首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative stress and lung inflammation in airways disease.   总被引:8,自引:0,他引:8  
Oxidative stress results from an oxidant/antioxidant imbalance in favour of oxidants. A large number of studies have demonstrated that increased oxidative burden occurs in airways diseases, shown by increased marks of oxidative stress in the airspaces and systemically in these patients. There is now substantial evidence that oxidative stress plays an important role in the injurious and inflammatory responses in airways diseases such as asthma and chronic obstructive pulmonary disease (COPD). In addition to these proinflammatory mechanisms resulting from oxidative stress, protective mechanisms such as the upregulation of protective antioxidant genes also occur. At present, effective antioxidant therapy that has good bioavailability and potency is not available. Such drugs are being developed and should in the future allow the hypothesis that oxidative stress is a fundamental factor in the inflammation, which occurs in these airways diseases to be tested.  相似文献   

2.
Role of oxygen radicals on bronchial asthma   总被引:7,自引:0,他引:7  
Bronchial asthma is an inflammatory disorder characterized by recruitment and activation of various inflammatory cells including eosinophils and T cells in the airway mucosa. Oxygen radicals are produced by inflammatory cells in the airways and/or inhaled directly from environmental air. There is ample evidence that oxygen radical production is increased in asthma and is closely related to the pathogenesis and that exogenous oxidants such as cigarette smoke and ozone directly cause asthma exacerbation. The mechanism by which oxygen radicals cause asthma pathology is oxidation or nitration of proteins, lipids, or DNA to cause dysfunction of these molecules. In addition, physiological antioxidant system, which is equipped to protect host from detrimental oxidants, is impaired in asthma, possibly because of inflammation. Thus, the imbalance between oxidant and antioxidant that is called oxidant stress is critical in asthma pathogenesis. Elegant technique to measure oxygen radicals and the footprints of oxidant stress in patients with asthma have been developed and give an important clue to evaluate possible involvement of oxygen radicals in individual pathophysiology. Therapeutic interventions that reduce oxidant stress and enhance antioxidant defense may be useful in the treatment of asthma.  相似文献   

3.
4.
Chronic respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD) are disorders of the airways largely related to the presence of persistent inflammation. The approval of inhaled corticosteroids in the early 1970s pioneered a new age of therapy in treating chronic inflammatory airway diseases. This was the first time that an anti-inflammatory product was available to reduce the characteristic lung inflammation in airways and the associated obstruction, inflammation and hyper-responsiveness. Fast forward 40 years: corticosteroids are still an important therapeutic intervention; however, they exhibit limited use in moderate to severe asthma and COPD. Oligonucleotide therapies are an emerging class which include the antisense, the RNAi (siRNA and miRNA), the immunomodulatory, the aptamer and the decoy approaches. As these approaches are rather recent in the respiratory field, most are still early in development. Nevertheless, with limitations of current small molecule therapies and the hurdles faced with biologics, the use of oligonucleotides is relevant and the door is open to the development of this category of therapeutics. This review focuses on the major classes of oligonucleotides that are currently in late stage preclinical or clinical development for the treatment of asthma and COPD, and discusses the implications for their use as therapies for respiratory diseases.  相似文献   

5.
Reactive nitrogen species in the respiratory tract   总被引:5,自引:0,他引:5  
Endogenous Nitric Oxide (NO) plays a key role in the physiological regulation of airway functions. In response to various stimuli activated inflammatory cells (e.g., eosinophils and neutrophils) generate oxidants ("oxidative stress") which in conjunction with exaggerated enzymatic release of NO and augmented NO metabolites produce the formation of strong oxidizing reactive nitrogen species, such as peroxynitrite, in various airway diseases including asthma, chronic obstructive pulmonary diseases (COPD), cystic fibrosis and acute respiratory distress syndrome (ARDS). Reactive nitrogen species provoke amplification of inflammatory processes in the airways and lung parenchyma causing DNA damage, inhibition of mitochondrial respiration, protein dysfunction and cell damage ("nitrosative stress"). These effects alter respiratory homeostasis (such as bronchomotor tone and pulmonary surfactant activity) and the long-term persistence of "nitrosative stress" may contribute to the progressive deterioration of pulmonary functions leading to respiratory failure. Recent studies showing that protein nitration can be dynamic and reversible ("denitration mechanisms") open new horizons in the treatment of chronic respiratory diseases affected by the deleterious actions of "nitrosative stress".  相似文献   

