首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的探讨电针刺激预处理是否对C57BL6小鼠前脑缺血具有保护效应。方法雄性C57BL6小鼠20只,18~20g,随机分为2组(n=10):对照组行单纯缺血再灌注,即阻闭双侧颈总动脉(BCCAO)20min后进行再灌注;电针组接受电针刺激预处理百会穴30min,连续5d,最后一次预处理后24h接受BCCAO20min。再灌注24h后对所有动物进行神经功能评分并取脑行HE染色。结果再灌注24h,电针刺激预处理组动物神经功能评分显著优于对照组(P〈0.05),电针刺激预处理组动物海马CA1区坏死神经元数量明显少于对照组(P〈0.05)。结论电针刺激预处理对C57BL6小鼠前脑缺血再灌注损伤具有保护作用。  相似文献   

2.
In this study, we hypothesized that an increase in integrin α_vβ_3 and its co-activator vascular endothelial growth factor play important neuroprotective roles in ischemic injury. We performed ischemic preconditioning with bilateral common carotid artery occlusion for 5 minutes in C57BL/6J mice. This was followed by ischemic injury with bilateral common carotid artery occlusion for 30 minutes. The time interval between ischemic preconditioning and lethal ischemia was 48 hours. Histopathological analysis showed that ischemic preconditioning substantially diminished damage to neurons in the hippocampus 7 days after ischemia. Evans Blue dye assay showed that ischemic preconditioning reduced damage to the blood-brain barrier 24 hours after ischemia. This demonstrates the neuroprotective effect of ischemic preconditioning. Western blot assay revealed a significant reduction in protein levels of integrin α_vβ_3, vascular endothelial growth factor and its receptor in mice given ischemic preconditioning compared with mice not given ischemic preconditioning 24 hours after ischemia. These findings suggest that the neuroprotective effect of ischemic preconditioning is associated with lower integrin α_vβ_3 and vascular endothelial growth factor levels in the brain following ischemia.  相似文献   

3.
A model of global cerebral ischemia in C57 BL/6 mice.   总被引:5,自引:0,他引:5  
A reproducible model of global cerebral ischemia in mice is essential for elucidating the molecular mechanism of ischemic neuronal injury. Such a model is particularly important in the mouse because many genetically engineered mutant animals are available. In C57BL/6 and SV129/EMS mice, we evaluated a three-vessel occlusion model. Occlusion of the basilar artery with a miniature clip was followed by bilateral carotid occlusion. The mean cortical cerebral blood flow was reduced to less than 10% of the preischemic value, and the mean anoxic depolarization was attained within 1 minute. In C57BL/6 mice, there was CA1 hippocampal neuronal degeneration 4 days after ischemia. Neuronal damage depended upon ischemic duration: the surviving neuronal count was 78.5 +/- 8.5% after 8-minute ischemia and 8.4 +/- 12.7% after 14-minute ischemia. In SV129/EMS mice, similar neuronal degeneration was not observed after 14-minute ischemia. The global ischemia model in C57BL/6 mice showed high reproducibility and consistent neuronal injury in the CA1 sector, indicating that comparison of ischemic outcome between wild-type and mutant mice could provide meaningful data using the C57BL/6 genetic background. Strain differences in this study highlight the need for consideration of genetic background when evaluating ischemia experiments in mice.  相似文献   

4.
Rats and gerbils have been used widely to investigate the molecular mechanism of selective neuronal death following transient global ischemia. Recently, the availability of transgenic mice has enabled us to examine the involvement of specific gene products in various pathophysiological conditions. However, there has been only limited information about the experimental model of cerebral ischemia in mice, particularly in regard of selective neuronal death. We examined whether bilateral carotid occlusion produced global forebrain ischemia in seven common mouse strains including C57BL/6, ICR, BALB/c, C3H, CBA, ddY and DBA/2, based on neurological signs, histological findings and cortical microcirculatory as well as India ink perfusion patterns. The C57BL/6 strain was found to be the most susceptible among seven strains. All C57BL/6 mice died within 6 h after permanent bilateral carotid occlusion. After transient bilateral carotid occlusion for 20 min, more than 90% of C57BL/6 mice showed typical neurological signs such as torsion of the neck and rolling fits, and developed selective neuronal death in the hippocampus and caudoputamen. Hypothermia prevented the neuronal death. Visualization of brain vasculature by India ink perfusion indicated that the susceptibility of the mice after bilateral carotid occlusion depended mainly on the degree of anastomosis between carotid and basilar arteries. Our results showed the feasibility of investigating selective neuronal death in transgenic mice with simple temporary occlusion of both common carotid arteries, when those from the C57BL/6 strain or inbred transgenic mice from other strains with the C57BL/6 strain in a back-cross manner are used.  相似文献   

