首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcitonin gene-related peptide (CGRP) binding sites were localized in rat brain and spinal cord by an in vitro labeling light microscopic technique using [125I]rCGRP as radioligand. Specific rCGRP binding with a dissociation constant (Kd) of 0.53 nM to membrane preparations from rat brain cortex was characterized. The presence and the selective distribution of specific high affinity CGRP binding sites in the central nervous system suggest a role for this recently predicted peptide as a neurotransmitter.  相似文献   

2.
Recent evidence suggests that vasopressin may influence the permeability of the endothelium of brain capillaries. We measured the binding of [125I]arginine-8-vasopressin ([125I]AVP) to microvessels isolated from different regions of the rat brain. The study revealed saturable and specific binding of [125I]AVP to microvessels isolated from hippocampus. Scatchard analysis confirmed a single class of high affinity sites with an equilibrium dissociation constant,Kd, of 3.2 nM and an apparent maximal binding capacity of 205 fmol/mg protein. No binding was observed to microvessels from neocortex and striatum.  相似文献   

3.
The distribution and biochemical properties of glucagon-like peptide (GLP)-1(7–36)amide (GLP-1) binding sites in the rat brain were investigated. By receptor autoradiography of tissue sections, the highest densities of [125I]GLP-1 binding sites were identified in the lateral septum, the subfornical organ (SFO), the thalamus, the hypothalamus, the interpenduncular nucleus, the posterodorsal tegmental nucleus, the area postrema (AP), the inferior olive and the nucleus of the solitary tract (NTS). Binding studies with [125I][Tyr39]exendin-4, a GLP-1 receptor agonist, showed an identical distribution pattern of binding sites. Binding specificity and affinity was investigated using sections of the brainstem containing the NTS. Binding of [125I]GLP-1 to the NTS was inhibited concentration-dependently by unlabelled GLP-1 and [Tyr39]exendin-4 with K 1 values of 3.5 and 9.4 nM respectively. Cross-linking of hypothalamic membranes with [125I]GLP-1 or [125I][Tyr39]exendin-4 identified a single ligand-binding protein complex with a molecular mass of 63 000 Da. The fact that no GLP-1 binding sites were detected in the cortex but that they were detected in the phylogenetically oldest parts of the brain emphasizes that GLP-1 may be involved in the regulation of vital functions. In conclusion, the biochemical data support the idea that the central GLP-1 receptor resembles the peripheral GLP-1 receptor. Furthermore, the presence of GLP-1 binding sites in the circumventricular organs suggests that these may be receptors which act as the target for both peripheral blood-borne GLP-1 and GLP-1 in the nervous system.  相似文献   

4.
Transport into the presynaptic terminal by the dopamine transporter is the primary mechanism for removing dopamine from the synaptic cleft. This transporter is a specific marker for dopamine terminals and is a primary site for CNS actions of cocaine. Several radioligands have been developed for analysis of the dopamine transporter. The ligands vary in affinity and specificity, leading to differences in reported transporter density in brain regions. We compared two of the most commonly used ligands, [3H]WIN 35,428 and [125I]RTI-55, analyzing the localization and density of sites in the rat brain using serial sections and quantitative autoradiography. Citalopram at 50 nmol/1 was used to block [125I]RTI-55 binding to serotonin transport sites. Transporter density was highest in the striatum and both ligands labeled equivalent numbers of sites, with lateral to medial and anterior to posterior gradients. In most areas the density of sites measured with the two ligands was similar. However, [125I]RTI-55 binding was significantly higher than [3H]WIN 35,428 binding in the substantia nigra zona compacta, ventral tegmental area, subthalamic nucleus and a number of other subcortical nuclear groups while [3H]WIN 35,428 binding was higher in lateral striatum and in olfactory tubercle. These differences could reflect different forms of the transporter, perhaps due to post-translational modifications, and they may provide a basis for differential pharmacological regulation of transporter function in discrete brain regions and disease states.  相似文献   

