首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some evidence supports the view point that phasic motor events of REM sleep show a complementary relation with the corresponding wake motor activities: (a) an inverse relationship between waking saccades and REM sleep eye movements (REMs) has been found with respect to frequency, amplitude, and direction; (b) an increase of middle-ear muscle activity (MEMA) in the 2 h before sleep causes a complementary decrease of MEMA during REM sleep. The present study evaluated this relation with respect to the optokinetic (OKN) system, assessing the role of automatically induced eye movements in affecting direction and frequency of REMs during sleep. Ten subjects were recorded following standard rules in 3 consecutive nights (one adaptation, one baseline, one experimental). In the experimental night subjects underwent 2 h presleep OKN stimulation at 15 degrees /s. The actual mean number of quick phases of nystagmus induced by the OKN stimulation was 12461.4 +/- 1.7 quick phases/s). No significant effect was found with regard to direction or frequency of REMs; the hypothesis that differences in REM direction and frequency could be modulated by the rank order of REM episodes (i.e., as a function of time elapsed from presleep stimulation) also failed to show any effect of a complementary relation between OKN and REMs. The results suggest that the complementary relation between wake and sleep eye movements is specific for the saccadic system, allowing us to exclude a peripheral mechanism, that is, an effect due to fatigue of extraocular muscles.  相似文献   

2.
Since some evidence has supported a complementary relationship between waking and REM-sleep eye movement (variations in frequency, amplitude, or direction of waking saccades have been found to inversely affect the corresponding parameters of rapid eye movements), the present study assessed whether this relationship can also be shown for other phasic components of REM sleep, such as middle-ear muscle activity (MEMA), as a consequence of an increase of middle-ear reflex frequency during pre-sleep wake. Ten subjects were studied in three consecutive nights (one adaptation, one baseline, one experimental). In the experimental night, subjects underwent a 2-h pure-tone (1000 Hz, 90 dB SPL) auditory stimulation and MEMA was monitored every 15 min; noise exposure during daytime was also controlled. Results show that MEMA frequency during REM sleep significantly decreased during the experimental nights compared with baseline nights, while each sleep variable as well as mean daily auditory input did not present any significant difference between baseline and experimental nights. Results suggest that the complementary relationship between wake and REM sleep is not bounded to oculomotor activity, but it may also be extended at least to middle-ear muscle phasic activity. Received: 30 April 1999 / Accepted: 14 September 1999  相似文献   

3.
Previous studies have shown a decrease in rapid eye movement (REM) frequency during desynchronized sleep in recovery nights following total or partial sleep deprivation. This effect has been ascribed to an increase in sleep need or sleep depth consequent to sleep length manipulations. The aims of this study were to assess REM frequency variations in the recovery night after two consecutive nights of selective slow-wave sleep (SWS) deprivation, and to evaluate the relationships between REM frequency and SWS amount and auditory arousal thresholds (AAT), as an independent index of sleep depth. Ten normal males slept for six consecutive nights in the laboratory: one adaptation, two baseline, two selective SWS deprivation and one recovery night. SWS deprivation allowed us to set the SWS amount during both deprivation nights close to zero, without any shortening of total sleep time. In the ensuing recovery night a significant SWS rebound was found, accompanied by an increase in AAT. In addition, REM frequency decreased significantly compared with baseline. This effect cannot be attributed to a variation in prior sleep duration, since there was no sleep loss during the selective SWS deprivation nights. Stepwise regression also showed that the decrease in REM frequency is not correlated with the increase in AAT, the traditional index of sleep depth, but is correlated with SWS rebound.  相似文献   

4.
Sixteen subjects were assigned to a group using either placebo or biperiden, with eight subjects in each group. Both groups were studied for one acclimatization night, one baseline night, four nights of rapid eye movement (REM) sleep deprivation and two recovery nights. All the subjects received either placebo or 4 mg biperiden 1 hour before sleep during the four nights of REM sleep deprivation. During the baseline and the recovery nights both groups received placebo capsules. The results showed that REM sleep time during the REM sleep deprivation was reduced by 70-75% below the baseline night in both groups. The number of attempts to enter REM sleep was significantly reduced by biperiden as compared to placebo for each of the four REM sleep deprivation nights. Because the total sleep time in the biperiden group was reduced, the number of REM sleep attempts was corrected by the total sleep time. The adjusted number of REM sleep attempts was also significantly reduced in the biperiden group. REM sleep latency showed a reduction in the placebo group, whereas in the biperiden group REM sleep latency was unchanged throughout the deprivation nights. In the recovery night REM sleep time was increased in both groups, with no differences between the groups. The REM sleep latency showed a reduction in the first recovery night in both groups that persisted through the second recovery night. The above findings support the role of biperiden as a REM sleep suppressive drug.  相似文献   

