首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pharmacological activation of AMP activated kinase (AMPK) by metformin has proven to be a beneficial therapeutic approach for the treatment of type II diabetes. Despite improved glucose regulation achieved by administration of small molecule activators of AMPK, the potential negative impact of enhanced AMPK activity on insulin secretion by the pancreatic beta cell is an important consideration. In this review, we discuss our current understanding of the role of AMPK in central functions of the pancreatic beta cell, including glucose-stimulated insulin secretion (GSIS), proliferation, and survival. In addition we discuss the controversy surrounding the role of AMPK in insulin secretion, underscoring the merits and caveats of methods used to date.  相似文献   

2.
Aims/hypothesis The aim of this study was to determine the role of fatty acid signalling in islet beta cell compensation for insulin resistance in the Zucker fatty fa/fa (ZF) rat, a genetic model of severe obesity, hyperlipidaemia and insulin resistance that does not develop diabetes.Materials and methods NEFA augmentation of insulin secretion and fatty acid metabolism were studied in isolated islets from ZF and Zucker lean (ZL) control rats.Results Exogenous palmitate markedly potentiated glucose-stimulated insulin secretion (GSIS) in ZF islets, allowing robust secretion at physiological glucose levels (5–8 mmol/l). Exogenous palmitate also synergised with glucagon-like peptide-1 and the cyclic AMP-raising agent forskolin to enhance GSIS in ZF islets only. In assessing islet fatty acid metabolism, we found increased glucose-responsive palmitate esterification and lipolysis processes in ZF islets, suggestive of enhanced triglyceride–fatty acid cycling. Interruption of glucose-stimulated lipolysis by the lipase inhibitor Orlistat (tetrahydrolipstatin) blunted palmitate-augmented GSIS in ZF islets. Fatty acid oxidation was also higher at intermediate glucose levels in ZF islets and steatotic triglyceride accumulation was absent.Conclusions/interpretation The results highlight the potential importance of NEFA and glucoincretin enhancement of insulin secretion in beta cell compensation for insulin resistance. We propose that coordinated glucose-responsive fatty acid esterification and lipolysis processes, suggestive of triglyceride–fatty acid cycling, play a role in the coupling mechanisms of glucose-induced insulin secretion as well as in beta cell compensation and the hypersecretion of insulin in obesity. Electronic supplementary material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

3.
One of the main features of obesity is hyperinsulinemia, which is related to insulin oversecretion. Glucose is by far the major physiological stimulator of insulin secretion. Glucose promotes an increase in the ATP/ADP ratio, which inactivates ATP-sensitive K+ channels (K+ ATP) and induces beta cell depolarization with consequent calcium influx. Increased intracellular calcium concentration triggers insulin exocytosis. K+ ATP channel function is important for K+ ATP channel-dependent pathways involved in glucose-stimulated insulin secretion (GSIS). However, K+ ATP channel-independent pathway has been identified and it has been found that this pathway sustains GSIS. Both pathways are critical to better GSIS control. GSIS was studied in pancreatic islets from hyperinsulinemic adult obese rats obtained by monosodium l-glutamate (MSG) neonatal treatment. Islets from MSG-obese rats were more glucose responsive than control ones. Diazoxide, a drug which maintains the K+ ATP channels open without interfering with cell metabolism, blocked GSIS in islets from both groups. High extracellular potassium concentration plus diaz-oxide was used to study an alternative to the K+ ATP channel pathway; in these conditions islets from MSG-obese rats did not respond, while islets from control animals showed enhanced GSIS. Results indicate that MSG-obese rats oversecreted insulin, even though the K+ ATP channel-independent pathway is impaired in their beta cells.  相似文献   