5.
The discrete distribution and possible changes in specific [125I]galanin binding sites were evaluated in the rat spinal cord following neonatal capsaicin treatment, dorsal rhizotomy and sciatic nerve section. The highest density of [125I]galanin binding sites in the normal rat spinal cord was particularly evident in the superficial layers of the dorsal horn whereas moderate to low amounts of labelling were associated with the deeper dorsal horn, areas around the central canal and the ventral horn. Capsaicin-treated rats, compared to littermate controls, showed a significant bilateral increase in [125I]galanin binding in the superficial laminae of the dorsal horn. Similarly, unilateral dorsal rhizotomy evoked a significant increase in the density of [125I]galanin binding sites in the superficial dorsal horn ipsilateral to surgery. Section of the sciatic nerve, on the other hand, induced a significant depletion in [125I]galanin binding in laminae I and II of the ipsilateral dorsal horn. These results, in parallel to those reported for galanin immunoreactivity under similar conditions, suggest that [125I]galanin binding sites are preferentially located postsynaptically to the primary afferent fibre terminals in the dorsal horn of the spinal cord. Thus it seems that galanin, at the level of the dorsal spinal cord, regulates the processing of nociceptive information by acting on its own class of specific receptors located postsynaptically to primary sensory terminals.  相似文献   

6.
Marilyn J. Duncan   《Brain research》1994,640(1-2):316-321
When juvenile male Siberian hamsters are transferred from a long photoperiod to a short photoperiod, sexual maturation is greatly delayed by a pineal-dependent process. We hypothesized that the eventual onset of puberty during short photoperiod exposure may be caused by a loss of receptors for the pineal hormone, melatonin. This study quantitated specific 2-[125I]iodomelatonin binding sites in the suprachiasmatic nuclei and pars tuberalis of Siberian hamsters exposed to short photoperiod (10 h light per day) for either 12 or 30 weeks and in hamsters exposed to long photoperiod (16 h light per day) for the same time intervals. Photoperiodic exposure significantly affected testes weight. The hamsters exposed to long photoperiod for either 12 or 30 weeks had mean testes weights > 700 mg, in contrast to hamsters in short photoperiod for 12 weeks (mean testes weights < 30 mg) or 30 weeks (mean testes weights approximately 350 mg). The affinity of specific 2-[125I]iodomelatonin binding sites in both regions was significantly lower in hamsters exposed to short photoperiod as compared to hamster exposed to long photoperiod, at either 12 or 30 weeks. In contrast, there were no effects of photoperiod or duration of exposure on the density of specific 2-[125I]iodomelatonin binding sites in either the suprachiasmatic nuclei or the pars tuberalis. Furthermore, a change in the affinity of the specific 2-[125I]iodomelatonin binding sites in the suprachiasmatic nuclei was observed between the hamsters housed in short photoperiod for 12 weeks (sexually immature) and the hamsters housed in short photoperiod for 30 weeks (undergoing puberty). These results demonstrate that although the onset of puberty after long-term exposure to short photopoeriod does not involve a loss of specific 2-[125I]iodomelatonin binding sites in the suprachiasmatic nuclei or pars tuberalis, it is associated with a decrease in the affinity of specific 2-[125I]iodomelatonin binding sites in these regions.  相似文献   

7.
Previous radioligand binding and second messenger studies have shown that corticotropin-releasing factor (CRF) modulates its receptor following both in vivo and in vitro treatment. In the present study, we determined the sequence of events leading to CRF-induced downregulation and desensitization of cloned CRF receptors in murine fibroblast cells (Ltk) stably transfected with CRF, DNA (from human pituitary). Treatment of cells with rat/human CRF produced a dose- and time-dependent decrease in [125I]Tyro-ovine CRF ([125I]oCRF) binding and a concomitant decrease in CRF-stimulated adenylate cyclase activity. Significant decreases in [125I]oCRF binding and agonist-stimulated cAMP production were evident minutes after CRF treatment with maximal (60–80%) reductions seen following 1 h of CRF treatment. Scatchard analysis revealed that the decrease in [125I]oCRF binding was due to the downregulation of the receptor with no significant alteration seen in the affinity of the ligand. Since the transfected cell line is engineered using an artificial promoter, we did not detect any significant changes in CRF1 receptor mRNA levels following CRF treatment for up to 24 h.  相似文献   

8.
The occurrence of insuling receptors and biological responses to insulin has been investigated in trypsin-dissociated fetal rat brain cells maintained in culture for 8 days. Binding of [125]insulin to brain cells in culture was time- and pH-dependent and 85–90% specific. Porcine insulin competed for [125]insulin binding in a dose-dependent manner. Unrelated polypeptides, including angiotensin II, glucagon, bovine growth hormone, and bovine prolactin did not compete for [125]insulin binding. The half-life of [125]insulin dissociation from receptors at 24°C was 15 min and a plot of ln[B/Bo] vs time suggested two dissociation rate constants of2.7 × 10−4 sec−1 and5.0 × 10−5 sec−1. Scatchard analysis of the binding data gave a curvelinear plot which may indicate negative cooperativity or the occurrence of both high affinity(Ka = 2 × 1011M−1) and low affinity(Ka = 4 × 1010M−1) sites. Of the estimated total of 4.9 × 104 binding sites per cell, 28–30% appear to be high affinity sites.