5.
The findings of visual impairment during total sleep deprivation were used as a basis for a possible link between vision and sleep. It was proposed that the level of visual load imposed during sleep deprivation was an important variable, and would have a substantial effect upon recovery sleep. Six young male subjects underwent two conditions of 64 h of sleep deprivation on separate occasions. One condition incorporated a high visual load, and the other a low load. Exercise and sound were balanced. All night sleep EEGs were taken for two baseline nights, and also for two recovery nights following each condition. There was a significant increase of stage 4 on all recovery nights and a REM rebound on the second recovery night. SWS, particularly stage 4, TST and REM density, were significantly greater following the high load. Implications of these findings for sleep theories and for sleep deprivation research are discussed.  相似文献   

6.
Polysomnograms were obtained from 37 volunteers, before (baseline) and after (two consecutive recovery nights) a 64-h sleep deprivation, with (d-amphetamine or modafinil) or without (placebo) alerting substances. The drugs were administered at 23.00 hours during the first sleep deprivation night (after 17.5 h of wakefulness), to determine whether decrements in cognitive performance would be prevented; at 05.30 hours during the second night of sleep deprivation (after 47.5 h of wakefulness), to see whether performance would be restored; and at 15.30 hours during the third day of continuous work, to study effects on recovery sleep. The second recovery night served to verify whether drug-induced sleep disturbances on the first recovery night would carry over to a second night of sleep. Recovery sleep for the placebo group was as expected: the debt in slow-wave sleep (SWS) and REM sleep was paid back during the first recovery night, the rebound in SWS occurring mainly during the first half of the night, and that of REM sleep being distributed evenly across REM sleep episodes. Recovery sleep for the amphetamine group was also consistent with previously published work: increased sleep latency and intrasleep wakefulness, decreased total sleep time and sleep efficiency, alterations in stage shifts, Stage 1, Stage 2 and SWS, and decreased REM sleep with a longer REM sleep latency. For this group, REM sleep rebound was observed only during the second recovery night. Results for the modafinil group exhibited decreased time in bed and sleep period time, suggesting a reduced requirement for recovery sleep than for the other two groups. This group showed fewer disturbances during the first recovery night than the amphetamine group. In particular, there was no REM sleep deficit, with longer REM sleep episodes and a shorter REM latency, and the REM sleep rebound was limited to the first REM sleep episode. The difference with the amphetamine group was also marked by less NREM sleep and Stage 2 and more SWS episodes. No REM sleep rebound occurred during the second recovery night, which barely differed from placebo. Hence, modafinil allowed for sleep to occur, displayed sleep patterns close to that of the placebo group, and decreased the need for a long recovery sleep usually taken to compensate for the lost sleep due to total sleep deprivation.  相似文献   

7.
De Gennaro L  Ferrara M  Bertini M 《Sleep》2001,24(6):673-679
STUDY OBJECTIVES: Aim of the present study was to assess changes in arousal rates after selective slow-wave (SWS) and total sleep deprivations. DESIGN: Two-way mixed design comparing the arousal index (Al), as expressed by the number of EEG arousals divided by sleep duration, in totally or selectively sleep deprived subjects. SETTING: Sleep laboratory. PATIENTS OR PARTICIPANTS: Nineteen normal male subjects [mean age=23.3 years (S.E.M.=0.55)]. INTERVENTIONS: Al was measured in baseline nights and after selective SWS (N=10) and total sleep deprivation (N=9). MEASUREMENTS AND RESULTS: During the baseline nights AI values changed across sleep stages as follows: stage 1 > stage 2 and REM > SWS, but did not present any significant variations as a function of time elapsed from sleep onset. The recovery after deprivation showed a reduction in EEG arousals, more pronounced after total sleep deprivation; this decrease affected NREM but not REM sleep. During the baseline nights Al showed a close-to-significance negative correlation with REM duration, while during the recovery nights a significant positive relation with stage 1 duration was found. CONCLUSIONS: The present results suggest that recuperative processes after sleep deprivation are also associated with a higher sleep continuity as defined by the reduction of EEG arousals.  相似文献   