5.
Cognitive and affective impairments are the most characterized consequences following cerebral ischemia. BAY 60‐7550, a selective phosphodiesterase type 2 inhibitor (PDE2‐I), presents memory‐enhancing and anxiolytic‐like properties. The behavioral effects of BAY 60‐7550 have been associated with its ability to prevent hydrolysis of both cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) thereby interfering with neuronal plasticity. Here, we hypothesize that PDE2‐I treatment could promote functional recovery after brain ischemia. Mice C57Bl/6 were submitted to bilateral common carotid artery occlusion (BCCAO), an experimental model of transient brain ischemia, for 20 min. During 21 days after reperfusion, the animals were tested in a battery of behavioral tests including the elevated zero maze (EZM), object location task (OLT) and forced swim test (FST). The effects of BAY 60‐7550 were evaluated on neuronal nuclei (NeuN), caspase‐9, cAMP response element‐binding protein (CREB), phosphorylated CREB (pCREB) and brain‐derived neurotrophic factor (BDNF) expression in the hippocampus. BCCAO increased anxiety levels, impaired hippocampus‐dependent cognitive function and induced despair‐like behavior in mice. Hippocampal neurodegeneration was evidenced by a decrease in NeuN and increase incaspase‐9 protein levels in BCCAO mice. Ischemic mice also showed low BDNF protein levels in the hippocampus. Repeated treatment with BAY 60‐7550 attenuated the behavioral impairments induced by BCCAO in mice. Concomitantly, BAY 60‐7550 enhanced expression of pCREB and BDNF protein levels in the hippocampus of ischemic mice. The present findings suggest that chronic inhibition of PDE2 provides functional recovery in BCCAO mice possibly by augmenting hippocampal neuronal plasticity.  相似文献   

6.
Previous studies have demonstrated that (-)-epigallocatechin gallate (EGCG), a green tea polyphenol, protects against ischemia and reperfusion-induced injury in many organ systems. Here, we test the hypothesis that part of EGCG's neuroprotective effects may involve a modulation of matrix metalloproteinases (MMPs) after cerebral ischemia. C57BL/6 mice were subjected to 20 min of transient global cerebral ischemia. EGCG (50 mg/kg) or vehicle (saline) was administered i.p. immediately after ischemia. Brains were examined 3 days after ischemia. The effects of EGCG on MMP (gelatinase) activity and neuronal damage in the hippocampus were assessed. Gelatin gel zymography showed induction of active forms of MMP-9 protein after transient global cerebral ischemia. In situ zymography showed that ischemic gelatinase activity occurred primarily in pyramidal neuronal areas after brain ischemia. Mice treated with EGCG showed significantly reduced gelatinase levels. Neuronal damage was evident in CA1 and CA2 pyramidal sectors, corresponding to TUNEL-positive signals. In EGCG-treated mice, delayed neuronal damage was significantly reduced compared with vehicle-treated mice. These results demonstrate that the green tea polyphenol EGCG suppresses MMP-9 activation and reduces the development of delayed neuronal death after transient global cerebral ischemia in mouse brain.  相似文献   