6.
Phosphodiesterase-4 inhibitors in the treatment of inflammatory lung disease   总被引:11,自引:0,他引:11  
Spina D 《Drugs》2003,63(23):2575-2594
Phosphodiesterases (PDE) belong to an important family of proteins that regulate the intracellular levels of cyclic nucleotide second messengers. Targeting PDE with selective inhibitors may offer novel therapeutic strategies in the treatment of various conditions, and in the context of respiratory disease these include asthma and chronic obstructive pulmonary disease (COPD). The rationale for such an approach stems, in part, from the clinical efficacy of theophylline, an orally active drug that is purportedly a nonselective PDE inhibitor. In addition, intracellular cyclic adenosine monophosphate (cAMP) levels regulate the function of many of the cells thought to contribute to the pathogenesis of respiratory diseases such as asthma and COPD, and these cells also selectively express PDE4. This has offered pharmaceutical companies the opportunity to selectively targeting these enzymes for the treatment of these diseases. Finally, the success of targeting PDE5 in the treatment of erectile dysfunction provides clinical proof of concept for the targeting of PDE in disease. Whether a 'Viagra' of the airways can be found for the treatment of asthma and COPD remains to be seen, but positive results from recent clinical studies examining the efficacy of selective PDE4 inhibitors such as cilomilast and roflumilast offer some optimism. However, one of the major issues to be resolved is the tolerability profile associated with this drug class that is a consequence of PDE4 inhibition. While cilomilast and roflumilast have low emetic potential they are not free from emesis and various strategies are being investigated in the hope of developing a PDE4 inhibitor without this adverse effect.  相似文献   

7.
Chronic obstructive pulmonary disease (COPD) is a common cause of morbidity and mortality. The term is heterogenous and encompasses a number of distinct but often overlapping phenotypes including chronic bronchitis, small airways obstruction, emphysema and in some individuals, a systemic component. Although there have been significant advances in understanding the pathophysiology of COPD, understanding of the role of the inflammation in the pathogenesis of the condition remains in its infancy. Indeed, cytokines that are known to orchestrate the inflammatory response in asthma and other inflammatory diseases are only beginning to be reported in COPD. In this review, we highlight the potential role of cytokines in the development of mucus hypersecretion observed in chronic bronchitis and the morphological changes observed in the small airways and airspaces contributing to the development of airflow limitation and respiratory failure respectively. We report evidence that exacerbations are linked to increased expression of pro-inflammatory cytokines and that the wasting and skeletal muscle dysfunction observed in some patients is most probably related to the presence of a systemic inflammatory response. In addition transgenic and gene therapy technology has been used to explore the temporal and co-ordinated role of cytokines in the development of COPD animal models. Enhanced understanding of the events involved in the pathogenesis of COPD will lead to the development of therapy with potential to modify the observed progressive decline in lung function and impact on the development of the illness.  相似文献   

8.
Asthma and Chronic Obstructive Pulmonary Disease (COPD) are two important lung and airways diseases which affect the lives of ~500 million people worldwide. Asthma is a heterogeneous disease that is broadly defined as a clinical syndrome characterized by altered lung function, mucus hypersecretion, peribronchial inflammation and hyperresponsiveness In contrast, the effect of inhalation of toxic particles and gases on the innate and adaptive inflammatory immune systems underlie the pathogenesis of COPD. In the last decade, knowledge concerning the pathophysiologic mechanisms underlying asthma and COPD has risen tremendously and current dogma suggests that the pathogenesis of both diseases is driven by the chronic inflammation present in the airways of these patients. Thus, understanding the mechanisms for the persistence of inflammation may lead to new therapeutic approaches. In this review, we provide an overview of the main signal transduction pathways implicated in asthma and COPD pathophysiology focusing on inflammasome signaling in various cells types which result in altered inflammatory mediator expression.  相似文献   

9.
Antioxidant therapeutic targets in COPD   总被引:5,自引:0,他引:5  
Oxidative stress and chronic inflammation are important features in the pathogenesis of chronic obstructive pulmonary disease (COPD). Oxidative stress has important consequences for several elements of lung physiology and for the pathogenesis of COPD, including oxidative inactivation of antiproteases and surfactants, mucus hypersecretion, membrane lipid peroxidation, alveolar epithelial injury, remodeling of extracellular matrix, and apoptosis. Therefore, targeting oxidative stress with antioxidants or boosting the endogenous levels of antioxidants is likely to be beneficial in the treatment of COPD. Antioxidant and/or anti-inflammatory agents such as thiol molecules (glutathione and mucolytic drugs, such as N-acetyl-L-cysteine and N-acystelyn), dietary polyphenol (curcumin-diferuloylmethane, a principal component of turmeric), resveratrol (a flavanoid found in red wine), green tea (theophylline and epigallocatechin-3- gallate), ergothioneine (xanthine and peroxynitrite inhibitor), quercetin, erdosteine and carbocysteine lysine salt, have been reported to control NF-kappaB activation, regulation of glutathione biosynthesis genes, chromatin remodeling and hence inflammatory gene expression. Specific spin traps such as alpha-phenyl-N-tert-butyl nitrone, a catalytic antioxidant (ECSOD mimetic), manganese (III) meso-tetrakis (N,N'-diethyl-1,3-imidazolium-2-yl) porphyrin (AEOL 10150 and AEOL 10113), and a SOD mimetic M40419 have also been reported to inhibit cigarette smoke-induced inflammatory responses in vivo. Since a variety of oxidants, free radicals and aldehydes are implicated in the pathogenesis of COPD it is possible that therapeutic administration of multiple antioxidants will be effective in the treatment of COPD. Various approaches to enhance lung antioxidant capacity and clinical trials of antioxidant compounds in COPD are discussed.  相似文献   