Incubation of cultures with insuling caused a time- and dose-dependent stimulation of [3H]thymidine and [3H]uridine incorporation into TCA-precipitable material. Maximum stimulation of thymidine incorporation (2–5-fold) occured 11 h after incubation with 167 nM insulin. The same concentration of insulin caused a 2.2-fold increase in [3H]uridine incorporation in 2 h. These results indicate that cells cultured from rat brain contain specific insulin receptors capable of mediating effects of insulin on macromolecular synthesis in the central nervous system.  相似文献   


9.
Binding studies for rat amylin (AMY) and salmon calcitonin (sCT) were performed on rat membranes prepared from pons and medulla oblongata of rats. The aim was to see whether specific binding sites for AMY and/or for sCT present in these areas could be relevant to some of the biological activities of the two peptides. Binding sites specific for [125I]AMY are present in the pons-medulla of rat brain as AMY, but not sCT, was able to displace radiolabeled AMY binding with an IC50 = 3.7+/-0.5x10(-10) M. In contrast, binding of [125I]sCT was displaced by both sCT and AMY, although with different potencies, the IC50 for sCT being 1+/-0.1x10(-11) M, and for AMY, 1.8+/-0.08x10(-7) M. The functional significance of the presence of these binding sites was evaluated in two different nociceptive tests, hot-plate and tail-flick. In the tail-flick test neither AMY (5-10 microg/rat, i.c.v.) nor sCT (10 microg/rat i.c.v.) showed antinociceptive activity, whereas in the hot-plate test AMY (10 microg/rat, i.c.v.) significantly increased the response latencies as did sCT (250 ng/rat, i.c.v.). These results demonstrated that a 40-fold greater dose of AMY is necessary to produce a comparable antinociceptive effect to that exerted by sCT. These findings are in accordance with the low affinity of AMY for sCT binding sites in rat pons-medulla. It is therefore suggested that the central inhibitory activity of AMY on pain perception involves interaction with sCT receptors whereas the selective AMY binding sites subserve other (as yet unknown) functions.  相似文献   

10.
The regional distribution of receptors for vasoactive intestinal polypeptide (VIP) was studied in the rat central nervous system (CNS). The specific binding was highest in cerebral cortex, limbic forebrain and cerebellum, whereas moderate to low binding was found in hypothalamus, thalamus, brainstem and pituitary. The lowest binding was observed in pons and spinal cord. Scratchard analysis showed curvilinear plots with upward concavity, which was interpreted as two classes of binding sites. The Kd values were similar in all regions and calculated as 2.4 and 62 nmol/liter, respectively. The variations of specific [125I]VIP binding were due to differences in the total amount of receptors and were in the range of 1.7–8.6 pmol per mg protein. The regional distribution of VIP receptors was parallel with the occurence of VIP-containing nerve terminals with exceptions of cerebellum, olfactory areas and nucleus caudatus, where a greater number of receptors than expected from the VIP content was found. In these regions, VIP may interact with receptors for a different, but homologous neuropeptide. In conclusion, the regional distribution of VIP receptors in CNS gives further evidence for the role of VIP as a central neurotransmitter.  相似文献   

