首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polybrominated diphenyl ethers (PBDEs) are brominated flame retardants that have been in use as additives in various consumer products. Structural similarities of PBDEs with other polyhalogenated aromatic hydrocarbons that show affinity for the aryl hydrocarbon receptor (AhR), such as some polychlorinated biphenyls, raised concerns about their possible dioxin-like properties. We studied the ability of environmentally relevant PBDEs (BDE-47, -99, -100, -153, -154, and -183) and the "planar" congener BDE-77 to bind and/or activate the AhR in stably transfected rodent hepatoma cell lines with an AhR-responsive enhanced green fluorescent protein (AhR-EGFP) reporter gene (H1G1.1c3 mouse and H4G1.1c2 rat hepatoma). 7-Ethoxyresorufin-O-deethylation (EROD) was used as a marker for CYP1A1 activity. Dose- and bromination-specific inhibition of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced responses was measured by their ability to inhibit the induction of AhR-EGFP expression and EROD activity. Individual exposure to these PBDEs did not result in any increase in induction of AhR-EGFP or CYP1A1 activity. The lower brominated PBDEs showed the strongest inhibitory effect on TCDD-induced activities in both cell lines. While the highest brominated PBDE tested, BDE-183, inhibited EROD activity, it did not affect the induction of AhR-EGFP expression. Similar findings were observed after exposing stably transfected human hepatoma (xenobiotic response element [XRE]-HepG2) cells to these PBDEs, resulting in a small but statically significant agonistic effect on XRE-driven luciferase activity. Co-exposure with TCDD resulted again in antagonistic effects, confirming that the inhibitory effect of these PBDEs on TCDD-induced responses was not only due to direct interaction at receptor level but also at DNA-binding level. This antagonism was confirmed for BDE-99 in HepG2 cells transiently transfected with a Gal4-AhR construct and the corresponding Gal4-Luc reporter gene. In addition, a chromatin immunoprecipitation assay further confirmed that BDE-99 could bind to the AhR and activate the AhR nuclear translocation and dioxin responsive element (DRE) binding in the context of the CYP1A1 promoter. However, the transactivation function of the BDE-99-activated AhR seems to be very weak. These combined results suggest that PBDEs do bind but not activate the AhR-AhR nuclear translocator protein-XRE complex.  相似文献   

2.
Polybrominated diphenyl ethers as Ah receptor agonists and antagonists.   总被引:4,自引:0,他引:4  
Polybrominated diphenyl ethers (PBDEs) have been identified in every compartment of the environment and biota due to their widespread use as flame retardants. There is debate over their potential to threaten environmental and human health due to insufficient toxicological information. The weak to moderate binding affinity of PBDE congeners to the Ah receptor (AhR) and the weak induction of EROD (ethoxyresorufin-O-deethylase) activity suggest the possibility of dioxin-like behavior. We have investigated whether PBDE congeners act as Ah receptor agonists or antagonists at sequential stages of the AhR signal transduction pathway leading to CYP1A1. PBDE congeners 77, 119, and 126 were moderately active towards DRE (dioxin response element) binding and induced responses of both CYP1A1 mRNA and CYP1A1 protein equivalent to the maximal response of TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) in primary Sprague-Dawley rat hepatocytes, although at concentrations three to five orders of magnitude greater than TCDD. These congeners showed additive (throughout this article, we use additive and antagonistic as shorthand terms for increasing or decreasing the response observed with TCDD alone) behavior towards DRE binding with 10(-9) M TCDD, whereas most other PBDE congeners antagonized the action of TCDD. PBDEs 100, 153, and 183 were very weak activators of DRE binding; other congeners and the commercial "penta," "octa," and "deca" bromodiphenyl ether mixtures were inactive. The environmentally prominent congeners 47 and 99 were inactive at all stages of signal transduction, and the "penta" mixture had negligible ability to induce EROD activity. We suggest that current concentrations of PBDEs in biota contribute negligibly to dioxin-like toxicity compared with other environmental contaminants, such as polychlorinated dibenzo-p-dioxins and polychlorinated biphenyls.  相似文献   