10.
11.
A growing body of evidence has emerged in support of a pro-inflammatory role for adenosine in the pathogenic mechanisms of chronic inflammatory disorders of the airways such as asthma and COPD. The demonstration that adenosine enhances mast cell allergen-dependent activation, the notion that elevated levels of adenosine are present in chronically inflamed airways, and the results from exposure studies of nebulised adenosine showing dose-dependent bronchoconstriction in subjects with asthma and COPD, emphasise the importance of adenosine in the initiation, persistence and progression in these common inflammatory disorders of the airways. Adenosine exerts its manifold biological activities by interacting with at least four adenosine receptor subtypes. Selective activation or blockade of these sites is being exploited by the pharmaceutical industry in an attempt to generate novel therapies for asthma and COPD. This review article intends to address the potential role of adenosine in asthma and to put forward the idea that drugs that have been developed to selectively activate or downregulate adenosine receptor subtypes may constitute a considerable advance in the management of chronic airway inflammation.  相似文献   

12.
The Role of Lymphocytes in the Pathogenesis of Asthma and COPD   总被引:2,自引:0,他引:2  
Asthma and chronic obstructive pulmonary disease (COPD) are two different inflammatory disorders of the lungs which share a common functional abnormality, i.e. airflow limitation [1,2]. In asthma, airflow limitation is largely reversible, either spontaneously or with treatment, and does not progress in most cases [1]. On the other hand, airflow limitation in COPD is usually progressive and poorly reversible [2]. In asthma, the chronic inflammation causes an associated increase in airway responsiveness to a variety of stimuli, leading to recurrent episodes of wheezing, breathlessness, chest tightness and cough, particularly at night and in the early morning. Many cells are involved in the inflammatory response in asthma and, among these, CD4+ Type-2 lymphocytes, mast cells and eosinophils are thought to play a crucial role. In COPD, the poorly reversible airflow limitation is associated with an abnormal inflammatory response of the lungs to noxious particles or gases [2]. This chronic inflammation is characterized by an increased number of CD8+ Type-1 T-lymphocytes and macrophages in the lung tissue and neutrophils in the airway lumen. Lymphocytes, which are markedly different in the two inflammatory conditions, play a crucial role in the pathogenesis of asthma and COPD. In this review, we will discuss the current concepts on the recruitment, homing and activity of lymphocytes in these two respiratory diseases.  相似文献   

13.
Bronchial hyperresponsiveness is a characteristic feature of respiratory diseases of the lung, including asthma and chronic obstructive pulmonary disease (COPD). However, asthmatic subjects respond to a range of physiological and chemical insults that are otherwise innocuous in healthy subjects or in patients with COPD, suggesting that the mechanisms underlying this phenomenon are characteristic of the asthma phenotype. Increasingly, there is evidence of a role for airway nerves in irritable airways and pharmacological targeting of the pathways involved may lead to the development of novel treatments for this disease. In this context, the recent cloning of the vanilloid receptor may be a useful target for drug discovery in respiratory disease.  相似文献   

14.
Bronchial challenge tests have been standardized in detail during the past two decades. They are providing relevant pathophysiological and clinical information about patients with asthma or chronic obstructive pulmonary disease (COPD), by allowing the measurement of the degree of airway hyperresponsiveness, which includes an increased sensitivity as well as increased maximal response to bronchoconstrictor stimuli. There are various types of challenges, to which the responses are not interchangeable. Responses to so-called "indirect" challenges are largely dependent on the state of activation of inflammatory or resident cells within the airways, and the state of activation can vary rapidly, either spontaneously or through intervention. Responses to "direct" challenges are dependent on less variable, rather chronic features of airways inflammation or remodeling. Bronchoprovocation tests provide integrated information about multiple pathophysiological pathways within the airway. This is in contrast to the measurements of cells, mediators, or cytokines in biological fluids, which provide only very specific information on selected inflammatory pathways. It has recently been shown that the outcome of asthma can substantially be improved when long-term treatment is not only guided by symptoms and lung function, but also by the degree of airway hyperresponsiveness to direct stimuli. Taken together, current data warrant a broader usage of bronchoprovocation tests in the research as well as clinical management of asthma and COPD. In asthma, it allows selective, individually targeted therapy of the patient as opposed to the currently recommended regimens that are (increasingly) unselective in their approach. The potential benefits of monitoring other phenotypic disease markers is currently under investigation.  相似文献   