4.
《Islets》2013,5(3)
Mathematical modeling of the electrical activity of the pancreatic β-cell has been extremely important for understanding the cellular mechanisms involved in glucose-stimulated insulin secretion. Several models have been proposed over the last 30 y, growing in complexity as experimental evidence of the cellular mechanisms involved has become available. Almost all the models have been developed based on experimental data from rodents. However, given the many important differences between species, models of human β-cells have recently been developed. This review summarizes how modeling of β-cells has evolved, highlighting the proposed physiological mechanisms underlying β-cell electrical activity.  相似文献   

5.
Mathematical modeling of the electrical activity of the pancreatic β-cell has been extremely important for understanding the cellular mechanisms involved in glucose-stimulated insulin secretion. Several models have been proposed over the last 30 y, growing in complexity as experimental evidence of the cellular mechanisms involved has become available. Almost all the models have been developed based on experimental data from rodents. However, given the many important differences between species, models of human β-cells have recently been developed. This review summarizes how modeling of β-cells has evolved, highlighting the proposed physiological mechanisms underlying β-cell electrical activity.  相似文献   

6.

Aims/hypothesis

Glucose-stimulated insulin secretion (GSIS) from pancreatic beta cells is regulated by paracrine factors, the identity and mechanisms of action of which are incompletely understood. Activins are expressed in pancreatic islets and have been implicated in the regulation of GSIS. Activins A and B signal through a common set of intracellular components, but it is unclear whether they display similar or distinct functions in glucose homeostasis.

Methods

We examined glucose homeostatic responses in mice lacking activin B and in pancreatic islets derived from these mutants. We compared the ability of activins A and B to regulate downstream signalling, ATP production and GSIS in islets and beta cells.

Results

Mice lacking activin B displayed elevated serum insulin levels and GSIS. Injection of a soluble activin B antagonist phenocopied these changes in wild-type mice. Isolated pancreatic islets from mutant mice showed enhanced GSIS, which could be rescued by exogenous activin B. Activin B negatively regulated GSIS and ATP production in wild-type islets, while activin A displayed the opposite effects. The downstream mediator Smad3 responded preferentially to activin B in pancreatic islets and beta cells, while Smad2 showed a preference for activin A, indicating distinct signalling effects of the two activins. In line with this, overexpression of Smad3, but not Smad2, decreased GSIS in pancreatic islets.

Conclusions/interpretation

These results reveal a tug-of-war between activin ligands in the regulation of insulin secretion by beta cells, and suggest that manipulation of activin signalling could be a useful strategy for the control of glucose homeostasis in diabetes and metabolic disease.  相似文献   

7.

Aims/hypothesis

Adaptor protein, phosphotyrosine interaction, pleckstrin homology domain and leucine zipper containing 1 (APPL1) is an adapter protein that positively mediates adiponectin signalling. Deficiency of APPL1 in the target tissues of insulin induces insulin resistance. We therefore aimed, in the present study, to determine its role in regulating pancreatic beta cell function.

Methods

A hyperglycaemic clamp test was performed to determine insulin secretion in APPL1 knockout (KO) mice. Glucose- and adiponectin-induced insulin release was measured in islets from APPL1 KO mice or INS-1(832/13) cells with either APPL1 knockdown or overproduction. RT-PCR and western blotting were conducted to analyse gene expression and protein abundance. Oxygen consumption rate (OCR), ATP production and mitochondrial membrane potential were assayed to evaluate mitochondrial function.

Results

APPL1 is highly expressed in pancreatic islets, but its levels are decreased in mice fed a high-fat diet and db/db mice compared with controls. Deletion of the Appl1 gene leads to impairment of both the first and second phases of insulin secretion during hyperglycaemic clamp tests. In addition, glucose-stimulated insulin secretion (GSIS) is significantly decreased in islets from APPL1 KO mice. Conversely, overproduction of APPL1 leads to an increase in GSIS in beta cells. In addition, expression levels of several genes involved in insulin production, mitochondrial biogenesis and mitochondrial OCR, ATP production and mitochondrial membrane potential are reduced significantly in APPL1-knockdown beta cells. Moreover, suppression or overexproduction of APPL1 inhibits or stimulates adiponectin-potentiated GSIS in beta cells, respectively.