7.
Cyclooxygenase-2 (COX-2) is up-regulated during ischemia. However, the role of COX-2 in neuronal injury is still unclear. In this study we tested whether neuronal overexpression of human COX-2 in a transgenic mouse model potentiates neuronal injury after global ischemic insult. Further, we tested whether the neuronal injury could be ameliorated by intra-ischemic mild hypothermia (33-34 degrees C) alone or in combination with diet treatment of rofecoxib, a COX-2 specific inhibitor. Global ischemia with intra-ischemic normothermia (36-37 degrees C) resulted in significantly higher neuronal damage in the CA1 region of hippocampus of transgenic mice than in wild type controls, confirming a deleterious role of COX-2 in ischemic neuronal damage. Hypothermia significantly reduced neuronal damage in both transgenic mice and wild type controls to the same extent, suggesting that the aggravating effect of COX-2 could be largely eliminated by hypothermia. When hypothermia was combined with rofecoxib treatment, neuronal damage was further reduced in response to global ischemia. The results suggest that COX-2 inhibition by prophylactic treatment with rofecoxib coupled with hypothermia at the time of acute stroke insult could be an effective therapeutic approach in early stages of stroke treatment in high risk patients.  相似文献   

8.
目的 为了进一步研究海马C1区域神经细胞活动中JNK的作用,我们评价了一种JNK抑制剂即D-JNKI1在沙土鼠一过性大脑缺血模型中对迟发性神经细胞死亡(DND)的作用。方法 55只沙土鼠随机分为11个组。5组沙土鼠先接受5min前脑缺血处理,再灌注3h后,通过立体定向方法。向每组沙土鼠右侧侧脑室内分别注入不同浓度的D-JNKI1(2μL PBS内加入0.00012,0.0012,0.012,0.12,1.2μmol/L D-JNKI1,每组n=5)。对照组(n=5):沙土鼠先接受5min前脑缺血处理,再灌注3h后,通过立体定向方法方法向右侧侧脑室内仅注入PBS2μL。腹腔内注射组(n=5)沙土鼠;先接受5min前脑缺血处理,再灌注3h后,1.2μmol/L D-JNKI1溶于0.5mL PBS腹腔内注射。假手术组(n=5);沙土鼠仅暴露双侧颈总动脉,未夹闭。预处理组(共3组,n=15):先将0.0012μmol/L D-JNKI1,0.00012μmol/L D-JNKI1溶于2μL PBS,分别注入两组沙土鼠的右侧侧脑室内,另外一组沙土鼠的右侧侧脑室内仅仅注入PBS2μL,30min后三组均夹闭双侧颈总动脉2min,48h后再次接受双侧颈总动脉夹闭5min。所有沙土鼠从接受夹闭5min双侧颈总动脉后4d处死,作冰冻切片和Niss1染色。结果 缺血再灌注3h后用D-JNKI-1治疗,有神经保护作用,最好的神经保护效应浓度为0.0012μmol/L。D-JNKI-1预处理加强了2min预处理所诱导的缺血耐受效应。结论D-JNKI1在沙土鼠全脑缺血模型中对海马CA1区域的迟发性神经细胞死亡有潜在的神经保护作用。  相似文献   

9.
Although mice are amenable to gene knockout, they have not been exploited in the setting of seizure-induced neurodegeneration due to the resistance to injury of key mouse strains. We refined and developed models of seizure-induced neuronal death in the C57BL/6 and BALB/c strains by focally evoking seizures using intra-amygdala kainic acid. Seizures in adult male BALB/c mice, or C57BL/6 mice as reference, caused ipsilateral death of CA1 and CA3 neurons within the hippocampus. Termination of seizures by lorazepam was more effective than diazepam in both strains, largely restricting neuronal loss to the CA3 sector. Electroencephalography (EEG) recordings defined injurious and non-injurious seizure patterns, which could not be separated adequately by behavioral observation alone. Degenerating neurons in the hippocampus were positive for DNA fragmentation and approximately a third of these exhibited morphologic features of programmed cell death. Western blot analysis revealed the cleavage of caspase-8 after seizures in both strains. These data refine our C57BL/6 model and establish a companion model of focally evoked limbic seizures in the BALB/c mouse that provides further evidence for activation of programmed cell death after seizures.  相似文献   