3.
Polybrominated diphenyl ethers (PBDEs) are widespread environmental pollutants, and the levels of certain congeners have been increasing in biota and abiota in recent decades. Some PBDEs are lipophilic and persistent, resulting in bioaccumulation in the environment. Their structural similarity to other polyhalogenated aromatic hydrocarbons (PHAHs) such as polychlorinated biphenyls (PCBs) has raised concerns that PBDEs might act as agonists for the aryl hydrocarbon receptor (AhR). Recent studies in our laboratory with human and rat cell lines indicated no AhR mediated CYP1A1 induction for PBDEs. However, an earlier in vitro study by Van der Burght et al. (1999) [Van der Burght, A.S., Clijsters, P.J., Horbach, G.J., Andersson, P.L., Tysklind, M., van den Berg, M., 1999. Structure-dependent induction of CYP1A by polychlorinated biphenyls in hepatocytes of cynomolgus monkeys (Macaca fascicularis). Toxicol. Appl. Pharmacol. 155, 13-23] indicated that in cynomolgus monkey (M. fascicularis) hepatocytes PCBs with a non-planar configuration could induce CYP1A. As PBDEs show a structural similarity with non-planar (ortho substituted) PCBs, our present study focused on the possible CYP1A induction by PBDEs (BDE-47, -99, -100, -153, -154, -183, and -77) in individual preparations (n=4) of primary hepatocytes of cynomolgus monkeys (M. fascicularis). 7-Ethoxyresorufin-O-deethylase (EROD) was used as a marker for CYP1A-mediated catalytic activity. Cells were exposed for 48 h to various PBDE concentrations (0.01-10 microM), positive controls 2,3,7,8-TCDD (0.001-2.5 nM) and PCB-126 (0.01-10nM), and negative control (DMSO vehicle alone). No statistically significant induction of CYP1A was observed in the hepatocytes after 48 h of exposure to all environmentally relevant PBDEs. After exposing hepatocytes to PBDEs in combination with TCDD, a concentration-dependent decrease in TCDD-induced EROD activity was observed. All PBDEs tested showed a similar reduction in each of four experiments, though quantitative differences were observed. The observed antagonism of TCDD-induced EROD activity by PBDEs occurred in both male (n=3) and female (n=1) hepatocytes and was not due to catalytic inhibition of EROD activity or cytotoxicity. However, based on the results of this study we do not expect these antagonistic effects of PBDEs on CYP1A induction at environmental relevant levels, since these in vitro interactive effects with TCDD were observed only at relatively high concentrations that are normally not seen, e.g. in the human body.  相似文献   

4.
Naringenin, dietary flavonoid, is antioxidant constituents of many citrus fruits. In the present study, we investigated the effect of naringenin on 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible CYP1A1 gene expression in mouse hepatoma Hepa-1c1c7 cells. Naringenin alone did not affect CYP1A1-specific 7-ethoxyresorufin O-deethylase (EROD) activity. In contrast, the TCDD-inducible EROD activities were markedly reduced upon concomitant treatment with TCDD and naringenin in a dose dependent manner. TCDD-induced CYP1A1 mRNA level was also markedly suppressed by naringenin. A transient transfection assay using dioxin-response element (DRE)-linked luciferase and electrophoretic mobility shift assay revealed that naringenin reduced transformation of the aryl hydrocarbons receptor(AhR) to a form capable of specifically binding to the DRE sequence in the promoter of the CYP1A1 gene. These results suggest the down regulation of the CYP1A1 gene expression by either naringenin in Hepa-1c1c7 cells might be antagonism of the DRE binding potential of nuclear AhR.  相似文献   

