首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction between CD40 ligand (CD40L) and CD40 on antigen-presenting cells is essential for the initiation of antigen-specific T-cell responses. In order to clarify whether the expression of CD40L in tumor cells might be useful as a systemic therapy against bladder cancer, we investigated the antitumor immunity induced by CD40L in the mouse bladder cancer cell line MBT2. MBT2 was transduced by the retroviral vector expressing CD40L (MBT2-CD40L). Mouse bone marrow-derived dendritic cells cocultured with MBT2-CD40L cells produced eight times more IL-12 than those cocultured with parental MBT2 cells. In animal studies, subcutaneously inoculated MBT2-CD40L cells were rejected promptly. The vaccination of MBT2-CD40L cells induced antitumor immunity against parental tumors at a distant site. However, the antitumor effect of MBT2-CD40L inoculation was insufficient against pre-existing tumors. In the vaccination model, antibody ablation studies revealed that CD4(+) T cells were required for antitumor immunity, and tumor-specific cytotoxicity of sera was demonstrated. These data demonstrated that the antitumor immunity induced by CD40L was effective in the vaccination model and suggested that immunogene therapy using CD40L may be a new strategy of systemic therapy against bladder cancer.  相似文献   

2.
Yi T  Wei YQ  Tian L  Zhao X  Li J  Deng HX  Wen YJ  Zou CH  Tan GH  Kan B  Su JM  Jiang Y  Mao YQ  Chen P  Wang YS 《Cancer gene therapy》2007,14(2):158-164
Matrix metalloproteinase-2 (MMP-2) has been used as a target for cancer immunotherapy. The activation of immunization by breaking immune tolerance to self-MMP-2 may be one of the promising approaches for the treatment of MMP-2-positive tumors. In this study, we constructed the xenogeneic tumor cell vaccine c-MMP-2 by transfecting CT26 and LLC cells with chicken MMP-2 cDNA constructs. MMP-2-specific autoantibodies in sera and tumor cells were found in mice immunized with c-MMP-2. Protection against tumor growth was evaluated in respect of the relative contributions of autoantibodies, CD4+, and CD8+ T cells. Treatment with this vaccine (c-MMP-2) also prolonged the survival time of mice bearing cancer. The specific cytotoxic T-cell responses suggested that the treatment increased CD8+ T-cell activity. The antitumor activity of c-MMP-2 was abrogated by in vivo depletion of CD4+ and CD8+ T-lymphocytes and improved by adoptive transfer of CD4+ and CD8+ T-lymphocytes from the mice treated with c-MMP-2. An alternative DNA vaccination strategy for cancer therapy was identified in this study by eliciting humoral and cellular immunoresponse with a crossreacting transfectant.  相似文献   

3.
PURPOSE: Plasmid DNAs encoding cytokines enhance immune responses to vaccination in models of infectious diseases and cancer. We compared DNA adjuvants for their ability to enhance immunity against a poorly immunogenic self-antigen expressed by cancer. EXPERIMENTAL DESIGN: DNAs encoding cytokines that affect T cells [interleukin (IL)-2, IL-12, IL-15, IL-18, IL-21, and the chemokine CCL21] and antigen-presenting cells [granulocyte macrophage colony-stimulating factor (GM-CSF)] were compared in mouse models as adjuvants to enhance CD8+ T-cell responses and tumor immunity. A DNA vaccine against a self-antigen, gp100, expressed by melanoma was used in combination with DNA encoding cytokines and cytokines fused to the Fc domain of mouse IgG1 (Ig). RESULTS: We found that (a) cytokine DNAs generally increased CD8+ T-cell responses against gp100; (b) ligation to Fc domains further enhanced T-cell responses; (c) adjuvant effects were sensitive to timing of DNA injection; (d) the most efficacious individual adjuvants for improving tumor-free survival were IL-12/Ig, IL-15/Ig, IL-21/Ig, GM-CSF/Ig, and CCL21; and (e) combinations of IL-2/Ig+IL-12/Ig, IL-2/Ig+IL-15/Ig, IL-12/Ig+IL-15/Ig, and IL-12/Ig+IL-21/Ig were most active; and (f) increased adjuvanticity of cytokine/Ig fusion DNAs was not related to higher tissue levels or greater stability. CONCLUSIONS: These observations support the potential of cytokine DNA adjuvants for immunization against self-antigens expressed by cancer, the importance of timing, and the enhancement of immune responses by Fc domains through mechanisms unrelated to increased half-life.  相似文献   