Conclusions/interpretation

Our study demonstrates the roles of APPL1 in regulating GSIS and mitochondrial function in pancreatic beta cells, which implicates APPL1 as a therapeutic target in the treatment of type 2 diabetes.  相似文献   

8.
Roma LP  Pascal SM  Duprez J  Jonas JC 《Diabetologia》2012,55(8):2226-2237

Aims/hypothesis  

Pancreatic beta cells chronically exposed to low glucose concentrations show signs of oxidative stress, loss of glucose-stimulated insulin secretion (GSIS) and increased apoptosis. Our aim was to confirm the role of mitochondrial oxidative stress in rat islet cell apoptosis under these culture conditions and to evaluate whether its reduction similarly improves survival and GSIS.  相似文献   

9.
研究曲格列酮对胰岛β细胞(MIN6细胞株)胰岛素分泌的影响,并探讨其机制.10μmol/L曲格列酮短期抑制大鼠胰岛和MIN6细胞的葡萄糖刺激的胰岛素分泌(GSIS,P<0.01),增加AMP活化的蛋白激酶(AMPK)、乙酰辅酶A羧化酶(ACC)的磷酸化水平(均P<0.01),而AMPK抑制剂复合物C可使其AMPK、ACC的磷酸化水平以及胰岛素分泌完全恢复.  相似文献   

10.
Xiao C  Giacca A  Carpentier A  Lewis GF 《Diabetologia》2006,49(6):1371-1379
Aims/hypothesis Prolonged elevation of plasma specific fatty acids may exert differential effects on glucose-stimulated insulin secretion (GSIS), insulin sensitivity and clearance.Subjects and methods We examined the effect of oral ingestion, at regular intervals for 24 h, of an emulsion containing either predominantly monounsaturated (MUFA), polyunsaturated (PUFA) or saturated (SFA) fat or water (control) on GSIS, insulin sensitivity and insulin clearance in seven overweight or obese, non-diabetic humans. Four studies were conducted in each individual in random order, 4–6 weeks apart. Twenty-four hours after initiation of oral ingestion, subjects underwent a 2 h, 20 mmol/l hyperglycaemic clamp to assess GSIS, insulin sensitivity and insulin clearance.Results Following oral ingestion of any of the three fat emulsions over 24 h, plasma NEFAs were elevated by ∼1.5- to 2-fold over the basal level. Ingestion of any of the three fat emulsions resulted in reduction in insulin clearance, and SFA ingestion reduced insulin sensitivity. PUFA ingestion was associated with an absolute reduction in GSIS, whereas insulin secretion failed to compensate for insulin resistance in subjects who ingested SFA.Conclusions/interpretation Oral ingestion of fats with differing degrees of saturation resulted in different effects on insulin secretion and action. PUFA ingestion resulted in an absolute reduction in insulin secretion and SFA ingestion induced insulin resistance. Failure of insulin secretion to compensate for insulin resistance implies impaired beta cell function in the SFA study.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

11.

Aims/hypothesis  

Activation of the G protein-coupled receptor (GPR)40 by long-chain fatty acids potentiates glucose-stimulated insulin secretion (GSIS) from pancreatic beta cells, and GPR40 agonists are in clinical development for type 2 diabetes therapy. GPR40 couples to the G protein subunit Gαq/11 but the signalling cascade activated downstream is unknown. This study aimed to determine the mechanisms of GPR40-dependent potentiation of GSIS by fatty acids.  相似文献   

12.

Aims/hypothesis

Lipolytic breakdown of endogenous lipid pools in pancreatic beta cells contributes to glucose-stimulated insulin secretion (GSIS) and is thought to be mediated by acute activation of neutral lipases in the amplification pathway. Recently it has been shown in other cell types that endogenous lipid can be metabolised by autophagy, and this lipophagy is catalysed by lysosomal acid lipase (LAL). This study aimed to elucidate a role for LAL and lipophagy in pancreatic beta cells.