5.
Berberine has long been considered a candidate for an antimalarial drug. It exerts a plethora of biological activities and has been used in the treatment of diarrhea and gastro-enteritis for centuries. Here we provide evidence that berberine activates the aryl hydrocarbon receptor (AhR) in human hepatoma (HepG2) and rat hepatoma cells stably transfected with a dioxin responsive element fused to the luciferase gene (H4IIE.luc). AhR was activated by high doses of berberine (10-50 microM) after 6 and 24 h of incubation as revealed by CYP1A1 mRNA expression (HepG2) and AhR-dependent luciferase activity (H4IIE.luc). Berberine induced nuclear translocation of AhR-GFP chimera transiently transfected to Hepa1c1c7 cells. In contrast, low doses of berberine (<1 microM) and prolonged times of the treatments (48 h) failed to produce any activation of AhR in H4IIE.luc cell line. HPLC analysis ruled out the hypothesis that the loss of berberine capacity to activate AhR in H4IIE.luc cells is due to metabolic inactivation of the alkaloid. We demonstrate that berberine is a potent inhibitor (IC50=2.5 microM) of CYP1A1 catalytic activity (EROD) in HepG2 cell culture and in recombinant CYP1A1 protein. Collectively, our results imply that while berberine activates the Ah receptor, it is accompanied by inactivation of the catalytic activity of CYP1A1 and occurs at concentrations that exceed those predicted to occur in vivo. Given these data, it appears that activation of the AhR pathway by berberine has a low toxicological potential.  相似文献   

6.
Polybrominated diphenyl ethers (PBDEs), used as flame retardants, have been detected in the environment and in mammalian tissues and fluids. Evidence indicates that PBDE mixtures induce CYPs through aryl hydrocarbon receptor (AhR)-dependent and -independent pathways. The present work has investigated the effects of individual components of a commercial PBDE mixture (DE71) on expression of CYP1A1, a biomarker for activation of the AhR (dioxin-like), and CYP2B and CYP3A, biomarkers for activation of the constitutive androstane and pregnanexreceptors (CAR and PXR), respectively, in the rat. Male F344 rats were dosed orally on three consecutive days with either DE71, PBDE components, 2,2',4,4'-tetraBDE (BDE47), 2,2',4,4',5-pentaBDE (BDE99), 2,2',4,4',5,5'-hexaBDE (BDE153), representative polybrominated dibenzofurans (PBDFs) present in DE71, or reference PCBs. Differential expression of target genes was determined in liver 24 h after the last dose. Quantitative PCR analysis indicated up-regulation of CYP1A1 by DE71; however, the response was weak compared to that for dioxin-like PCB126. Individual PBDE components of DE71 up-regulated CYP1A1 only at the highest administered dose (100 micromol/kg/day). Representative PBDFs efficiently up-regulated CYP1A1; therefore, they, along with other PBDFs and polybrominated dibenzodioxins detected in DE71 and individual PBDE components, may be responsible for most, if not all, dioxin-like properties previously observed for PBDEs. Conversely, PBDEs appear capable of up-regulating CYP2B and CYP3A in rats at doses similar to that for non-dioxin-like PCB153. These results indicate that in vivo PBDE-mediated toxicity would be better categorized by AhR-independent mechanisms, rather than the well-characterized AhR-dependent mechanism associated with exposure to dioxin-like chemicals.  相似文献   

7.
Son DS  Roby KF  Rozman KK  Terranova PF 《Toxicology》2002,176(3):229-243
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a ubiquitous pollutant and promoter of carcinogenesis. This study investigated the interaction between TCDD and different estrogens in a cancer cell line (ID8) derived from mouse ovarian epithelium. TCDD-induced ethoxyresorufin-O-deethylase (EROD) activity and cytochrome P4501A1 (CYP1A1) expression in a dose- and time-dependent manner. Estrogen receptor (ER) alpha mRNAs were constitutively expressed, but ER beta and progesterone receptor (PR) mRNAs were not expressed. Induction of EROD by TCDD was completely inhibited by a alpha-naphthoflavone and phenanthroline, two aryl hydrocarbon receptor (AhR) antagonists. Progesterone and gonadotropins (FSH and LH) had no effect on the induction of EROD by TCDD. Congeners of 17beta-estradiol (E2) increased the induction of EROD activity by TCDD dose-dependently in the relative potency order: estrone (El)>E2> or = 4-hydroxyestradiol (4OHE2)> or = 2-hydroxyestradiol (2OHE2). In contrast, estriol (E3) decreased EROD activity induced by TCDD. E2 increased TCDD-induced CYP1A1 protein and mRNA whereas E3 decreased both the protein and mRNA. E2 did not alter luciferase activity induced by TCDD in cells transfected with a luciferase reporter containing dioxin response elements (DRE) or a CYP1A1 promoter. In contrast, E3 dose-dependently decreased the luciferase activity. A pure anti-estrogen (ICI 182780) inhibited the interaction between E2 and TCDD but did not block E3's effect on EROD activity. These results indicate that E2 may affect TCDD-induced CYP1A1 expression by a mechanism different from E3 in ID8 cells. It appears that the potentiation of E2 in the induction of CYP1A1 by TCDD occurs by a mechanism involving ER alpha since a specific ER antagonist blocked the potentiation. The inhibitory effect of E3 may be due to a rapid direct effect on EROD and a later suppression of CYP1A1 expression.  相似文献   