4.
Adoptive T-cell transfer has achieved significant clinical success in advanced melanoma. However, therapeutic efficacy is limited by poor T-cell survival after adoptive transfer and by inefficient trafficking to tumor sites. Here, we report that intratumoral expression of the chemokine CCL21 enhances the efficacy of adoptive T-cell therapy in a mouse model of melanoma. Based on our novel observation that CCL21 is highly chemotactic for activated OT-1 T cells in vitro and down-regulates expression of CD62L, we hypothesized that tumor cell-mediated expression of this chemokine might recruit, and retain, adoptively transferred T cells to the sites of tumor growth. Mice bearing metastatic tumors stably transduced with CCL21 survived significantly longer following adoptive T-cell transfer than mice bearing non-CCL21-expressing tumors. However, although we could not detect increased trafficking of the adoptively transferred T cells to tumors, tumor-expressed CCL21 promoted the survival and cytotoxic activity of the adoptively transferred T cells and led to the priming of antitumor immunity following T-cell transfer. To translate these observations into a protocol of real clinical usefulness, we showed that adsorption of a retrovirus encoding CCL21 to OT-1 T cells before adoptive transfer increased the therapeutic efficacy of a subsequently administered dose of OT-1 T cells, resulting in cure of metastatic disease and the generation of immunologic memory in the majority of treated mice. These studies indicate a promising role for CCL21 in enhancing the therapeutic efficacy of adoptive T-cell therapy.  相似文献   

5.
In this study, using the carcinoembryonic antigen (CEA)-expressing C15 murine colon carcinoma system in syngeneic C57BL/6 mice, we have evaluated the efficacy of bone marrow-derived dendritic cells (DCs) pulsed with the murine anti-idiotype antibody 3H1 as a tumor vaccine. Anti-idiotype 3H1 mimics a distinct and specific epitope of CEA and can generate anti-CEA immunity in mice, rabbits, monkeys, and humans when used with a conventional immune adjuvant. Our goal was to determine whether the use of DC as direct antigen-presenting cells would improve the potency of 3H1 as vaccine. Bone marrow-DC pulsed with 3H1 and injected into na?ve mice induced both humoral and cellular anti-3H1, as well as anti-CEA immunity. Specific killing of C15 cells in in vitro antibody-dependent cellular cytotoxicity has been observed by immune sera. Immune-splenic lymphocytes when stimulated in vitro with 3H1 or CEA, showed increased proliferative CD4(+) Th1 type T-cell response and secreted significantly high levels of Th1 cytokines [IFN-gamma, interleukin (IL)-2] and low levels of Th2 cytokines (IL-4, IL-10). This vaccine also induced MHC class I antigen-restricted CD8(+) T-cell responses. The up-regulation of activation markers CD69 and CD25 on CD8(+) CTLs correlated with antigen-specific strong CTL responses in vitro. The immunity induced in mice resulted in a complete rejection of CEA-expressing C15 tumor cells in 100% of experimental mice, whereas no protection was observed when 3H1-pulsed DC-vaccinated mice were challenged with CEA-negative MC-38 cells. The tumor rejection in 3H1-pulsed DC-treated mice was associated with the induction of a memory response that helped those mice to survive a second challenge with a lethal dose of C15 cells.  相似文献   

6.
PURPOSE: HER2/neu is frequently overexpressed in breast cancer. In a mouse model, vaccination with HER2/neu DNA elicits antibodies that confer partial protection against tumor challenge. EXPERIMENTAL DESIGN: To enhance antitumor immunity, we fused cDNA encoding Flt-3 ligand (FL) to the rat HER2/neu extracellular domain (neu), generating a chimeric FLneu molecule. FLneu and neu DNA vaccines were compared for immunogenicity and their ability to protect mice from tumor challenge. RESULTS: The neu vaccine generated a HER2/neu-specific antibody response. In contrast, vaccination with FLneu induced CD8+ T cells specific for HER2/neu but a negligible anti-HER2/neu antibody response. The switch from an antibody-mediated to T cell-mediated response was due to different intracellular localization of neu and FLneu. Although the neu protein was secreted, the FLneu protein was retained inside the cell, co-localizing with the endoplasmic reticulum, facilitating processing and presentation to T cells. The neu and FLneu vaccines individually conferred only weak tumor immunity. However, efficient tumor rejection was seen when neu and FLneu were combined, inducing both strong anti-HER2/neu-specific antibody and T cell responses. Adoptive transfer of both immune CD8+ T cells and immune sera from immunized mice was required to confer tumor immunity in na?ve hosts. CONCLUSIONS: These results show that active induction of both humoral and cellular immunity to HER2/neu is required for efficient tumor protection, and that neither response alone is sufficient.  相似文献   