8.
Studies have shown that synchrony or temporal coupling of gamma activity is involved in processing and integrating information in the brain. Comparing rapid eye movement (REM) sleep to waking and non-REM (NREM) sleep, interhemispheric temporal coupling is higher, but lower between the frontal and posterior association areas of the same hemisphere. However, the homeostatic response of REM sleep temporal coupling after selective REM sleep deprivation (REMD) has not been studied. This study proposed exploring the effect of one night of selective REMD on the temporal coupling of cortical gamma activity during recovery REM sleep. Two groups of healthy subjects were subjected to either REMD by awakening them at each REM sleep onset, or to NREM sleep interruptions. Subjects slept four consecutive nights in the laboratory: first for adaptation, second as baseline, third for sleep manipulation, and fourth for recovery. Interhemispheric and intrahemispheric EEG correlations were analyzed during tonic REM (no eye movements) for the first three REM sleep episodes during baseline sleep, and recovery sleep after one night of selective REMD. Temporal coupling between frontal lobes showed a significant homeostatic rebound that increased during recovery REM sleep relative to baseline and controls. Results showed a rebound in temporal coupling between the two frontal lobes after REM sleep deprivation, indicating that the enhanced gamma temporal coupling that occurs normally during REM sleep has functional consequences. Conclusion: results suggest that synchronized activity during REM sleep may play an important role in integrating and reprocessing information.  相似文献   

9.
Eight subjects each spent 2 nights in the sleep laboratory during which electrodermal activity (EDA) was recorded in addition to standard sleep monitoring. On the experimental night, following an adaptation night, subjects were awakened four times from REM sleep: in the presence of phasic EDA and eye movements; in the presence of phasic EDA without eye movements; in the presence of eye movements without phasic EDA; and in the absence of both eye movements and phasic EDA. Detailed mentation reports were obtained, coded, and rated on scales of emotionality and bizarreness. EDA was found to be associated with bizarre mentation. Implications for the study of nocturnal phasic activity in general and for the study of EDA are discussed. An improved circuit for the long-term recording of EDA is described in sufficient detail to allow its duplication.  相似文献   

10.
Effects of different sleep duration on delta sleep in recovery nights   总被引:1,自引:0,他引:1  
The study assessed the effects of different amounts of sleep restriction on slow wave sleep (SWS) in the ensuing recovery nights. After one adaptation night and an 8-hr baseline night, six healthy men were individually studied during and following five nights in which sleep was reduced to 5, 4, 3, 2, and 1 hr with a 1-week interval between conditions. Bach sleep reduction was followed by an 8-hr recovery night. Finally, a second 8-hr baseline night was recorded. A trend analysis revealed that SWS amount in recovery nights increases with decreasing previous sleep duration. Regression analyses showed that, within each participant, the rebound of SWS after a sleep reduction is predicted better by the total duration of sleep than by the specific amount of SWS lost.  相似文献   

11.
The aim of this study was to compare the effects of total sleep deprivation (TSD), rapid eye movement (REM) sleep and slow wave sleep (SWS) interruption and sleep recovery on mechanical and thermal pain sensitivity in healthy adults. Nine healthy male volunteers (age 26--43 years) were randomly assigned in this double blind and crossover study to undergo either REM sleep or SWS interruption. Periods of 6 consecutive laboratory nights separated by at least 2 weeks were designed as follows: N1 Adaptation night; N2 Baseline night; N3 Total sleep deprivation (40 h); N4 and N5 SWS or REM sleep interruption; N6 Recovery. Sleep was recorded and scored using standard methods. Tolerance thresholds to mechanical and thermal pain were assessed using an electronic pressure dolorimeter and a thermode operating on a Peltier principle. Relative to baseline levels, TSD decreased significantly mechanical pain thresholds (-8%). Both REM sleep and SWS interruption tended to decrease mechanical pain thresholds. Recovery sleep, after SWS interruption produced a significant increase in mechanical pain thresholds (+ 15%). Recovery sleep after REM sleep interruption did not significantly increase mechanical pain thresholds. No significant differences in thermal pain thresholds were detected between and within periods. In conclusion this experimental study in healthy adult volunteers has demonstrated an hyperalgesic effect related to 40 h TSD and an analgesic effect related to SWS recovery. The analgesic effect of SWS recovery is apparently greater than the analgesia induced by level I (World Health Organization) analgesic compounds in mechanical pain experiments in healthy volunteers.  相似文献   