8.
Polychlorinated biphenyls (PCBs) are a group of widespread environmental pollutants. Some non-ortho-substituted congeners with a high likelihood of coplanarity of both aromatic rings have been shown to act like 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as agonists of the aryl hydrocarbon receptor (AhR) subsequently leading to adverse effects, such as immunosuppression and tumor promotion. Although there is a broad base of experimental data concerning the toxicity of PCBs in laboratory animals and animal-derived primary cells and cell lines, only few experimental data are available for cells of human origin. As a parameter of AhR activation, induction of CYP1A-mediated 7-ethoxyresorufin O-deethylase (EROD) activity was determined in the human hepatoblastoma cell line HepG2 treated with the PCBs IUPAC Nos. 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169, and 189, and with TCDD as a positive control. Compared with results in rat primary hepatocytes and the rat hepatoma cell line H4IIE, treated HepG2 cells showed lower specific EROD activities maximally inducible by TCDD and PCBs, and EC50 values were shifted to higher concentrations. Furthermore, relative potency factors (REPs) for some congeners such as PCBs 81, 126, and 169 greatly differed from those observed in cells derived from rats. Northern blot analyses showed that EROD activities run parallel to changes in CYP1A-specific mRNA contents. The considerable differences in EROD-derived REPs between cells of human and rat origin indicate the need for further investigations in experimental models from different species including humans in order to extend the database of biochemical and toxic responses to PCBs.  相似文献   

9.
Ethoxyresorufin-O-deethylase (EROD) activity, a catalytic function of the cytochrome P450 1A (CYP1A) microsomal oxygenase subfamily, is a popular biomarker for exposure to xenobiotics, polyhalogenated aromatic hydrocarbons (PHAHs) in particular. It has found wide use in aquatic pollution assessment both in vivo and in vitro. In such studies, subjects are often exposed to complex mixtures where various constituents can interfere with EROD-activity, possibly resulting in inadequate estimation of toxic hazard or biological response. The present study investigates the effects of polybrominated diphenyl ethers (PBDEs), a relatively new and increasingly detected group of environmental contaminants, on the validity of EROD activity as exposure marker in carp (Cyprinus carpio) hepatocytes. Freshly isolated hepatocytes of a genetically uniform strain of male carp were co-exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) at concentrations of 0, 1, 3, 10, 30, and 100 pM, and one of the highly purified PBDE/PCB congeners (at concentrations of 0, 0.25, and 2.5 microM) or cleaned-up and untreated DE-71 samples (0, 0.1, and 1 microM). PBDEs were selected from the 209 possible congeners based on their relative abundance in environmental samples: BDE-47, BDE-99, BDE-100, and BDE-153. A tentative metabolite of BDE-47, 6OH-BDE-47, was also included. In addition, a commercial pentabrominated dipenylether mixture (DE-71) was tested for interference with EROD activity both with and without clean-up by carbon fractionating which removed possible planar contaminants. Polychlorinated biphenyl (PCB)-153, a reported inhibitor of EROD activity in flounder, was included for comparison. Cells were cultured for a total period of 8 days; exposure started at day 3 after cell isolation. After 5 days of exposure, cell pellets were frozen before EROD activity was determined. Upon exposure to TCDD, the cells responded with increased EROD activity as expected. Significant reduction of TCDD-induced EROD activity was found in the presence of BDE-47, BDE-99, and BDE-153, but not with BDE-100 and 6-hydroxylated BDE-47. Of these PBDE congeners, the most abundant congener in environmental samples, BDE-47, exhibited the strongest inhibition (down to 6% of the TCDD control value). The cleaned-up fraction of commercial penta-BDE (DE-71) mixture proved an even more potent inhibitor, resulting in reduction of EROD activity to 4% of the control values observed at 1.0 microM. BDE-47 and BDE-153 did not reduce TCDD-induced EROD activity when added shortly prior to measurement, suggesting possible interaction with TCDD at the level of CYP1A biosynthesis. PCB-153 did not show significant effects on EROD activity in carp in this study. The present results indicate that environmentally relevant PBDEs can interfere with determination of EROD activity in vitro, at levels reported earlier for PCBs. The observation that detected PBDE levels are rising, stresses the need for caution when interpreting EROD data on environmental samples.  相似文献   

