor agonists on anxiety-related behaviors. Direct drug administration into brain structures related to aversive responses can potentially help to clarify the role of cannabinoids on anxiety. One such structure is the midbrain dorsolateral periaqueductal gray (dlPAG). Therefore, the aim of this study was to test the hypothesis that the activation of the CB(1) receptor in the dlPAG would attenuate anxiety-related behaviors. Male Wistar rats with cannula aimed at the dlPAG received injections of the endogenous cannabinoid anandamide, the anandamide transport inhibitor AM404, the anandamide analogue ACEA or the CB(1) receptor antagonist AM251, and were submitted to the elevated plus maze (EPM), an animal model of anxiety. Anandamide (0.5-50pmol) and ACEA (0.05-5pmol) induced anxiolytic-like effects with bell-shaped dose-response curves, the higher doses being ineffective. The anandamide anxiolytic effect was potentiated by AM404 (50pmol) and prevented by AM251 (100pmol). Neither AM404 (0.5-50pmol) nor AM251 (1-100pmol) alone modified the animal behavior in the EPM. The present study suggests that the dlPAG is a possible neuroanatomical site for anxiolytic-like effects mediated by CB(1) agonists. Furthermore, this work supports the importance of neuronal uptake as a mechanism that limits the in vivo actions of anandamide.  相似文献   

14.
Activation of cannabinoid receptors causes inhibition of spasticity, in a mouse model of multiple sclerosis, and of persistent pain, in the rat formalin test. The endocannabinoid anandamide inhibits spasticity and persistent pain. It not only binds to cannabinoid receptors but is also a full agonist at vanilloid receptors of type 1 (VR1). We found here that vanilloid VR1 receptor agonists (capsaicin and N-N'-(3-methoxy-4-aminoethoxy-benzyl)-(4-tert-butyl-benzyl)-urea [SDZ-249-665]) exhibit a small, albeit significant, inhibition of spasticity that can be attenuated by the vanilloid VR1 receptor antagonist, capsazepine. Arvanil, a structural "hybrid" between capsaicin and anandamide, was a potent inhibitor of spasticity at doses (e.g. 0.01 mg/kg i.v.) where capsaicin and cannabinoid CB(1) receptor agonists were ineffective. The anti-spastic effect of arvanil was unchanged in cannabinoid CB(1) receptor gene-deficient mice or in wildtype mice in the presence of both cannabinoid and vanilloid receptor antagonists. Likewise, arvanil (0.1-0.25 mg/kg) exhibited a potent analgesic effect in the formalin test, which was not reversed by cannabinoid and vanilloid receptor antagonists. These findings suggest that activation by arvanil of sites of action different from cannabinoid CB(1)/CB(2) receptors and vanilloid VR1 receptors leads to anti-spastic/analgesic effects that might be exploited therapeutically.  相似文献   

15.
Mammalian tissues express at least two types of cannabinoid receptor, CB1 and CB2, both G protein coupled. CB1 receptors are expressed predominantly at nerve terminals where they mediate inhibition of transmitter release. CB2 receptors are found mainly on immune cells, one of their roles being to modulate cytokine release. Endogenous ligands for these receptors (endocannabinoids) also exist. These are all eicosanoids; prominent examples include arachidonoylethanolamide (anandamide) and 2-arachidonoyl glycerol. These discoveries have led to the development of CB1- and CB2-selective agonists and antagonists and of bioassays for characterizing such ligands. Cannabinoid receptor antagonists include the CB1-selective SR141716A, AM251, AM281 and LY320135, and the CB2-selective SR144528 and AM630. These all behave as inverse agonists, one indication that CB1 and CB2 receptors can exist in a constitutively active state. Neutral cannabinoid receptor antagonists that seem to lack inverse agonist properties have recently also been developed. As well as acting on CB1 and CB2 receptors, there is convincing evidence that anandamide can activate transient receptor potential vanilloid type 1 (TRPV1) receptors. Certain cannabinoids also appear to have non-CB1, non-CB2, non-TRPV1 targets, for example CB2-like receptors that can mediate antinociception and "abnormal-cannabidiol" receptors that mediate vasorelaxation and promote microglial cell migration. There is evidence too for TRPV1-like receptors on glutamatergic neurons, for alpha2-adrenoceptor-like (imidazoline) receptors at sympathetic nerve terminals, for novel G protein-coupled receptors for R-(+)-WIN55212 and anandamide in the brain and spinal cord, for novel receptors for delta9-tetrahydrocannabinol and cannabinol on perivascular sensory nerves and for novel anandamide receptors in the gastro-intestinal tract. The presence of allosteric sites for cannabinoids on various ion channels and non-cannabinoid receptors has also been proposed. In addition, more information is beginning to emerge about the pharmacological actions of the non-psychoactive plant cannabinoid, cannabidiol. These recent advances in cannabinoid pharmacology are all discussed in this review.  相似文献   