10.
In ischemic preconditioning, prior exposure to a short 3-min global ischemia provides substantial protection against the deleterious effects of a subsequent prolonged ischemic insult in rats. The objective of the present study was to determine if the neuronal protection induced by ischemic preconditioning influence functional recovery following a 6-min ischemic insult in rats. Animals received either sham-operation, a 3-min ischemia, a preconditioning 3-min global ischemia followed 3 days later by a 6-min global ischemia or a single 6-min global ischemia. Open field habituation, memory performance in the 8-arm radial maze and object recognition were assessed at different intervals following ischemia. Our findings revealed that preconditioning reversed ischemia-induced spatial memory deficits in the 8-arm radial maze, as suggested by significant reduction of working memory errors in preconditioned as compared to ischemic animals. Preconditioning also attenuated ischemia-induced object recognition deficits at short-term intervals. Nonetheless, preconditioning failed to alter ischemia-induced hyperactivity as demonstrated by enhanced behavioral activity in the open field in both preconditioned and ischemic animals compared to 3-min ischemic and sham-operated rats. CA1 cell counts revealed significant neuronal sparing in preconditioned animals that was observed 6-month following reperfusion. Together, these findings suggest that neuronal survival in preconditioned rats is associated with significant improvements of hippocampal-dependent memory functions and, further support that ischemia-induced hyperactivity may not solely depend on selective neuronal damage to hippocampal neurons.  相似文献   

11.
Previous studies have demonstrated that pioglitazone, a peroxisome proliferator-activated receptor gamma (PPARγ) agonist, inhibits ischemia-induced injury in various tissues including neural tissue. Pioglitazone has also been shown to reduce matrix metalloproteinase (MMP) activity. Because MMP is known to play a major role in the pathophysiology of brain ischemia, the present study was undertaken to test whether pioglitazone attenuates ischemic neuronal damage through MMP inhibition. C57BL/6 mice were subjected to global brain ischemia for 20 min. Animals were killed 72 h after ischemia. Oral pioglitazone (40 mg/kg/day, as a suspension in 0.5% carboxymethylcellulose) was administered to mice twice daily for 3 days before ischemia and twice daily after ischemia until the animals were killed. We investigated gelatinase activity by zymography and laminin immunohistochemistry. Histological analysis was also performed to test the protective effect of pioglitazone on neuronal damage. Mice treated with pioglitazone had attenuated gelatinase activity. Gelatin gel and in situ zymography showed up-regulation of gelatinase activity after ischemia. Pioglitazone significantly inhibited ischemia-induced elevation of the active form of MMP-9. Pioglitazone also reduced up-regulation of in situ gelatinase activity and laminin breakdown induced by ischemia in the hippocampus. There was marked neuronal damage in the CA1 and CA2 areas after ischemia. Neuronal damage in mice was significantly decreased by pioglitazone treatment, compared with vehicle-treated mice. Pioglitazone also inhibited TdT-mediated dUTP nick end labeling staining in CA1 and CA2 areas. Pioglitazone, a PPARγ agonist, reduces delayed neuronal damage induced by global ischemia through inhibition of MMP-9 activity.  相似文献   

12.
The authors sought to determine whether Zn translocation associated with neuronal cell death occurs after transient global ischemia (TGI) in mice, as has been previously shown in rats, and to determine the effect of mild hypothermia on this reaction. To validate the TGI model, carbon-black injection and laser-Doppler flowmetry were compared in three strains of mice (C57BL/6, SV129, and HSP70 transgenic mice) to assess posterior communicating artery (PcomA) development and cortical perfusion. In C57BL/6 mice, optimal results were obtained when subjected to 20-minute TGI. Brain and rectal temperature measurements were compared to monitor hypothermia. Results of TGI were compared in normothermia (NT; 37 degrees C) and mild hypothermia groups (HT; 33 degrees C) by staining with Zn -specific fluorescent dye, -(6-methoxy-8-quinolyl)-para-toluenesulfonamide (TSQ) and hematoxylin-eosin 72 hours after reperfusion. The Zn translocation observed in hippocampus CA1, CA2, and Hilus 72 hours after 20 minutes of TGI was significantly reduced by mild hypothermia. The number of degenerating neurons in the HT group was significantly less than in the NT group. Mild hypothermia reduced mortality significantly (7.1% in HT, 42.9% in NT). Results suggest that mild hypothermia may reduce presynaptic Zn release in mice, which protects vulnerable hippocampal neurons from ischemic necrosis. Future studies may further elucidate mechanisms of Zn -induced ischemic injury.  相似文献   