10.
In a previous 24-h study, precision-cut rat liver slices were validated as a useful in vitro model for assessing the dose-related induction of CYP1A1 and CYP1A2 in rat liver following exposure to 2, 3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Further assessment of the utility of this model was accomplished by initially exposing rat liver slices to medium containing TCDD (0.01 nM) for 24 h and incubating the slices up to an additional 72 h in TCDD-free medium. The slices remained viable throughout the incubation period with an intracellular potassium content varying from 45.2 +/- 2.3 micromol/g at 48 h to 50.0 +/- 1.6 micromol/g at 72 h. In TCDD-exposed slices, CYP1A1 protein and its respective enzymatic activity, the O-deethylation of ethoxyresorufin (EROD), significantly increased with time over the 96-h incubation period, with EROD activity increasing from 63.6 +/- 14.2 at 24 h to 905 +/- 291 pmol/mg/min at 96 h. Under identical incubation conditions, but in the absence of TCDD, the EROD activity for the control liver slices ranged from 14. 3 +/- 4.3 to 44.9 +/- 11.9 pmol/min/mg. Conversely, the level of CYP1A2 protein and its respective activity (acetanilide hydroxylation) transiently decreased from 24 to 96 h with no significant differences observed between the control (0 nM TCDD) and treatment group (0.01 nM TCDD). The concentration-effect relationship at 96 h was characterized by incubating rat liver slices for the initial 24 h in medium containing TCDD at concentrations ranging from 0.1 pM to 10 nM. Induction of CYP1A1 protein and EROD activity was observed for all treatment groups with the 10 nM TCDD treatment group displaying greater than 100-fold induction compared to control (0 nM TCDD). Immunohistochemical localization of CYP1A1 protein within liver slices supported the time- and concentration-dependent induction of EROD activity by TCDD. The induction of CYP1A1 was initially observed to be centrilobular, with increased expression due to both elevated CYP1A1 within cells and the recruitment of additional cells expressing CYP1A1 throughout the entire liver slice. Additionally, the immunohistochemical analysis of the liver slices demonstrated the conservation of tissue architecture following up to 96 h of incubation in dynamic organ culture and provided further evidence for maintenance of tissue viability. In comparison to CYP1A1, the induction of CYP1A2 at 96 h was a less sensitive response, with significant induction of CYP1A2 protein and its respective activity occurring at a medium concentration of 0.1 nM TCDD (686 pg/g liver). In general, increasing the incubation period from 24 to 96 h markedly increased TCDD-induced expression of CYP1A1 and minimally enhanced CYP1A2 expression. Moreover, extending the incubation period to 96 h resulted in in vitro induction profiles for CYP1A1 and CYP1A2 that were qualitatively and quantitatively similar to that previously observed following in vivo exposure to TCDD (Drahushuk et al., Toxicol. Appl. Pharmacol. 140, 393-403, 1996).  相似文献   