Methods

We employed pharmacological and/or genetic inhibition of autophagy and LAL in MIN6 cells and primary islets. Insulin secretion following inhibition was measured using RIA. Lipid accumulation was assessed by MS and confocal microscopy (to visualise lipid droplets) and autophagic flux was analysed by western blot.

Results

Insulin secretion was increased following chronic (≥8 h) inhibition of LAL. This was more pronounced with glucose than with non-nutrient stimuli and was accompanied by augmentation of neutral lipid species. Similarly, following inhibition of autophagy in MIN6 cells, the number of lipid droplets was increased and GSIS was potentiated. Inhibition of LAL or autophagy in primary islets also increased insulin secretion. This augmentation of GSIS following LAL or autophagy inhibition was dependent on the acute activation of neutral lipases.

Conclusions/interpretation

Our data suggest that lysosomal lipid degradation, using LAL and potentially lipophagy, contributes to neutral lipid turnover in beta cells. It also serves as a constitutive negative regulator of GSIS by depletion of substrate for the non-lysosomal neutral lipases that are activated acutely by glucose.  相似文献   

13.
Hyperinsulinemia, loss of glucose-stimulated insulin secretion (GSIS), and peripheral insulin resistance coexist in non-insulin-dependent diabetes mellitus (NIDDM). Because free fatty acids (FFA) can induce these same abnormalities, we studied their role in the pathogenesis of the NIDDM of obese Zucker diabetic fatty (ZDF-drt) rats from 5 weeks of age (before the onset of hyperglycemia) until 14 weeks. Two weeks prior to hyperglycemia, plasma FFA began to rise progressively, averaging 1.9 +/- 0.06 mM at the onset of hyperglycemia (P < 0.001 vs. controls). At this time GSIS was absent and beta-cell GLUT-2 glucose transporter was decreased. The triacylglycerol content of prediabetic islets rose to 10 times that of controls and was correlated with plasma FFA (r = 0.825; P < 0.001), which, in turn, was correlated with the plasma glucose concentration (r = 0.873; P < 0.001). Reduction of hyperlipacidemia to 1.3 +/- 0.07 mM by pair feeding with lean littermates reduced all beta-cell abnormalities and prevented hyperglycemia. Normal rat islets that had been cultured for 7 days in medium containing 2 mM FFA exhibited increased basal insulin secretion at 3 mM glucose, and first-phase GSIS was reduced by 68%; in prediabetic islets, first-phase GSIS was reduced by 69% by FFA. The results suggest a role for hyperlipacidemia in the pathogenesis of NIDDM; resistance to insulin-mediated antilipolysis is invoked to explain the high FFA despite hyperinsulinemia, and sensitivity of beta cells to hyperlipacedemia is invoked to explain the FFA-induced loss of GSIS.  相似文献   

14.
《Islets》2013,5(5):213-223
Free fatty acids regulate insulin secretion through metabolic and intracellular signaling mechanisms such as induction of malonyl-CoA/long-chain CoA pathway, production of lipids, GPRs (G protein-coupled receptors) activation and the modulation of calcium currents. Fatty acids (FA) are also important inducers of ROS (reactive oxygen species) production in β-cells. Production of ROS for short periods is associated with an increase in GSIS (glucose-stimulated insulin secretion), but excessive or sustained production of ROS is negatively correlated with the insulin secretory process. Several mechanisms for FA modulation of ROS production by pancreatic β-cells have been proposed, such as the control of mitochondrial complexes and electron transport, induction of uncoupling proteins, NADPH oxidase activation, interaction with the renin-angiotensin system, and modulation of the antioxidant defense system. The major sites of superoxide production within mitochondria derive from complexes I and III. The amphiphilic nature of FA favors their incorporation into mitochondrial membranes, altering the membrane fluidity and facilitating the electron leak. The extra-mitochondrial ROS production induced by FA through the NADPH oxidase complex is also an important source of these species in β-cells.  相似文献   