7.
BACKGROUND: The success of immunomodulatory cancer therapy is frequently hampered by the transient nature of the antitumor immune response. We have shown previously in a mouse model that interleukin 12 (IL-12) generates a strong natural killer (NK) cell-mediated antitumor response and reduces liver metastases induced by a colon carcinoma cell line. However, only a small percentage of the treated animals developed the cytotoxic T-lymphocytic response required for a long-term systemic antitumor immunity. 4-1BB is a co-stimulatory molecule expressed on the surface of activated T cells. Interaction of 4-1BB with its natural ligand (4-1BBL) has been shown to amplify T-cell (especially CD8+)-mediated immunity. In this study, we investigated the effects of adenovirus-mediated gene therapy delivering both IL-12 and 4-1BBL genes on mice with hepatic metastases induced by colon cancer cells. METHODS: Syngeneic BALB/c mice received intrahepatic injection of poorly immunogenic MCA26 colon cancer cells. Various combinations of replication-defective adenoviruses expressing IL-12 and 4-1BBL genes were injected into the established liver tumors. Changes in tumor size and animal survival were then monitored. All statistical tests were two-sided. RESULTS: The long-term survival rate of mice treated with the combination of IL-12 and 4-1BBL was significantly improved over that of animals in the control group (P =.0001). In vivo depletion of NK cells or CD8+ T cells completely abolished the long-term survival advantage of the IL-12 plus 4-1BBL-treated animals (P<.002). Moreover, the systemic immunity induced by this combination treatment protected these animals against a subcutaneous challenge with parental MCA26 cells. CONCLUSION: Adenovirus-mediated transfer of IL-12 and 4-1BBL genes directly into liver tumors resulted in tumor regression that required both NK and CD8+ T cells and generated a potent, long-lasting antitumor immunity.  相似文献   

8.
THEHUMORALANTITUMORRESPONSESINDUCEDBYIL4GENEMODIFIEDTUMORVACCINE1YuYizhi于益芝CaoXuetao2曹雪涛ZhangMinghui张明徽LeiHong雷虹TaoQun陶群Dep...  相似文献   

9.
Aarts WM  Schlom J  Hodge JW 《Cancer research》2002,62(20):5770-5777
Many antigens associated with human tumors are overexpressed in tumor cells as compared with normal tissues; these "self" tumor-associated antigens are also expressed during fetal development, and it is, thus, not surprising that they are either weakly immunogenic or functionally nonimmunogenic in the tumor-bearing host. In the studies reported here, we have used different vaccines and vaccine strategies in an attempt to develop antitumor immunity in a stringent animal model. The tumor antigen used was human carcinoembryonic antigen (CEA). The model used was CEA transgenic mice, in which the human CEA transgene is under the control of the endogenous CEA promoter; CEA is expressed in fetal tissues and normal gastrointestinal tissues, and CEA protein is found in sera. Previous studies have shown these CEA transgenic mice to be tolerant to the induction of CEA immunity using CEA protein in adjuvant as an immunogen. CEA-expressing tumor cells were implanted 14 days before vaccine therapy. The vaccines used were recombinant vaccinia virus containing the transgenes for CEA and three T-cell costimulatory molecules [B7-1, ICAM-1, and LFA-3, designated recombinant vaccinia (rV)-CEA/TRICOM], with each transgene under the control of individual poxvirus promoters, and a replication-defective avipox virus (fowlpox; rF) containing the same four transgenes (designated rF-CEA/TRICOM). The results demonstrate that (a) continued boosting with vaccine is required to maintain CEA-specific T-cell responses, and boosting with rF-CEA/TRICOM is superior to boosting with rF-CEA; (b) a diversified vaccination protocol consisting of primary vaccination with rV-CEA/TRICOM followed by boosting with rF-CEA/TRICOM is more efficacious than homogeneous vaccination with rF-CEA/TRICOM in the induction of both CEA-specific T-cell responses and antitumor activity; and (c) the use of cytokines, local granulocyte macrophage colony-stimulating factor (GM-CSF) and low-dose systemic interleukin 2, in combination with vaccine is essential in inducing antitumor activity, as compared with the use of cytokines alone, or the use of vaccines without cytokine. Both GM-CSF and interleukin 2 were shown to contribute to the induction of CEA-specific T-cell responses. These studies thus provide a "proof of concept" that potent vaccines and vaccine strategies, in combination with cytokines, may be essential to obtain the level of T-cell responses directed against a self-antigen that is necessary to achieve antitumor responses.  相似文献   