11.
Cytochrome P450 1A1 (CYP1A1) is induced by halogenated and polycyclic aromatic hydrocarbons following activation of the aryl hydrocarbon receptor (AhR). Protein kinase C (PKC) has been implicated in the regulation of this response. In tissue culture, induction of PKC activity with phorbol esters synergizes the actions of TCDD-induced CYP1A1, while PKC inhibitors block induction of CYP1A1 by TCDD. Here, the actions of specific PKC inhibitors on CYP1A1 induction were examined using a HepG2 human cell line (TV101L) that carries a stably integrated firefly luciferase gene under control of the human CYP1A1 promoter (-1612/+293). TV101 cells were treated with TCDD and either the kinase inhibitor staurosporine or one of the PKC inhibitors GF109203X, G?6983, or G?6976. Aryl hydrocarbon receptor-dependent activation of CYP1A1-luciferase and cellular PKC activity were measured. TCDD treatment induced CYP1A1-luciferase activity in an AhR-dependent manner, as determined by binding of nuclear AhR to xenobiotic response elements (XREs). Dose-dependent inhibition of PKC activity by staurosporine was concordant with inhibition of TCDD-induced CYP1A1-luciferase activity. However, the PKC inhibitors GF109203X, G?6983, and G?6976 blocked PKC activity at concentrations independent of those necessary to block TCDD induction of CYP1A1-luciferase activity. For all inhibitors, reduction in CYP1A1-luciferase activity was independent of AhR activation, as determined by electrophoretic mobility shift analysis of TCDD-activated nuclear AhR. The specific PKC inhibitors did not significantly alter cytosolic or nuclear levels of AhR protein, whether alone or in combination with TCDD. These results suggested that PKC was not the sole factor responsible for regulation of CYP1A1.  相似文献   

12.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an extremely potentenvironmental contaminant that produces a wide range of adversebiological effects, including the induction of cytochrome P4501A1(CYP1A1) that may enhance the toxic effects of TCDD. Severalstudies indicated that concurrent supplementation of vitaminA could reduce the toxicity, and potentially inhibit CYP1A1activity (measured as ethoxyresorufin-O-deethylase [EROD] activity).In the present study, we investigated the in vivo effects ofvitamin A on EROD activities and the expression of CYP1A1 inthe liver of TCDD-treated mice. In Experiment I, the mice weregiven a single oral dose of 40 µg TCDD/kg body weightwith or without the continuous administration of 2500 IU vitaminA/kg body weight/day, and were killed on day 1, 3, 7, 14, or28. In Experiment II, the mice were given daily an oral doseof 0.1 µg TCDD/kg body weight with or without supplementof 2000 IU vitamin A/kg body weight, and were killed on day14, 28, or 42. In both experiments, TCDD caused liver damageand increase in relative liver weights, augmented the EROD activitiesand CYP1A1 expression, and increased the aryl hydrocarbon receptor(AhR) mRNA expression, but did not alter the AhR nuclear translocator(ARNT) mRNA expression. CYP1A1 mRNA expression and AhR mRNAexpression showed a similar time course. The liver damage inTCDD + vitamin A–treated mice was less severe than thatin TCDD-treated mice. EROD activities, CYP1A1 expression, andAhR mRNA expression in vitamin A + TCDD–treated mice werelower than those in TCDD-treated mice, indicating that supplementationof vitamin A might attenuate the liver damage caused by TCDD.  相似文献   

13.
The aryl hydrocarbon receptor (AhR), when activated by exogenous ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), regulates expression of several phase I and phase II enzymes and is also involved in the regulation of cell proliferation. Several studies suggest that endogenous AhR ligand(s) may exist. One putative endogenous ligand is indirubin, which was recently identified in human urine and bovine serum. We determined the effect of indirubin in MCF-7 breast cancer cells on induction of the activities of cytochromes P450 (CYP) 1A1 and 1B1, as measured by estradiol and ethoxyresorufin metabolism, and on induction of the CYP1A1 and CYP1B1 mRNAs. With 4-hr exposure, the effects of indirubin and TCDD at 10nM on CYP activity were comparable, but the effects of indirubin, unlike those of TCDD, were transitory. Indirubin-induced ethoxyresorufin-O-deethylase activity was maximal by 6-9 hr post-exposure and had disappeared by 24 hr, whereas TCDD-induced activities remained elevated for at least 72 hr. The effects of indirubin on CYP mRNA induction were maximal at 3 hr. Indirubin was metabolized by microsomes containing cDNA-expressed human CYP1A1 or CYP1B1. The potency of indirubin was comparable to that of TCDD in a CYP1B1-promoter-driven luciferase assay, when MCF-7 cells were co-exposed to the AhR ligands together with the CYP inhibitor, ellipticine. Thus, if indirubin is an endogenous AhR ligand, then AhR-mediated signaling by indirubin is likely to be transient and tightly controlled by the ability of indirubin to induce CYP1A1 and CYP1B1, and hence its own metabolism.  相似文献   