12.
We evaluated the effects of selective slow-wave sleep (SWS) deprivation and time-of-night factors on cognitive performance upon awakening. Ten normal men slept for 6 consecutive nights in the laboratory: 1 adaptation, 2 baseline, 2 selective SWS deprivation, and 1 recovery night. Cognitive performance was assessed by means of a Descending Subtraction Task after 2, 5, and 7.5 h of sleep. There was an almost complete selective SWS suppression during both deprivation nights, and a significant SWS rebound during the recovery sleep. Regarding cognitive performance, a progressive linear decrease of sleep inertia upon successive awakenings was found during all experimental nights except for the recovery night. In addition, a significant decrease of sleep inertia was observed upon the morning awakening of the second deprivation night for the measure of performance speed, and a significant increase of sleep inertia upon the morning awakening of the recovery night for the measure of performance accuracy. The results show that cognitive performance upon awakening is adversely affected by sleep depth and that, during the sleep-wake transition, cognitive performance accuracy is more impaired than performance speed.  相似文献   

13.
This study evaluated the effects of otolithic vestibular stimulation in the form of a linearly accelerated parallel swing on nighttime sleep parameters and daytime sleep tendency in eight normal subjects. The protocol consisted of one adaptation night following by two motion nights, one adaptation night followed by two stationary nights, and two Multiple Sleep Latency Tests (MSLT), one motion and one stationary. On the motion nights, there was a decrease in stage 2 percentage as well as a facilitative effect on sleep latency on the last night. In addition, an increase in the number of rapid eye movements (REMs) per night was found without a significant alteration of REM sleep amount or latency. No significant differences were found between the motion and stationary MSLT days.  相似文献   

14.
C Smith  L Lapp 《Sleep》1991,14(4):325-330
Animal studies have recently demonstrated that increases in rapid eye movement (REM) sleep and actual number of rapid eye movements (REMs) over normal levels followed successful learning of an avoidance task. These increases persisted for many days following the end of the training sessions. It was hypothesized that similar extended increases in REM sleep parameters would follow an intensive learning task in humans. Senior college students were sleep monitored following the end of their Christmas examinations. Results showed that there was a significant increase in the number of REMs observed following the exams as compared to baseline and control subject values. The number of extra REMs was mot prominent during the fifth REM period of the night. A significantly increased REM density was observed at the fourth REM sleep period of the night. Results support the idea of REM sleep and/or the REMs themselves being involved in long-term memory processing several days after the end of training.  相似文献   

15.
F Travis  T Maloney  M Means  J D March  I Feinberg 《Sleep》1991,14(4):320-324
This experiment evaluated further our previous finding that substitution of waking for the terminal 3-4 hr of sleep produces little or no increase in either visually scored or computer measures of delta sleep. Eleven young adults (mean age 24.5 yr) were studied on a baseline night, a night with sleep limited to an average of 188 min, and a recovery night. Visually scored sleep stages, eye movement activity and computer measures of 0-3 Hz were analyzed by nonrapid eye movement periods (NREMPs) and for all recorded sleep in each condition. In addition, we measured the heights, durations and areas under the curve manifested by the cyclic waxing and waning of 0-3-Hz integrated amplitude across sleep. Acute loss of 3.9 hr of sleep did not increase either visual or computer measures of delta electroencephalograms (EEG) on the recovery night, essentially confirming our previous findings. We hypothesize that augmentation of delta EEG above baseline levels after acute (one night's) sleep loss requires that disruption or loss of sleep from the first two NREMPs (or delta cycles). Rapid eye movement (REM) sleep durations on the recovery night were unaffected by the marked loss of REM sleep caused by partial deprivation. Although eye movements as well as stage REM were lost in the deprivation condition, eye movement density was significantly reduced rather than increased on the recovery night. This reduction is consistent with the hypothesis that REM activity varies inversely with sleep depth (or directly with central arousal level). The observations here, taken in association with previous results, suggest that a threshold for eye movement suppression by sleep deprivation in young adults lies in the range of 3-4 hr of prior sleep loss.  相似文献   

16.
The aim of the present study is to evaluate the effects of selective SWS deprivation on the motor and sensory motor performance impairment immediately after awakening from nocturnal sleep at different times of the night. Ten normal males slept for 6 consecutive nights in the laboratory: one adaptation, two baseline, two selective SWS deprivation, and one recovery night. During the last 4 nights performance was assessed four times: (a) before sleep, as a baseline measure; (b) within 30 s from the first nighttime awakening, after 2 h of sleep; (c) within 30 s from the second nighttime awakening, after 5 h of sleep; (d) within 30 s from the final morning awakening. After each awakening, following a 3-min cognitive test, a simple Auditory Reaction Time task (ART, about 5 min) and a Finger Tapping Task (FTT, 3 min) were administered. Median of Reaction Times (RT) and of Intertapping Intervals (ITI), 10% fastest RT, 10% slowest RT, and number of misses were considered as dependent variables. The selective SWS deprivation was very effective: SWS percentage during both the deprivation nights was close to zero. This strong manipulation of SWS amount interacted with time-of-night factors in influencing sleep inertia. The SWS deprivation procedure caused a worsening of behavioral performance during the deprivation nights. as well as upon the final awakening of the recovery night. Behavioral performance slowing upon awakening is accounted for by: (1) a general decrement in overall response speed (median of RT); (2) an "optimum response shift", i.e., a decrease in speed of the fastest responses; (3) an increase of lapsing, with more marked response delays resulting in a further decrease in response speed in the "lapse domain". Finally, our results do not support the existence of a circadian rhythm of sleep inertia linked to body temperature rhythm.  相似文献   