15.
Free fatty acids regulate insulin secretion through metabolic and intracellular signaling mechanisms such as induction of malonyl-CoA/long-chain CoA pathway, production of lipids, GPRs (G protein-coupled receptors) activation and the modulation of calcium currents. Fatty acids (FA) are also important inducers of ROS (reactive oxygen species) production in β-cells. Production of ROS for short periods is associated with an increase in GSIS (glucose-stimulated insulin secretion), but excessive or sustained production of ROS is negatively correlated with the insulin secretory process. Several mechanisms for FA modulation of ROS production by pancreatic β-cells have been proposed, such as the control of mitochondrial complexes and electron transport, induction of uncoupling proteins, NADPH oxidase activation, interaction with the renin-angiotensin system, and modulation of the antioxidant defense system. The major sites of superoxide production within mitochondria derive from complexes I and III. The amphiphilic nature of FA favors their incorporation into mitochondrial membranes, altering the membrane fluidity and facilitating the electron leak. The extra-mitochondrial ROS production induced by FA through the NADPH oxidase complex is also an important source of these species in β-cells.  相似文献   

16.
17.

Aims/hypothesis

The molecular basis of the exocytosis of secretory insulin-containing granules (SGs) during biphasic glucose-stimulated insulin secretion (GSIS) from pancreatic beta cells remains unclear. Syntaxin (SYN)-1A and SYN-4 have been shown to mediate insulin exocytosis. The insulin-secretory function of SYN-3, which is particularly abundant in SGs, is unclear.

Methods

Mouse pancreatic islets and INS-1 cells were treated with adenovirus carrying Syn-3 (also known as Stx3) or small interfering RNA targeting Syn-3 in order to examine insulin secretion by radioimmunoassay. The localisation and distribution of insulin granules were examined by confocal and electron microscopy. Dynamic single-granule fusion events were assessed using total internal reflection fluorescence microscopy (TIRFM).

Results

Depletion of endogenous SYN-3 inhibited insulin release. TIRFM showed no change in the number or fusion competence of previously docked SGs but, instead, a marked reduction in the recruitment of newcomer SGs and their subsequent exocytotic fusion during biphasic GSIS. Conversely, overexpression of Syn-3 enhanced both phases of GSIS, owing to the increase in newcomer SGs and, remarkably, to increased SG–SG fusion, which was confirmed by electron microscopy.

Conclusions/interpretation

In insulin secretion, SYN-3 plays a role in the mediation of newcomer SG exocytosis and SG–SG fusion that contributes to biphasic GSIS.  相似文献   

18.
Members of the TGFβ superfamily, including activins and TGFβ, modulate glucose-stimulated insulin secretion (GSIS) in vitro using rat islets while genetic manipulations that reduce TGFβ superfamily signaling in vivo in mice produced hypoplastic islets and/or hyperglycemia. Moreover, deletion of Fstl3, an antagonist of activin and myostatin, resulted in enlarged islets and β-cell hyperplasia. These studies suggest that endogenous TGFβ superfamily ligands regulate β-cell generation and/or function. To test this hypothesis, we examined endogenous TGFβ ligand synthesis and action in isolated rat and mouse islets. We found that activin A, TGFβ1, and myostatin treatment enhanced rat islet GSIS but none of the ligands tested enhanced GSIS in mouse islets. However, follistatin inhibited GSIS, consistent with a role for endogenous TGFβ superfamily ligands in regulating insulin secretion. Endogenous expression of TGF∆ superfamily members was different in rat and mouse islets with myostatin being highly expressed in mouse islets and not detectable in rats. These results indicate that TGFβ superfamily members directly regulate islet function in a species-specific manner while the ligands produced by islets differ between mice and rats. The lack of in vitro actions of ligands on mouse islets may be mechanical or result from species-specific actions of these ligands.  相似文献   