11.
We examined the kinetics and distribution of [59Fe–125I] rat Tf and unlabelled human Tf injected into a lateral cerebral ventricle (i.c.v. injection) in the rat. [56Fe–131I]Tf injected intravenously served as a control of blood–brain barrier (BBB) integrity. In CSF of adult rats, 59Fe and [125I]Tf decreased to only 2.5% of the dose injected after 4 h. In brain parenchyma, [125I]Tf had disappeared after 24 h, whereas approximately 18% of i.c.v.-injected 59Fe was retained even after 72 h. The elimination pattern of [125I]Tf from the CSF corresponded to that of [131I]albumin injected i.c.v., suggesting a nonselective washout of CSF proteins. [131I]Tf was hardly detectable in the brain, reflecting an unimpaired BBB during the experiments. Morphologically, 59Fe and i.c.v. injected human Tf were confined to the ventricular surface and meningeal areas, whereas grey matter regions at distances more than 2–3 mm from the ventricles and the subarachnoid space were unlabelled. However, accumulation of 59Fe was observed in the anterior thalamic and the medial habenular nuclei, and in brain regions with synaptic communications to these areas. In the newborn rats aged 7 days (P7) injected i.c.v. with [59Fe–125I]Tf and examined after 24 h, the amounts of [125I]Tf in CSF were approximately 3.5 times higher than in adult rats collected after the same time interval, whereas the amounts of 59Fe in CSF were at the same level in P7 and adult rats. In the brain tissue of the i.c.v. injected P7 rats, both [125I]Tf and 59Fe were retained to a significantly higher degree compared to that seen in adult brains. The rapid washout and lack of capability for i.c.v. injected [125I]Tf to penetrate deeply into the brain parenchyma of the adult brain question the importance of Tf of the CSF, and choroid plexus-derived Tf, for Fe neutralization and delivery of Fe–Tf to TfR-containing neurons and other cells in the CNS. However, it may serve these functions in young animals due to a lower rate of turnover of CSF.  相似文献   

12.
Loss of muscarinic M4 receptors in hippocampus of Alzheimer patients   总被引:2,自引:0,他引:2  
We assessed muscarinic M1, M2 and M4 receptor subtypes in the hippocampus of Alzheimer’s and control brains by receptor autoradiography using ligands such as [125I]muscarinic toxin-1 ([125I]MT-1, M1 selective), [3H]AFDX-384 (M2 partially selective) and [125I]muscarinic toxin 4 ([125I]M4 toxin-1, M4 selective). Our results revealed a significant decrease in muscarinic M4 receptor binding in the dentate gyrus and CA4 regions of brain sections from Alzheimer’s patients compared to controls. No changes in the density of M1 or M2 receptor binding were observed. Our findings suggest that, relative to other muscarinic receptor subtypes, the M4 receptor could be the subtype which is selectively compromised in Alzeheimer’s disease (AD).  相似文献   

13.
125I-calcitonin gene-related peptide (CGRP) binding sites were mapped in the human brain and rat brains by in vitro macroautoradiography, and compared to each other. Binding experiments were made to characterize 125I-CGRP binding on the human and rat brains. Scatchard analysis of saturation experiments from slide-mounted sections of the human and rat cerebellum displayed 125I-CGRP binding sites with a dissociation constant (Kd) of 0.17 nM and 0.11 nM, respectively, and a maximal number of binding sites (Bmax) of 96.8 fmol/mg and 23.0 fmol/mg protein. 125I-CGRP binding was time-dependent, reversible and saturable with high affinity in the brains. Autoradiograms showed a discrete distribution of 125I-CGRP binding sites throughout the brains of human and rat with patterns similar to each other. In the human brain, the highest binding was seen in the cerebellum, inferior olivary nuclear complex, certain parts of the central gray matter, arcuate nuclei of the medulla oblongata and dorsal motor nucleus of the vagus, and densities of CGRP-binding sites were high in the nucleus accumbens, amygdala, tail of the nucleus caudatus, substantia nigra, ventral tegmental area, medial portion of the inferior colliculus, medial pontine nuclei, locus coeruleus, inferior vestibular nucleus, substantia gelatinosa of the spinal trigeminal nucleus, nucleus of the solitary tract and nucleus cuneatus lateralis. In the rat, high densities were found in the hippocampus pars anterior, nucleus accumbens, ventral and caudal portions of the nucleus caudatus-putamen, central and basolateral nuclei of the amygdala, caudal portion of the insular cortex, medial geniculate body, superior and inferior colliculi, certain portions of the central gray matter, locus coeruleus, inferior olivary nuclei, vagal complex, nucleus cuneatus lateralis and cerebellum. In contrast, in both species, most of the cortical areas including the hippocampus, most of the thalamus, and hypothalamus exhibited few binding sites. In addition, high quantities of the binding sites were seen on the pia mater and on walls of blood vessels in the brain and subarachnoidea. These results revealed essentially homologous locations of CGRP binding sites in the human and rat central nervous systems and well corresponding distributions of binding sites and endogenous CGRP-like immunoreactivity.  相似文献   