13.
[摘要] 背景:大量研究已经证明凋亡是脑缺血再灌注损伤后神经元损伤的重要形式,且这一过程可以人为干预以改善预后。药物预处理对缺血再灌注损伤后神经元凋亡的影响是脑缺血研究的热点。吗啡是临床常用药,几项研究显示其对某种形式的脑损伤有保护作用,但吗啡预处理对脑缺血再灌注损伤后神经元凋亡的影响尚未见报道。 目的: 探讨吗啡预处理对大鼠全脑缺血再灌注损伤后神经元凋亡及相关基因表达的影响。 设计、时间及地点:2008年6月-2009年8月在青岛大学医学院脑血管病研究所完成分子生物学水平的随机对照实验。 材料:神经元凋亡及免疫组化检测试剂盒均由武汉博士德公司提供 方法: 健康雄性成年Wistar大鼠72只,随机分成4组:假手术组;脑缺血/再灌注组;吗啡预处理1mg/kg组;吗啡预处理7mg/kg组,18只/组。依再灌注时间不同,各组又分为再灌注1d、3d、7d 三个亚组,6只/亚组。以Pusinelli方法为标准建立四动脉阻断法全脑缺血模型,假手术组仅暴露第一颈椎双侧翼孔和双侧颈总动脉而不烧灼,不夹闭动脉;脑缺血组缺血前60min腹腔注射生理盐水2mg/kg;吗啡预处理1mg/kg组及吗啡预处理7mg/kg组分别在脑缺血前60min腹腔内注射吗啡1mg/kg及7mg/kg。在脑缺血8分钟后恢复血流,再灌注1d、3d、7d后断头取脑制作石蜡切片。 主要观察指标: HE染色观察海马CA1区组织病理学改变,TUNEL法检测海马CA1区神经元凋亡,免疫组化检测海马CA1区Casepase-3蛋白表达。 结果:HE染色:假手术组海马CA1区神经元结构正常;脑缺血组则出现大量的肿胀、核固缩及胞浆空泡样变异常细胞并神经元数量显著减少;吗啡预处理组细胞肿胀、核皱缩及细胞缺失的病理学改变显著轻于脑缺血再灌注组。凋亡细胞计数:与假手术组比较,缺血组和吗啡预处理组海马CA1区神经元凋亡数明显增加(P<0.01) ;与缺血再灌注组比较, 吗啡预处理组神经元的凋亡数明显减少(P<0.01);与吗啡预处理1mg/kg组比较,吗啡预处理7mg/kg组神经元凋亡数显著降低(P< 0.05 或P< 0.01)。Casepase-3蛋白表达:缺血组和吗啡预处理组Casepase-3表达明显高于假手术组(P<0.01);吗啡预处理组Casepase-3表达显著低于缺血再灌注组(P<0.01);吗啡预处理7mg/kg组Casepase-3表达明显低于吗啡预处理1mg/kg组(P< 0.05 )。应用吗啡后,在1d、3d、7d三个时点,神经元凋亡的减少趋势与Casepase-3降低的趋势一致。 结论: 吗啡预处理可减轻缺血性脑损伤,提高脑缺血耐受性,且大剂量吗啡效果优于小剂量;吗啡抗凋亡作用机制与Casepase-3密切有关。  相似文献   