10.
Interleukin-21 (IL-21) is a cytokine with structural and sequence homology to IL-2 and IL-15 that has antitumor activity alone in mouse experimental tumor models and a tolerable safety profile in phase I trials in patients with metastatic melanoma and renal cell carcinoma. Several monoclonal antibodies (mAb) targeted at tumor-associated antigens also have improved antitumor activities in mice when used in combination with IL-21. Recently, we described a rational three antibody-based approach (triple mAb, TrimAb) to eradicating established mouse tumors that required the generation of tumor-reactive CD8(+) T cells and IFN-gamma. Herein, we show that sequentially combining TrimAb with recombinant IL-21 can significantly improve the antitumor activity of this combination against very advanced disease. These data further support the use of IL-21 in adjuvant settings where strong T cell-mediated immune responses to tumors can be generated.  相似文献   

11.
We have reported previously that s.c. immunization of rats with IL-4 transduced 9L gliosarcoma cells (9L-IL-4) induced a potent antitumor immunity against intracranial, parental 9L tumors. Subcutaneous implantation of 9L-IL-4 influenced the systemic humoral response, which was demonstrated by Th2-type isotype-switching and the induction of cellular immune responses, which played a critical role in the rejection of tumors. Serological analyses of recombinant cDNA expression libraries (SEREX), has recently emerged as a powerful method for serological identification of tumor-associated antigens (TAAs) and/or tumor rejection antigens (TRAs). Because IL-4 is known to activate B cells and to promote humoral responses, and inasmuch as induction of humoral responses by central nervous system tumors has been reported to be minimal, we investigated whether the induction of a potent humoral immune response against 9L TAAs or TRAs in rats immunized s.c. with 9L-IL4 could be demonstrated. Screening of 5 x 10(5) independent clones of 9L-expression cDNA library for the presence of reactive antibodies in the serum from a 91-IL-4 immunized rat led to the identification of three different TAAs. One 9L TAA (clone 29) was demonstrated to be calcyclin, a member of the S-100 family of calcium-binding proteins. The second 9L TAA (clone 37) was demonstrated to be the rat homologue of the J6B7 mouse immunomodulatory molecule. The third TAA (clones 158 and 171) was determined to be the rat homologue of the mouse Id-associated protein 1 (MIDA1), a DNA-binding, protein-associated protein. Northern blotting demonstrated that message for calcyclin was overexpressed in 9L cells. Message encoding MIDA1 was highly expressed in parental 9L cells and thymus and, to a lesser degree, in testis, suggesting that MIDA1 was comparable with the cancer/testis category of TAAs. Sera obtained from animals bearing 9L-IL-4 were found to have a higher a frequency and titer of antibodies to these antigens when compared with sera obtained from rats bearing sham-transduced 9L (9L-neo) cells. To determine whether immunization with these TAAs induced antitumor immunity, animals were immunized by intradermal injection with expression plasmids encoding calcyclin or MIDA1. Subsequent challenge of rats with parental 9L resulted in significant suppression of tumor growth in animals immunized with MIDA1, but not with calcyclin. These results indicate that MIDA1 is an effective 9L TRA and will be useful for the investigation of specific antitumor immunity in this glioma model. Furthermore, these results suggest that this approach, termed "cytokine-assisted SEREX (CAS)," may serve as an effective strategy for identification of TRAs for in animal-glioma models of cytokine gene therapy, and potentially in humans undergoing cytokine gene therapy protocols as well.  相似文献   