14.
We localized specific binding sites for human calcitonin gene related peptide (hCGRP) in different organs of the trout using labelled human CGRP. Maximal binding was observed in gill and spleen membranes. The binding of 125I-hCGRP was time and temperature dependent. Scatchard analysis of binding data for the spleen and the gills disclosed two binding sites. The constants for the site of high affinity and low capacity (KAM-1 and Bmax (fmol/mg of proteins] were 2.9 x 10(9) for the spleen and 70 and 3.5 x 10(9) for the gill. Salmon calcitonin (sCT) inhibited the binding of 125I-hCGRP to spleen membranes with the same order of potency as hCGRP. In contrast sCT was less effective than hCGRP in suppressing the specific binding of 125I-hCGRP to gill membranes.  相似文献   

15.
We have previously described somatostatin (SRIF) pericellular binding sites in the vicinity of growth hormone-releasing factor (GRF)-containing cells in the ventrolateral part of the arcuate nucleus (ARC) of the male rat. To further assess the direct role of SRIF on GRF messenger ribonucleic acid (mRNA) levels in the mediobasal hypothalamus, we depleted endogenous SRIF by cysteamine (CS; 300 mg/kg body wt 6 h prior to sacrifice). In the ventrolateral part of the ARC, there was a 2-fold increase (P<0.05) in [125I]SRIF specific binding and GRF mRNA-labelled cell numbers in the CS-treated group as compared to control animals. Furthermore, there was a positive correlation between [125I]SRIF binding and the number of GRF mRNA-labelled cells (r = 0.89; P<0.01). In contrast, such effects were not observed along the base of the ventromedial nucleus where pericellular [125I]SRIF binding was not associated with GRF mRNA-labelled cells. These results provide functional evidence for a direct SRIF inhibition, through specific receptors, of GRF mRNA levels in ARC neurons.  相似文献   

16.
Receptor binding sites for the phencyclidine (PCP) analogue, [3H]TCP, have been localized in the rat and guinea pig central nervous systems by in vitro autoradiography. Quantitation of [3H]TCP binding site densities in rat brain reveals highest levels in the forebrain, in particular the strata oriens and radiatum of the hippocampus, the molecular layer of the dentate gyrus and superficial layers of the cerebral cortex. Moderate levels of binding occur in the amygdala, thalamus, anterior olfactory nucleus external plexiform layer of the olfactory bulb, olfactory tubercle, geniculate nuclei and deep layers of the cortex. Low levels of binding occur throughout most of the septum, diagonal band, hypothalamus, pons-medulla and cerebellum. Spinal cord grey matter also has low levels binding. Excitotoxin lesions of the hippocampal formation, which destroy the pyramidal and granule cells, reduce the binding of [3H]TCP to strata radiatum and oriens and the molecular layer of the dentage gyrus by 60% suggesting that [3H]TCP labels intrinsic neurons in these regions. Residual binding is probably on afferent terminals. Ibotenic acid lesions of the caudate-putamen reduce [3H]TCP binding by 70%, indicating that binding sites are localized on intrinsic striatal neurons. 6-Hydroxydopamine lesions do not alter [3H]TCP binding levels the caudate, suggesting the absence of binding sites on dopaminergic terminals in the caudate.  相似文献   

17.
Calcitonin gene-related peptide (CGRP) has been implicated in various spinal functions on the basis of its presence in the substantia gelatinosa and motoneurons and the biological effects induced by intrathecal CGRP injections. We investigated here the comparative distribution of [125I]hCGRP alpha binding sites in various segments of the rat and monkey spinal cord. The immunocytochemical localization of CGRP-like material in rat spinal cord was also evaluated for comparison. In the rat spinal cord, high densities of [125I]hCGRP alpha binding sites were observed in lamina I, in a U-shaped band that included lamina X and the medial parts of laminae III-IV and in the intermediolateral and intermediomedial nuclei. The substantia gelatinosa (lamina II) contained relatively lower, but still significant, densities of [125I]hCGRP alpha binding sites, while the ventral horn showed low amounts of specific labeling. CGRP-like immunoreactive fibers, on the other hand, were heavily concentrated in laminae I-II and in the reticulated portion of lamina V of the dorsal horn. Immunoreactivity to CGRP antiserum was also noted in fibers around the central canal and in a number of motoneurons of the ventral horn. In the monkey spinal cord, [125I]hCGRP alpha binding sites were present in lamina I in a U-shaped band that included lamina X and the medial portions of laminae V-VI. Relatively low levels of [125I]hCGRP alpha binding were detected in laminae II to IV of the dorsal horn, while the ventral horn was more enriched with specific [125I]hCGRP alpha binding sites. Thus, it appears that the autoradiographic distribution of [125I]hCGRP alpha sites is species dependent in the spinal cord. Additionally, some differences are observed between the localization of [125I]hCGRP alpha binding sites and immunoreactive material in the rat spinal cord. These differences may be relevant to the purported roles of CGRP-like peptides in spinal functions such as nociception, control of sympathetic output, and motor control.  相似文献   