16.
1. The cannabinoid arachidonyl ethanolamide (anandamide) caused concentration-dependent relaxation of 5-HT-precontracted, myograph-mounted, segments of rat left anterior descending coronary artery. 2. This relaxation was endothelium-independent, unaffected by the fatty acid amide hydrolase inhibitor, arachidonyl trifluoromethyl ketone (10 microM), and mimicked by the non-hydrolysable anandamide derivative, methanandamide. 3. Relaxations to anandamide were attenuated by the cannabinoid receptor antagonist, SR 141716A (3 microM), but unaffected by AM 251 (1 microM) and AM 630 (1 microM), more selective antagonists of cannabinoid CB(1) and CB(2) receptors respectively. Palmitoylethanolamide, a selective CB(2) receptor agonist, did not relax precontracted coronary arteries. 4. Anandamide relaxations were not affected by inhibition of sensory nerve transmission with capsaicin (10 microM) or blockade of vanilloid VR1 receptors with capsazepine (5 microM). Nevertheless capsaicin relaxed coronary arteries in a concentration-dependent and capsazepine-sensitive manner, confirming functional sensory nerves were present. In contrast, capsazepine and capsaicin did inhibit anandamide relaxations in methoxamine-precontracted rat small mesenteric arteries. 5. Relaxations to anandamide were inhibited by TEA (1 mM) or iberiotoxin (50 nM), blockers of large conductance, Ca(2+)-activated K(+) channels (BK(Ca)). Gap junction inhibition with 18alpha-glycyrrhetinic acid (100 microM) did not affect anandamide relaxations. 6. This study shows anandamide relaxes the rat coronary artery by a novel mechanism. Anandamide-induced relaxations do not involve the endothelium, degradation into active metabolites, or activation of cannabinoid CB(1) or CB(2) receptors, but may involve activation of BK(Ca). Vanilloid receptor activation also has no role in the effects of anandamide in coronary arteries, even though functional sensory nerves are present.  相似文献   

17.
Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit fatty acid amidohydrolase (FAAH), the enzyme responsible for the metabolism of anandamide, an endocannabinoid. The analgesic interactions between anandamide (0.01 microg), ibuprofen (0.1 microg) and rofecoxib (0.1 microg) or their combinations administered locally in the hind paw of neuropathic rats were investigated together with the effects of specific antagonists for the cannabinoid CB(1) (AM251; 80 microg) and CB(2) (AM630; 25 microg) receptors. Mechanical allodynia and thermal hyperalgesia were evaluated in 108 Wistar rats allocated to: (1-4) NaCl 0.9%; anandamide; ibuprofen; rofecoxib; (5-6) anandamide+ibuprofen or rofecoxib; (7-8) AM251 or AM630; (9-10) anandamide+AM251 or AM630; (11-12) ibuprofen+AM251 or AM630; (13-14) rofecoxib+AM251 or AM630; (15-16) anandamide+ibuprofen+AM251 or AM630; (17-18) anandamide+rofecoxib+AM251 or AM630. Drugs were given subcutaneously in the hind paw 15min before pain tests. Anandamide, ibuprofen, rofecoxib and their combinations significantly decreased mechanical allodynia and thermal hyperalgesia with an ED(50) of 1.6+/-0.68ng and 1.1+/-1.09 ng for anandamide, respectively. The effects of NSAIDs were not antagonized by AM251 or AM630 but those of anandamide were inhibited by AM251 but not by AM630. In conclusion, locally injected anandamide, ibuprofen, rofecoxib and their combinations decreased pain behavior in neuropathic animals. Local use of endocannabinoids to treat neuropathic pain may be an interesting way to treat this condition without having the deleterious central effects of systemic cannabinoids.  相似文献   