14.
Kainate-induced seizures are widely studied as a model of human temporal lobe epilepsy due to behavioral and pathological similarities. While kainate-induced neuronal injury is well characterized in rats, relatively little data is available on the use of kainate and its consequences in mice. The growing availability of genetically altered mice has focused attention on the need for well characterized mouse seizure models in which the effects of specific genetic manipulations can be examined. We therefore examined the kainate dose–response relationship and the time-course of specific histopathological changes in C57/BL mice, a commonly used founder strain for transgenic technology. Seizures were induced in male C57/BL mice (kainate 10–40 mg/kg i.p.) and animals were sacrificed at various time-points after injection. Seizures were graded using a behavioral scale developed in our laboratory. Neuronal injury was assayed by examining DNA fragmentation using in situ nick translation histochemistry. In parallel experiments, we examined the expression an inducible member of the heat shock protein family, HSP-72, another putative marker of neuronal injury, using a monoclonal antibody. Seizure severity paralleled kainate dosage. At higher doses DNA fragmentation is seen mainly in hippocampus in area CA3, and variably in CA1, thalamus and amygdala within 24 h, is maximal within 72 h, and is largely gone by 7 days after administration of kainate. HSP-72 expression is also highly selective, occurring in limbic structures, and it evolves over a characteristic time-course. HSP-72 is expressed mainly in structures that also manifest DNA fragmentation. Using double-labeling techniques, however, we find essentially no overlap between neurons expressing HSP-72 and DNA fragmentation. These findings indicate that DNA fragmentation and HSP-72 expression are complementary markers of seizure-induced stress and injury, and support the notion that HSP-72 expression is neuroprotective following kainate-induced seizures.  相似文献   

15.
Chronic bilateral common carotid artery occlusion (BCCAO) induces moderate ischemia (oligemia) in the rat forebrain in the absence of overt neuronal damage. In situ hybridization for brain-derived neurotrophic factor (BDNF) mRNA was used to search for a molecular response to moderate ischemia. BDNF mRNA was significantly increased in the hippocampal granule cells at 6 h of occlusion (ANOVA, Tukey test P<0.05). At 1, 7 and 14 days BDNF mRNA levels returned to control levels. The frequency of BDNF gene expression at 6 h was 83%, which was significantly higher than the 7% incidence of histological injury in the hippocampus (Fisher's exact test, P<0.002). Cerebral blood flow was reduced to 75% of control levels in the hippocampus after 1 week of BCCAO when measured with the autoradiographic method. Measurements of tissue flow with a microprobe for laser Doppler flow excluded decreases into the ischemic range during the period when elevated gene expression was observed. Prolonged moderate ischemia (oligemia) is a sufficient stimulus for BDNF gene expression in the hippocampus. These molecular studies provide direct evidence for an involvement of the hippocampus in the BCCAO model.  相似文献   

16.
To investigate cerebral injury in the monkey due to transient ischemia, monkeys were each subjected to temporary occlusion of eight (bilateral common carotid, internal and external carotid, and vertebral) major arteries. After 0 (control), 5, 10, 13, 15, and 18 min occlusion, blood flow was restored. The monkeys were sacrificed by perfusion fixation 5 days after the operation, and all brain regions were then histologically examined for ischemic neuronal changes induced by the occlusion. The amplitude of EEG signals from skull and scalp became almost isoelectric within 1-6 min after the onset of occlusion. The EEG signals from the hippocampus were markedly attenuated within 1-4 min, although they did not become completely isoelectric. Blood pressure was significantly increased after 10-min ischemia. Five-min occlusion produced no ischemic neuronal changes except a slight increment of glial cells in the striatum and III, V, and VI layers of the neocortices. After 10- to 15-min occlusion, there were ischemic cell changes restricted exclusively to the CA1 subfield of the hippocampus. Eighteen-min occlusion produced more prominent ischemic neuronal damage in the CA1 subfield of the hippocampus, but ischemic neuronal damage was no longer confined to the hippocampus. These results suggest that only the CA1 subfield of the monkey hippocampus could be damaged by mild ischemic insult. We demonstrate that the limited lesion of the hippocampus, especially the CA1 subfield, after 10- to 15-min occlusion of eight arteries in the monkey, produces a model equivalent to human amnesia caused by transient ischemic insult.  相似文献   

