首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Drugs of abuse, such as D-amphetamine or nicotine, are generally considered as acting through an increased release of dopamine in a subcortical structure, the nucleus accumbens, thus inducing locomotor hyperactivity in rats. Following repeated treatments, the same drugs induce a progressive increase in locomotor response called behavioral sensitization. This process has been suggested to play a role in the acquisition and maintenance of addictive behaviors. Here we show that whereas behavioral sensitization to D-amphetamine (0.5 and 0.75 mg/kg) stays constant following three consecutive periods of withdrawal (15, 30 and 30 days), the same experimental conditions completely abolish behavioral sensitization to 0.3 and 0.5 mg/kg nicotine. Indeed, following these periods of withdrawal, locomotor responses to nicotine are identical to those obtained at the first nicotine injection or after repeated saline injections. However, when a monoamine oxidases inhibitor (MAOI), tranylcypromine (3 mg/kg) or pargyline (30 mg/kg), is co-injected with nicotine, behavioral sensitization is maintained despite submission of the animals to the same withdrawal experimental design. Since tobacco smoke is known to contain many compounds including MAOIs, our data suggest that addictive properties of tobacco may not be limited to nicotine. We propose that MAOIs potentiate effects of nicotine on monoamines release.  相似文献   

3.
4.
Recent studies with rat tissue preparations have suggested that the anorectic drug phentermine inhibits serotonin degradation by inhibition of monoamine oxidase (MAO) A with a K(I) value of 85-88 microM, a potency suggested to be similar to that of other reversible MAO inhibitors (Ulus et al., Biochem Pharmacol 2000;59:1611-21). Since there are known differences between rats and humans in substrate and inhibitor specificities of MAOs, the interactions of phentermine with recombinant human purified preparations of MAO A and MAO B were determined. Human MAO A was competitively inhibited by phentermine with a K(I) value of 498+/-60 microM, a value approximately 6-fold weaker than that observed for the rat enzyme. Phentermine was also observed to be a competitive inhibitor of recombinant human liver MAO B with a K(I) value of 375+/-42 microM, a value similar to that observed with the rat enzyme (310-416 microM). In contrast to the behavior with rat tissue preparations, no slow time-dependent behavior was observed for phentermine inhibition of purified soluble human MAO preparations. Difference absorption spectral studies showed similar perturbations of the covalent FAD moieties of both human MAO A and MAO B, which suggests a similar mode of binding in both enzymes. These data suggest that phentermine inhibition of human MAO A (or of MAO B) is too weak to be of pharmacological relevance.  相似文献   

5.
6.
The inhibition of mitochondrial monoamine oxidase (MAO) from beef brain cortex by the selective inhibitors, clorgyline, harmaline, Deprenyl and pargyline, was compared using five substrates: serotonin (5-HT), β-phenylethylamine (PEA), tyramine, tryptamine and dopamine. Dose-response studies, consistent with the classification of MAO, types A and B, indicated that serotonin deamination was more sensitive to clorgyline and harmaline inhibition than was phenylethylamine. However, the curves for all substrates were double-sigmoidal, rather than being a single sigmoid curve for 5-HT and PEA. Deprenyl and pargyline did not exhibit any marked selectivity for inhibiting PEA deamination without prior preincubation of enzyme and inhibitor. The rate of inhibition was variable and was dependent upon the substrate, the nature of the inhibitor and the inhibitor concentration. Dual inhibitor studies, using the “type A” inhibitor, clorgyline, and the “type B” inhibitor, Deprenyl, together, resulted in almost complete MAO inhibition, regardless of substrate. Combining the two type A inhibitors, clorgyline and harmaline, or the two type B inhibitors, deprenyl and pargyline, resulted in inhibitions that were equal to or only slightly greater than the inhibition produced by a single inhibitor. These results suggested that there are at least two distinct sites in beef brain MAO from cortical mitochondria which may be interacting. The deamination of all substrates occurs at both sites.  相似文献   

7.
Pyrrolylethanoneamines 1-12, 18-23 and related amino alcohols 13-15, 24-27 were synthesized and tested against monoamine oxidases A and B (MAO-A and MAO-B) enzymes. In general, aminoketones 1-12, 18-23 were found to be potent and selective MAO-A inhibitors. In particular, 18 was more potent and selective against the MAO-A isoenzyme than reference drugs. Interestingly, amino alcohol 25 selectively inhibited MAO-B enzyme and could be a lead compound for designing more potent and selective MAO-B inhibitors.  相似文献   

8.
9.
Translated from Khimiko-farmatsevticheskii Zhurnal, Vol. 25, No. 3, pp. 22–23, March, 1991.  相似文献   

10.
The binding of zonisamide to purified, recombinant monoamine oxidases (MAOs) has been investigated. It is a competitive inhibitor of human MAO B (K(i) = 3.1 ± 0.3 μM), of rat MAO B (K(i) = 2.9 ± 0.5 μM), and of zebrafish MAO (K(i) = 30.8 ± 5.3 μM). No inhibition is observed with purified human or rat MAO A. The 1.8 ? structure of the MAO B complex demonstrates that it binds within the substrate cavity.  相似文献   