18.
The possibility that the anandamide transport inhibitor N-(4-hydroxyphenyl)-5,8,11,14-eicosatetraenamide (AM404), structurally similar to the vanilloid receptor agonists anandamide and capsaicin, may also activate vanilloid receptors and cause vasodilation was examined. AM404 evoked concentration-dependent relaxations in segments of rat isolated hepatic artery contracted with phenylephrine. Relaxations were abolished in preparations pre-treated with capsaicin. The calcitonin-gene related peptide (CGRP) receptor antagonist CGRP-(8-37) also abolished relaxations. The vanilloid receptor antagonist capsazepine inhibited vasodilation by AM404 and blocked AM404-induced currents in patch-clamp experiments on Xenopus oocytes expressing the vanilloid subtype 1 receptor (VR1). In conclusion, AM404 activates native and cloned vanilloid receptors.  相似文献   

19.
The biological actions of the endogenous cannabinoid anandamide are terminated by carrier-mediated transport into neurons and astrocytes, followed by enzymatic hydrolysis. Anandamide transport is inhibited by the compound N-(4-hydroxyphenyl)arachidonylamide (AM404). AM404 potentiates several responses elicited by administration of exogenous anandamide, suggesting that it may also protect endogenous anandamide from inactivation. To test this hypothesis, we studied the effects of AM404 on the plasma levels of anandamide using high-performance liquid chromatography/mass spectrometry (HPLC/MS). Systemic administration of AM404 (10 mg kg(-1) intraperitoneal, i.p. ) caused a gradual increase of anandamide in rat plasma, which was significantly different from untreated controls at 60 and 120 min after drug injection. In plasma, both AM404 and anandamide were associated with a plasma protein, which we identified as albumin by non-denaturing polyacrylamide gel electrophoresis. AM404 (10 mg kg(-1), i.p.) caused a time-dependent decrease of motor activity, which was reversed by the cannabinoid CB(1) receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2, 4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide.hydrochloride (SR141716A, 0.5 mg kg(-1), i.p). These results are consistent with the hypothesis that AM404 inhibits anandamide inactivation in vivo.  相似文献   

20.
Anandamide is an endogenous ligand at both the inhibitory cannabinoid CB(1) receptor and the excitatory vanilloid receptor 1 (VR1). The CB(1) receptor and vanilloid VR1 receptor are expressed in about 50% and 40% of dorsal root ganglion neurons, respectively. While all vanilloid VR1 receptor-expressing cells belong to the calcitonin gene-related peptide-containing and isolectin B4-binding sub-populations of nociceptive primary sensory neurons, about 80% of the cannabinoid CB(1) receptor-expressing cells belong to those sub-populations. Furthermore, all vanilloid VR1 receptor-expressing cells co-express the cannabinoid CB(1) receptor. In agreement with these findings, neonatal capsaicin treatment that induces degeneration of capsaicin-sensitive, vanilloid VR1 receptor-expressing, thin, unmyelinated, nociceptive primary afferent fibres significantly reduced the cannabinoid CB(1) receptor immunostaining in the superficial spinal dorsal horn. Synthetic cannabinoid CB(1) receptor agonists, which do not have affinity at the vanilloid VR1 receptor, and low concentrations of anandamide both reduce the frequency of miniature excitatory postsynaptic currents and electrical stimulation-evoked or capsaicin-induced excitatory postsynaptic currents in substantia gelatinosa cells in the spinal cord without any effect on their amplitude. These effects are blocked by selective cannabinoid CB(1) receptor antagonists. Furthermore, the paired-pulse ratio is increased while the postsynaptic response of substantia gelatinosa neurons induced by alpha-amino-3-hydroxy-5-methylisoxasole-propionic acid (AMPA) in the presence of tetrodotoxin is unchanged following cannabinoid CB(1) receptor activation. These results strongly suggest that the cannabinoid CB(1) receptor is expressed presynaptically and that the activation of these receptors by synthetic cannabinoid CB(1) receptor agonists or low concentration of anandamide results in inhibition of transmitter release from nociceptive primary sensory neurons. High concentrations of anandamide, on the other hand, increase the frequency of miniature excitatory postsynaptic currents recorded from substantia gelatinosa neurons. This increase is blocked by ruthenium red, suggesting that this effect is mediated through the vanilloid VR1 receptor. Thus, anandamide at high concentrations can activate the VR1 and produce an opposite, excitatory effect to its inhibitory action produced at low concentrations through cannabinoid CB(1) receptor activation. This "dual", concentration-dependent effect of anandamide could be an important presynaptic modulatory mechanism in the spinal nociceptive system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号