17.
A new model for mouse global ischemia is presented, and the relationship of ischemia duration, cerebral vasculature, and ischemic neuronal injury has been determined. CD-1 mice anesthetized by chloral hydrate were subjected to global ischemia by bilateral common carotid artery occlusion under controlled ventilation for 3, 5, and 10 min. After evaluating the patency of the posterior communicating artery (PcomA) as hypoplastic or normoplastic, neuronal injury was independently determined in the striatum, cortex, and hippocampus in each hemisphere. Ischemic injury was strongly correlated with not only ischemia duration, but also with the patency of the PcomAs. Furthermore, neuronal injury developed in a delayed fashion after 3-min ischemia, while it was maximized at 24 h after 10-min ischemia. Physiological studies showed the induction of slight hypotension as compared with inhalation anesthesia, and improvement of blood gas data relative to spontaneous respiration. These data demonstrate the usefulness of this method to induce selective vulnerability and delayed neuronal cell death in mice, and to provide a useful model to study the detailed mechanism of global ischemia using transgenic or knockout mutant mice.  相似文献   

18.
Olsson T  Wieloch T  Smith ML 《Brain research》2003,982(2):260-269
The importance of particular genes in neuronal death following global cerebral ischemia can readily be studied in genetically modified mice provided a reliable model of ischemia is available. For that purpose, we developed a mouse model of global cerebral ischemia that induces consistent damage to different regions of the brain and with a low mortality rate. Twelve minutes of ischemia was induced in C57BL/6 mice by bilateral common carotid artery occlusion under halothane anesthesia and artificial ventilation. Body and brain temperature were monitored and cortical cerebral blood flow in each hemisphere was measured by laser Doppler flowmeter before, during, and for 5 min after ischemia. Extensive damage was found in the striatum and marked cell damage was observed in the CA1 and CA2 regions of hippocampus and in thalamus. Mild damage was seen in the CA3 region, dentate gyrus and cortex. Hippocampal damage in the CA1 region is delayed and developed over 48 h. Intraischemic hypothermia of 33 degrees C provided a robust neuroprotection. The non-competitive N-methyl-D-aspartate receptor blocker, MK-801, did not provide protection in the hippocampus, cortex, striatum or thalamus when administered 30 min prior to ischemia or 2 h after the end of ischemia, but selectively mitigated damage in the hippocampus, when administered immediately following ischemia. This model of global cerebral ischemia may be useful in pharmacological and genomic studies of ischemic brain damage.  相似文献   

19.
Preconditioning of the gerbil brain with a 2-min period of sublethal ischemia followed by 4 days of reperfusion protects against neuronal damage following a subsequent 3-min period of ischemia, which normally destroys pyramidal neurons in the CAI region of the hippocampus. To clarify the role of protein synthesis in this ischemic tolerance phenomenon, we performed an autoradiographic analysis with [14C]leucine at 4 h, 24 h, and 48 h after 3 min of ischemia with and without preconditioning. General protein synthesis in the CAI region was severely suppressed after 4 h in both groups. The protein synthesis in CAI partially recovered after 24 h and fully recovered after 48 h in animals with preconditioning, but never recovered in animals without preconditioning. Protein synthesis in the neocortex and the striatum was suppressed in the early reperfusion periods only in animals without preconditioning. The results show that the ischemic tolerance is closely related to the facilitated recovery from suppressed protein synthesis in the brain after ischemia.  相似文献   

20.
H Kato  T Araki  K Kogure 《Brain research》1992,596(1-2):315-319
We induced repeated focal cerebral ischemia in gerbils. Single 5-min ischemia produced neuronal damage limited to the ipsilateral CA1 and CA4 hippocampus. Two 5-min ischemic insults spaced at a 1-h interval caused selective neuronal damage to the CA1, CA3 and CA4 hippocampus, striatum, neocortex, and thalamus. Three 5-min ischemic insults at 1-h intervals produced infarction. Thus, repeated focal ischemia produced cumulative brain damage by conversion of sublethal damage into selective neuronal damage and of the neuronal damage into infarction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号