15.
16.
Chronic inflammatory airway diseases such as bronchial asthma or chronic obstructive pulmonary disease (COPD) are major contributors to the global burden of disease. Although inflammatory cells play the central role in the pathogenesis of the diseases, recent observations indicate that also resident respiratory cells represent important targets for pulmonary drug development. Especially targeting airway neuromediators offers a possible mechanism by which respiratory diseases may be treated in the future. Among numerous peptide mediators such as tachykinins, calcitonin gene-related peptide, neurotrophins or opioids, vasoactive intestinal polypeptide (VIP) is one of the most abundant molecules found in the respiratory tract. In human airways, it influences many respiratory functions via the receptors VPAC1, VPAC2 and PAC1. VIP-expressing nerve fibers are present in the tracheobronchial smooth muscle layer, submucosal glands and in the walls of pulmonary and bronchial arteries and veins. Next to its strong bronchodilator effects, VIP potently relaxes pulmonary vessels, and plays a pivotal role in the mediation of immune mechanisms. A therapy utilizing the respiratory effects of VIP would offer potential benefits in the treatment of obstructive and inflammatory diseases and long acting VIP-based synthetic non-peptide compounds may represent a novel target for drug development.  相似文献   

17.
Asthma and chronic obstructive pulmonary disease (COPD) are heterogeneous inflammatory disorders of the respiratory tract characterized by airflow obstruction. It is now clear that the environmental factors that drive airway pathology in asthma and COPD, including allergens, viruses, ozone and cigarette smoke, activate innate immune receptors known as pattern-recognition receptors, either directly or indirectly by causing the release of endogenous ligands. Thus, there is now intense research activity focused around understanding the mechanisms by which pattern-recognition receptors sustain the airway inflammatory response, and how these mechanisms might be targeted therapeutically. One pattern-recognition receptor that has recently come to attention in chronic airways disease is the receptor for advanced glycation end products (RAGE). RAGE is a member of the immunoglobulin superfamily of cell surface receptors that recognizes pathogen- and host-derived endogenous ligands to initiate the immune response to tissue injury, infection and inflammation. Although the role of RAGE in lung physiology and pathophysiology is not well understood, recent genome-wide association studies have linked RAGE gene polymorphisms with airflow obstruction. In addition, accumulating data from animal and clinical investigations reveal increased expression of RAGE and its ligands, together with reduced expression of soluble RAGE, an endogenous inhibitor of RAGE signalling, in chronic airways disease. In this review, we discuss recent studies of the ligand–RAGE axis in asthma and COPD, highlight important areas for future research and discuss how this axis might potentially be harnessed for therapeutic benefit in these conditions.  相似文献   

18.
Prostanoids as pharmacological targets in COPD and asthma   总被引:7,自引:0,他引:7  
COPD (Chronic Obstructive Pulmonary Disease) and bronchial asthma are two severe lung diseases which represent a major problem of world public health. Leukotrienes and prostanoids play an important role in the pathogenesis of pulmonary diseases. Prostanoids: prostaglandins (PGs) and thromboxane A2 (TXA2), the cyclooxygenase metabolites of arachidonic acid are implicated in the inflammatory cascade that occurs in asthmatic airways. Recently, the roles played by isoprostanes or prostaglandin-like compounds nonenzymatically generated via peroxidation of membrane phospholipids by reactive oxygen species, in particular F2-isoprostanes, in pulmonary pathophysiology have been highlighted. This article aims to provide an overview of the role of prostanoids and isoprostanes in the pathogenesis of COPD and asthma and to discuss the pharmacological strategies developed in prevention and/or treatment of these pathologies.  相似文献   

19.
Current research endeavours indicate that adenosine elicits strong inflammatory responses in the lung and might be involved in the pathogenic mechanisms of chronic inflammatory disorders of the airways such as asthma and chronic obstructive pulmonary disease (COPD). The contribution of adenosine-associated effector mechanisms to the initiation, persistence and progression of the inflammatory response is highly heterogeneous and is dictated by the expression pattern of four different adenosine receptors. Selective activation or blockade of these sites can therefore be exploited in an attempt to generate novel therapies for asthma and COPD. In addition, an important development is the use of adenosine (or AMP) as a diagnostic test for discriminating asthma from COPD, and as an accurate biomarker to monitor corticosteroid requirements in asthma. It is likely that therapies interfering with adenosine signalling in the airways will offer a considerable advance in the management of asthma and COPD.  相似文献   

20.
Transcription factors in asthma and COPD   总被引:3,自引:0,他引:3  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号