14.
Reported herein are semi-empirical calculations of the molecular geometry of TCDD, TCPT, TCPT-sulfoxide (TCPT-O), TCPT-sulfone (TCPT-O(2)), N-methyl-TCPT (Me-TCPT), N-methyl-TCPT-sulfoxide (Me-TCPT-O), and N-methyl-TCPT-sulfone (Me-TCPT-O(2)), the characterization of their AhR binding affinity in rat hepatic cytosol, and their ability to induce EROD activity in a rat hepatoma cell line in vitro. Semi-empirical calculations yielded detailed information about the stereochemistry and the preferred conformation of each of these compounds. These results in combination with observations reported in this paper were used to determine structure-activity relationships. In vitro displacement of (3)H-TCDD was measured by increasing concentrations of the respective ligands. This assay revealed a strong binding affinity of TCPT to the AhR with a K(i) value of 1.08 nM. TCDD had a K(i) value of 0.54 nM. The affinity of TCPT derivatives for the AhR decreased with increasing degree of oxidation. Moreover, N-methylation further lowered the affinity, so that the N-methyl sulfone derivative of TCPT displayed the highest K(i) at approximately 1200 nM (=460.4 ng/ml). A corresponding trend was observed regarding the potency of TCPT and derivatives to induce EROD activity in vitro. However, the potencies were considerably lower than that of TCDD. Enzyme induction was measured in a rat hepatoma cell line H4IIEC/T3 by quantification of ethoxyresorufin-O-deethylase (EROD) activity. Induction was measured at 12, 24, 48 and 72 h to determine time dependence. Sulfoxidated and N-methylated phenothiazines displayed a lower potency than their respective parent compounds. TCPT and all derivatives induced enzyme activity at an efficacy similar to TCDD at all time points measured. The reported findings clearly separate the induction of EROD activity by TCPT and derivatives from their binding affinities to the AhR. In contrast, a direct correlation between the two is generally assumed in drug development, leading to - in our view - unwarranted termination of drug candidates. Therefore, a lack of such a correlation for TCPT and derivatives in fact supports their further development as possible drug leads.  相似文献   

15.
16.
17.
18.
19.
20.
Dioxins are known to cause several human cancers through activation of the aryl hydrocarbon receptor (AhR). Harmaline and harmalol are dihydro-β-carboline compounds present in several medicinal plants such as Peganum harmala. We have previously demonstrated the ability of P. harmala extract to inhibit TCDD-mediated induction of Cyp1a1 in murine hepatoma Hepa 1c1c7 cells. Therefore, the aim of this study is to examine the effect of harmaline and its main metabolite, harmalol, on dioxin-mediated induction of CYP1A1 in human hepatoma HepG2 cells. Our results showed that harmaline and harmalol at concentrations of (0.5-12.5μM) significantly inhibited the dioxin-induced CYP1A1 at mRNA, protein and activity levels in a concentration-dependent manner. The role of AhR was determined by the inhibition of the TCDD-mediated induction of AhR-dependent luciferase activity and the AhR/ARNT/XRE formation by both harmaline and harmalol. In addition, harmaline significantly displaced [(3)H]TCDD in the competitive ligand binding assay. At posttranslational level, both harmaline and harmalol decreased the protein stability of CYP1A1, suggesting that posttranslational modifications are involved. Moreover, the posttranslational modifications of harmaline and harmalol involve ubiquitin-proteasomal pathway and direct inhibitory effects of both compounds on CYP1A1 enzyme. These data suggest that harmaline and harmalol are promising agents for preventing dioxin-mediated effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号