18.
Pineal melatonin hormonally transduces photoperiod to influence daily and seasonal cycles in most vertebrates (1,  2). Evidence of melatonin receptors throughout the brain of several fish species (3–5), particularly in retinorecipient structures, also indicates a role in visual processing. Despite the absence of solar light many deep-sea organisms show seasonality (6–8). The presence of central melatonin receptors was investigated by quantitative in vitro autoradiography in the deep-sea fish Coryphaenoides (Nematonurus) armatus . Specific, time-dependent, saturable, high affinity and guanine nucleotide sensitive, 2-[125I]iodomelatonin binding was found over the mid-brain tegmentum and hindbrain. Competing ligand potency was iodomelatonin > melatonin 5-HT. Although C.(N.) armatus has well developed eyes no 2-[125I]iodomelatonin binding occurred in optic tectum, cerebellum or hypothalamus. Thus melatonin involvement in processing of visual information and control of seasonal physiology via hypothalamic areas appears to be absent in this species. The presence of central G-protein coupled receptors indicates a function for melatonin unrelated to solar light.  相似文献   

19.
Somatostatin (SS14) binding sites within locus coeruleus (LC) were localized at the light microscope level by [125I][Tyr0,d-Trp8]SS14 radioautography combined with an immunohistochemical/neurotoxic lesioning approach. In intact rats, the dense accumulation of SS14 binding sites of LC conspicuously overlapped with the cluster of tyrosine hydroxylase (TH) immunoreactive neurons; SS14 specific binding was directly proportional to the number of TH immunostained (TH+) cell bodies per mg of tissue throughout LC. Complete lesion of catecholaminergic nerve cell bodies of LC by intracerebroventricular injection of 6-hydroxydopamine (6-OHDA) resulted in the total abolition of SS14 specific binding in the structure. In addition, specifically bound [125I][Tyr0,d-Trp8]SS14 and TH+ cell density were quantified serially in a set of rats bearing various partial neurotoxic lesions; a highly significant correlation was found between the two parameters at each of the 16 coronal levels of LC examined. The coefficient of proportionality was identical at all levels. These results strongly suggest that somatostatin binding sites are uniformly localized on all noradrenergic neurons of LC.  相似文献   

20.
Transthyretin (TTR) is involved in the transport of thyroxine (T4) and retinol-binding protein (RBP) in cerebrospinal fluid (CSF) and serum. TTR is secreted in the CSF by the epithelial cells of choroid plexus. The binding of [125I]TTR to cultured ependymoma cells which form the brain cerebrospinal barrier, was studied to determine whether these cells carry receptor(s) for TTR. TTR was bound by ependymoma cells in a time-dependent manner reaching equilibrium within 2 h. Scatchard analysis was consistent with a single class of high-affinity binding sites with a Kd of approximately 18 nM. Saturable high-affinity binding of human TTR has previously been described in rat primary hepatocytes and human renal adenocarcinoma, neuroblastoma, hepatoma and astrocytoma cells, and also transformed lung cells. Endocytosis of fluorescent or biotinylated TTR was observed in ependymoma cells in cytoplasmic vesicles but TTR did not colocalize with clathrin in endocytic coated vesicles. Endocytosis of TTR was inhibited by high sucrose concentration (0.45 M). Finally, ligand blotting and chemical-linking experiments revealed the presence of a 100 kDa putative TTR receptor on the ependymoma cell membrane. Receptor binding of TTR provides a potential mechanism for the delivery of T4 within the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号