17.
Body Movements During Sleep After Sleep Loss   总被引:4,自引:0,他引:4  
P. Naitoh    A. Muzet    C. Johnson    J. Moses 《Psychophysiology》1973,10(4):363-368
Following 4 baseline nights, 7 Ss were deprived of REM sleep for 3 nights and 7 were deprived of stage 4 sleep. Both groups were then deprived of total sleep for 1 night and then allowed 2 nights of uninterrupted recovery sleep. Compared to baseline nights, on the first recovery night the number of body movements was significantly reduced in all sleep stages and for total sleep. On the second recovery night, the number of movements was back to baseline level. The increased amount of slow-wave sleep (stages 3 and 4) during recovery sleep was not the primary reason for the reduced body motility.  相似文献   

18.
The function of rapid eye movements (REMs) during REM sleep is still a matter that is open to debate. In a previous study, we found positive brain potential (P200r) time‐locked to the onset of REMs. This potential was not observed during saccades of wakefulness. In this study, we estimated the electrical generation of this potential to investigate the phasic brain activity related to REMs. Data were collected in a sleep laboratory from nine healthy university students. REMs during REM sleep were recorded during natural nocturnal sleep. Event‐related potential time‐locked to the onset of REMs were averaged. Standardized low‐resolution brain electromagnetic tomography (sLORETA) was used to identify the current sources of P200r. The results showed that P200r have neuronal generators in the left premotor area, left primary motor and sensory cortices, left inferior parietal lobule and bilateral occipital areas (precuneus, cuneus and lingual gyrus). All these areas are known to contribute to visuomotor processing. These phasic brain activities might play a key role in explaining the function of REMs during REM sleep.  相似文献   

19.
Sleepwalkers have been shown to have an unusually high number of arousals from slow wave sleep and lower slow wave activity (SWA) power during the night than controls. Because sleep deprivation increases the frequency of slow wave sleep (SWS) arousals in sleepwalkers, it may also affect the expression of the homeostatic process to a greater extent than shown previously. We thus investigated SWA power as well as slow wave oscillation (SWO) density in 10 sleepwalkers and nine controls at baseline and following 38 h of sleep deprivation. There was a significant increase in SWA during participants' recovery sleep, especially during their second non‐rapid eye movement (NREM) period. SWO density was similarly increased during recovery sleep's first two NREM periods. A fronto‐central gradient in SWA and SWO was also present on both nights. However, no group differences were noted on any of the 2 nights on SWA or SWO. This unexpected result may be related to the heterogeneity of sleepwalkers as a population, as well as our small sample size. SWA pressure after extended sleep deprivation may also result in a ceiling effect in both sleepwalkers and controls.  相似文献   

20.
We describe the phasic reduction of motor activity occurring with horizontal rapid eye movements (REMs) during active sleep in 15 children (12 healthy children and 3 patients with severe brain damage). A REM-related decrease in intercostal muscle activity was demonstrated by averaging integrated surface electromyograms. In the healthy subjects, this reduction had a mean latency from the REM onset of 37.1 ms and a duration of 225.9 ms. This phenomenon was also observed in the 3 patients who had lost cerebral function. We hypothesized a brainstem origin for the effect. A REM-related mentalis muscle activity loss, detected by averaging mentalis muscle twitches, was observed in 10 healthy children among the subjects. This loss began at 59.1 ms before the onset of REMs and lasted for 230.2 ms on average. In addition, a transient decrease in integrated REM activity surrounding mentalis muscle twitches (a twitch-related reduction of REMs) was observed. We discuss the similarity between REM-related phasic reduction of muscle activity obtained for intercostal and mentalis muscles and pontogeniculo-occipital (PGO) wave-related inhibitory postsynaptic potentials reported for feline lumbar and trigeminal motoneurons, respectively. We then assume the presence of a phasic event generator, functioning during active sleep in healthy humans, which triggers at least three generators; that is, the generator of PGO waves (or REMs), motor inhibition, and of motor excitation including muscle twitches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号