12.
Heat shock proteins (hsps) chaperone cytosolic peptides, forming complexes that stimulate antitumor immunity. Hsps facilitate signal 1 in the two-signal model of T-cell costimulation, whereas cell adhesion molecules such as B7.1 provide secondary (signal 2) costimulatory signals. B7.1 gene transfer into tumors in situ has been shown to eradicate small (<0.3 cm in diameter) tumors in mice, and induce systemic antitumor immunity, but is ineffective against larger tumors. We examine whether mammalian hsps, as facilitators of T-cell costimulation, also exhibit this ability, and whether simultaneously stimulating both signal 1 (hsp-facilitated antigen presentation) and signal 2 (B7.1-mediated costimulation) enhances antitumor immunity compared to that achieved with either monotherapy. Prophylactic vaccination of mice with an hsp preparation from an EL-4 lymphoma weakly retarded tumor growth, to the same extent as that achieved with a single EL-4-derived peptide (AQHPNAELL), previously shown to induce antitumor immunity establishing that a preparation of EL-4 hsp-peptide complexes has antitumor activity. Here we show that injection of rat hsp70.1 into mouse tumors in situ causes the complete eradication of tumors, and generates potent systemic antitumor immunity mediated by CD4+ and CD8+ T cells. Unexpectedly, simultaneous gene transfer of hsp70.1 and B7.1 compromised the efficacy of hsp-mediated tumor rejection--a problem which could be partially overcome by the timed delivery of hsp70.1 and B7.1. Thus, gene transfer of hsp70 into tumors can be employed to generate potent systemic antitumor immunity, but further consideration is required if this approach is to be successfully combined with immunotherapies employing other T-cell costimulators.  相似文献   

13.
14.
PURPOSE: The use of costimulatory molecules targeting distinct T-cell signaling pathways has provided a means for triggering and enhancing antitumor immunity; however, it is still not fully understood what types of costimulatory molecules are suitable for the combination in tumor therapy. Our purpose in this study is to establish an effective antitumor immune approach by using costimulatory molecule 4-1BBL in combination with soluble PD-1. EXPERIMENTAL DESIGN: The murine H22 hepatocarcinoma served as an ectopic tumor model. Local gene transfer was done by injection with naked plasmid p4-1BBL and/or psPD-1. The synergistic mechanism of dual-gene therapy was elucidated by detecting the change of gene expression of immunoregulatory factors in tumor microenvironment. The effects of immunotherapy were evaluated by testing the function of tumor-specific T cells, measuring tumor weight or volume, survival of mice, and H&E staining of tissues. RESULTS: 4-1BBL expressed by normal nonimmune cells effectively enhanced antitumor immune response but up-regulated PD-L1 and did not reduce IL-10 and transforming growth factor-beta (TGF-beta). sPD-1 synergized with 4-1BBL to establish efficient antitumor immune environment, including down-regulation of IL-10 and TGF-beta, further up-regulation of interleukin (IL)-2 and IFN-gamma, and higher CD8(+) T-cell infiltration. The combined treatment by 4-1BBL/sPD-1 eradicated tumors from mice with small amounts of preexistent tumor cells or tumors from approximately 60% of individuals with larger amounts of preexistent tumor cells. CONCLUSIONS: Our findings in this report imply a great potential of 4-1BBL in combination with sPD-1 in tumor therapeutics with the in vivo existent tumor cells as antigens.  相似文献   