19.
Aims/hypothesis  The Zucker fatty (ZF) rat subjected to 60% pancreatectomy (Px) develops moderate diabetes by 3 weeks. We determined whether a progressive fall in beta cell mass and/or beta cell dysfunction contribute to beta cell failure in this type 2 diabetes model. Methods  Partial (60%) or sham Px was performed in ZF and Zucker lean (ZL) rats. At 3 weeks post-surgery, beta cell mass and proliferation, proinsulin biosynthesis, pancreatic insulin content, insulin secretion, and islet glucose and lipid metabolism were measured. Results  ZL-Px rats maintained normal glycaemia and glucose-stimulated insulin secretion (GSIS) despite incomplete recovery of beta cell mass possibly due to compensatory enhanced islet glucose metabolism and lipolysis. ZF-Px rats developed moderate hyperglycaemia (14 mmol/l), hypertriacylglycerolaemia and relative hypoinsulinaemia. Despite beta cell mass recovery and normal arginine-induced insulin secretion, GSIS and pancreatic insulin content were profoundly lowered in ZF-Px rats. Proinsulin biosynthesis was not reduced. Compensatory increases in islet glucose metabolism above those observed in ZF-Sham rats were not seen in ZF-Px rats. Triacylglycerol content was not increased in ZF-Px islets, possibly due to lipodetoxification by enhanced lipolysis and fatty acid oxidation. Fatty acid accumulation into monoacylglycerol and diacylglycerol was increased in ZF-Px islets together with a 4.5-fold elevation in stearoyl-CoA desaturase mRNA expression. Conclusions/interpretation  Falling beta cell mass, reduced proinsulin biosynthesis and islet steatosis are not implicated in early beta cell failure and glucolipotoxicity in ZF-Px rats. Rather, severe beta cell dysfunction with a specific reduction in GSIS and marked depletion of beta cell insulin stores with altered lipid partitioning underlie beta cell failure in this animal model of type 2 diabetes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorised users. M. Prentki and J. Leahy contributed equally to this work.  相似文献   

20.
Aims/hypothesis Hyperthyroidism modifies lipid dynamics (increased oxidation), impairs insulin action and can suppress insulin secretion. We therefore examined the impact of hyperthyroidism on the relationship between glucose-stimulated insulin secretion (GSIS) and insulin action, using late pregnancy as a model of physiological insulin resistance that is associated with compensatory insulin hypersecretion to maintain glucose tolerance. Our aim was to examine whether hyperthyroidism compromises the regulation of insulin secretion and the ability of insulin to modulate circulating lipid concentrations in late pregnancy.Materials and methods Hyperthyroidism was induced by tri-iodothyronine (T3) administration from day 17 to 19 of pregnancy. GSIS was assessed during an IVGTT and during hyperglycaemic clamps in vivo and in vitro, using step-up and -down islet perifusions.Results Hyperthyroidism in pregnancy elevated the glucose threshold for GSIS and impaired GSIS at low and high glucose concentrations in islet perifusions. In the intact animal, insulin secretion (after bolus glucose) was more rapidly curtailed following removal of the glucose stimulus to secretion. In contrast, GSIS was maintained during protracted hyperglycaemia (hyperglycaemic clamps) in the hyperthyroid pregnant state in vivo.Conclusions/interpretation Hyperthyroidism in vivo during late pregnancy blunts GSIS in subsequently isolated and perifused islets at low and high glucose concentrations. It also adversely affects GSIS under conditions of an acute glucose challenge in vivo. In contrast, GSIS is maintained during sustained hyperglycaemia in vivo, suggesting that in vivo factors can rescue GSIS. The ability of insulin to suppress systemic lipid levels during hyperglycaemic clamps was impaired. We therefore suggest that higher circulating lipids may preserve GSIS under conditions of sustained hyperglycaemia in the hyperthyroid pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号