15.
PURPOSE: The purpose of the present study was to evaluate granulocyte macrophage colony-stimulating factor (GM-CSF)-secreting tumor cell immunotherapy, which is known to stimulate a potent and long-lasting antigen-specific immune response in combination with lymphocyte activation gene-3 fusion protein (LAG-3Ig), which has been shown to act as an adjuvant for priming T helper type 1 and cytotoxic T-cell responses. EXPERIMENTAL DESIGN: Survival and immune monitoring studies were done in the B16 melanoma model. GM-CSF-secreting tumor cell immunotherapy was administered as a single s.c. injection and LAG-3Ig was administered s.c. at the immunotherapy site. RESULTS: The studies reported here show that combining LAG-3Ig with GM-CSF-secreting tumor cell immunotherapy prolonged the survival of tumor-bearing animals compared with animals treated with either therapy alone. Prolonged survival correlated with increased numbers of systemic IFN gamma-secreting CD8+ T cells and a significantly increased infiltration of activated effector CD8+ T cells into the tumor. Moreover, an increase in antigen-specific IgG1 humoral responses was detected in serum of animals injected with the combination therapy compared with animals injected with either therapy alone. CONCLUSION: LAG-3Ig combined with a GM-CSF-secreting tumor cell immunotherapy stimulated both cellular and humoral antitumor immune responses that correlated with prolonged survival in tumor-bearing animals.  相似文献   

16.
Neural stem cells (NSCs) are capable of tracking migrating glioma cells. To exploit this tropism to generate an antitumor T-cell response, particularly against disseminating tumor pockets, we inoculated intracranial glioma-bearing mice with interleukin 12 (IL-12) producing NSCs. Intratumoral therapy with IL-12-secreting NSCs prolonged survival compared to treatment with nonsecretory NSCs or saline. NSCs demonstrated strong tropism for disseminating glioma, and IL-12-secreting NSC therapy was associated with enhanced T-cell infiltration in tumor microsatellites and long-term antitumor immunity. These results indicate that the use of tumor tracking NSCs represents a potent new therapeutic modality for glioma.  相似文献   

17.
The newly characterized interleukin (IL)-21 plays a central role in the transition from innate immunity to adaptive immunity and shows substantial tumor regression in mice. IL-21 is now developed as a cancer immunotherapeutic drug, but conditions for efficacious therapy, and the conflicting immunostimulatory and immunoinhibitory influence of the cytokine, are yet to be defined. We studied the effects of IL-21 on tumor eradication in a mathematical model focusing on natural killer (NK) cell-mediated and CD8+ T-cell-mediated lysis of tumor cells. Model parameters were estimated using results in tumor-bearing mice treated with IL-21 via cytokine gene therapy (CGT), hydrodynamics-based gene delivery (HGD), or standard interval dosing (SID). Our model accurately retrieved experimental growth dynamics in the nonimmunogenic B16 melanoma and the immunogenic MethA and MCA205 fibrosarcomas, showing a strong dependence of the NK-cell/CD8+ T-cell balance on tumor immunogenicity. Moreover, in melanoma, simulations of CGT-like dosing regimens, dynamically determined according to tumor mass changes, resulted in efficient disease elimination. In contrast, in fibrosarcoma, such a strategy was not superior to that of fixed dosing regimens, HGD or SID. Our model supports clinical use of IL-21 as a potent stimulator of cellular immunity against cancer, and suggests selecting the immunotherapy strategy according to tumor immunogenicity. Nonimmunogenic tumors, but not highly immunogenic tumors, should be controlled by IL-21 dosing, which depends on tumor mass at the time of administration. This method imitates, yet amplifies, the natural anticancer immune response rather than accelerates only one of the response arms in an unbalanced manner.  相似文献   

18.
Davila E  Kennedy R  Celis E 《Cancer research》2003,63(12):3281-3288
Although peptide immunization often leads to the induction of strong T-cell responses, it is seldom effective against established tumors. One possibility is that these T-cell responses are not strong enough or do not last sufficiently long to have an effect in tumor eradication. Here, we examined the role of synthetic oligodeoxynucleotide (ODN) adjuvants containing unmethylated cytosine-guanine motifs (CpG-ODN) and CTLA-4 blockade in enhancing the antitumor effectiveness of peptide vaccines intended to elicit CTL responses. The results show that combination immunotherapy consisting of vaccination with a synthetic peptide corresponding to an immunodominant CTL epitope derived from tyrosinase-related protein-2 administered with CpG-ODN adjuvant and followed by systemic injection of anti-CTLA-4 antibodies increased the survival of mice against the poorly immunogenic B16 melanoma. Interestingly, whereas this combination therapy was effective when administered to tumor-bearing mice (therapeutic protocol), it had no significant effect when applied in the prophylactic mode (i.e., before the tumor challenge). Moreover, the antitumor effect of the combination immunotherapy required the participation of CD4+ and CD8+ T lymphocytes and was accompanied by the induction of antitumor CD4+ T-cell responses. The overall results suggest that peptide vaccination of tumor-bearing mice, applied in combination with a strong adjuvant and CTLA-4 blockade, is capable of eliciting durable antitumor T cell responses that provide survival benefit. These findings bear clinical significance for the design of peptide-based therapeutic vaccines for human cancer patients.  相似文献   

19.
PURPOSE: Passive immunotherapy with antitumor antibodies has the potential to induce active tumor immunity via the opsonic enhancement of immunogenicity of tumor antigen. We have assessed whether immune sensitization to the HER-2/neu tumor antigen occurs during treatment with the anti-HER-2/neu monoclonal antibody trastuzumab. EXPERIMENTAL DESIGN: Twenty-seven patients treated with trastuzumab and chemotherapy were assessed for the induction of HER-2/neu-specific immunity. Sera and peripheral blood mononuclear cells obtained before and after trastuzumab therapy were compared for the presence of anti-HER-2/neu endogenous Iglambda antibodies and HER-2/neu-specific CD4 responses by ELISA and enzyme-linked immunospot, respectively. RESULTS: Anti-HER-2/neu antibodies were detectable in 8 of 27 (29%) patients before trastuzumab treatment and in 15 of 27 (56%) patients during trastuzumab treatment. In the overall study population, anti-HER-2/neu humoral responses significantly increased during therapy (P < 0.001) and were not associated with development of an anti-idiotypic response. In 10 evaluable individuals, 6 showed augmented HER-2/neu-specific CD4 T-cell responses during therapy. Of the 22 individuals treated for metastatic disease, those patients showing objective clinical responses exhibited more frequent (P = 0.004) and larger (P = 0.006) treatment-associated anti-HER-2/neu humoral responses. CONCLUSION: Humoral immune sensitization occurs during treatment with chemotherapy and trastuzumab. Further studies are warranted to investigate whether augmented anti-HER-2/neu humoral and cellular immunity contributes mechanistically to clinical outcome.  相似文献   

20.
HER-2/neu (neu) transgenic mice (neu-N mice), which express the nontransforming rat proto-oncogene, demonstrate immunological tolerance to neu that is similar to what is encountered in patients with neu-expressing breast cancer. We have shown previously that a significant increase in neu-specific T cells, but no induction of neu-specific antibody, is seen after neu-specific vaccination in neu-N mice. In contrast, a significant induction of both neu-specific T-cell and antibody responses is found in nontoleragenic FVB/N mice after vaccination. These mice are fully protected from a s.c. challenge with NT cells, a mammary tumor cell line derived from a spontaneous tumor that arose in a neu-N mouse, whereas neu-N mice are not. In this study, we demonstrate that CD4+ T cell-depleted FVB/N mice show no induction of neu-specific IgG after vaccination and are unable to reject an NT challenge (0 of 10 mice were tumor free). Conversely, the depletion of natural killer cells has no effect on vaccine-mediated tumor rejection (100% of mice were tumor free). In CD8+ T cell-depleted animals, where vaccine-induced neu-specific IgG titers were normal, NT growth was delayed, but only 10% of mice remained tumor free, demonstrating that neu-specific IgG alone is insufficient for protection from NT challenge. To directly assess the necessity for the combination of neu-specific cellular and humoral immune responses, severe combined immunodeficient mice were given an adoptive transfer of CTLs plus IgG derived from FVB/N mice. Animals that were given CTLs that recognized an irrelevant antigen plus neu-specific IgG developed tumors at a rate similar to CD8+ T cell-depleted FVB/N mice. Animals receiving an adoptive transfer of neu-specific CTLs plus control IgG derived from naive FVB/N mice were only partially protected from NT challenge (50% of animals were tumor free). However, only animals receiving the combination of neu-specific CTLs and neu-specific IgG were fully protected from NT challenge (100% of animals were tumor free). These studies specifically define the immunological requirements for the eradication of neu-expressing tumors in this model system, demonstrating that both cellular and humoral neu-specific responses are necessary for protection from an NT challenge. These data suggest that vaccines optimized to induce maximal T- and B-cell immunity to neu, and possibly to similar putative tumor-rejection antigens, may lead to more potent in vivo antitumor immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号