11.
Monoamine oxidases (MAOs) A and B, flavin-containing enzymes found in the outer mitochondrial membrane, oxidize many important biogenic and xenobiotic amines. The two enzymes are expressed in many tissues, with some tissues containing primarily one form and others containing both. Although MAO in placental mitochondria is widely reported to be type A, some investigators have reported low levels of MAO B activity as well. Because placenta is considered the preferred source for purification of type A MAO, we have reinvestigated placental MAO by immunoblotting with monoclonal antibodies and active site labeling with the MAO-specific ligand [3H]pargyline. We have confirmed that placental mitochondrial preparations contain MAO A and low but significant MAO B catalytic activity, as judged by accepted pharmacological criteria (deprenyl-sensitive beta-phenylethylamine and benzylamine oxidation). Immunoblotting revealed polypeptides of sizes expected for both MAO A and B subunits in preparations of placental mitochondria, as well as in preparations of MAO A purified extensively from placenta by partitioning between dextran and polyethylene glycol polymers and chromatography on DEAE-Sepharose CL-6B. Both MAO A and B active sites could be quantitated in placenta by labeling mitochondrial preparations with the MAO-specific affinity ligand [3H] pargyline, followed by immunoprecipitation with MAO A- and MAO B-specific monoclonal antibodies. These results indicate that MAO B activity and protein is consistently present in mitochondrial preparations of human placenta.  相似文献   

12.
During 4 weeks of treatment with clorgyline, a selective MAO-A inhibitor, platelet monoamine oxidase (MAO) activity was unchanged. During a similar 4-week crossover treatment period with pargyline, a selective MAO-B inhibitor, platelet MAO activity was essentially completely inhibited in the same individuals. The differential effects of the two drugs on platelet MAO, which consists exclusively of the MAO-B form, suggests that the in vitro selectivity of clorgyline, and possibly of pargyline, on MAO-A and MAO-B may be maintained in vivo during long-term administration in man. Reductions in blood pressure, heart rate, and plasma amine oxidase activity were generally similar in magnitude during treatment with both drugs, however, suggesting that either these effects are nonspecific consequences of both MAO-A and MAO-B inhibition, or that pargyline also inhibited MAO-A activity.  相似文献   

13.
Monoamine oxidases A and B (MAO-A and B) catalyze the oxidative catabolism of biogenic amines and xenobiotics. Investigation of these mitochondrial membrane proteins shows that they differ in substrate preference, inhibitor specificity, tissue and neuronal cell distribution, immunological properties, and nucleotide and deduced amino acid sequences. Comparisons of MAO-A and B from the human, bovine, and rat species show strikingly high similarity (85–88%) in the amino acid sequences of each enzyme. Furthermore, three regions in MAO-A and B have sequence identities across species of 78, 88, and 86%. These regions correspond to a nucleotide-binding site near the N-terminal end that is found in the vast majority of enzymes that require flavin adenine dinucleotide (FAD), a region of unknown function, and the FAD-binding site toward the C-terminal end. Genomic clones of MAO-B which span almost the entire gene (>40 kb) have been isolated, restriction mapped, and partially sequenced. Likewise, genomic clones of MAO-A that correspond to the 3-flanking region have also been investigated. Current studies which focus on identification of the promotor and regulatory sequences should help to establish why MAO-A and B are localized in different subsets of neurons in brain.  相似文献   

14.
Despite the widespread use of monoamine oxidase inhibitors (MAOIs) and the well-known adverse event of hypertensive crisis, few studies have addressed the acute cardiovascular response to an MAOI dose. We prospectively measured pulse and blood pressure changes just before and at 1, 2, 3, and 4 hours after MAOI administration in 18 patients. Significant but asymptomatic increases from baseline in mean systolic and diastolic blood pressure occurred within 2 hours after MAOI administration, with return to near baseline by 4 hours. The mechanism of this reaction is unknown.  相似文献   

15.
The LD50 of pethidine was determined in mice pretreated (4 h) either with the nonselective monoamine oxidase (MAO) inhibitor, phenelzine or with clorgyline, a selective inhibitor of MAO A or deprenyl, a selective inhibitor of MAO B. Phenelzine or combined clorgyline plus deprenyl pretreatments decreased pethidine LD50. Clorgyline or deprenyl alone did not affect pethidine toxicity. Whole brain 5-hydroxytryptamine (5-HT) concentrations were measured in the pretreated mice. 5-HT levels were approximately doubled (P less than 0.001) after phenelzine or clorgyline plus deprenyl treatment, but not after clorgyline or deprenyl given alone. These results indicate that both MAO A and MAO B need to be inhibited to increase pethidine toxicity and brain 5-HT levels. They support the involvement of 5-HT in the toxic interaction between pethidine and MAO inhibitors.  相似文献   

16.
17.
The inactivation of purified human recombinant monoamine oxidases (MAO) A and B by rasagiline [N-propargyl-1(R)-aminoindan] and four of its analogues [N-propargyl-1(S)-aminoindan (S-PAI), 6-hydroxy-N-propargyl-1(R)-aminoindan (R-HPAI), N-methyl-N-propargyl-1(R)-aminoindan (R-MPAI), and 6-(N-methyl-N-ethyl carbamoyloxy)-N-propargyl-1(R)-aminoindan (R-CPAI)] has been investigated. All compounds tested, with the exception of R-CPAI, form stoichiometric N(5) flavocyanine adducts with the FAD moiety of either enzyme. No H(2)O(2) is produced during either MAO A or MAO B inactivation, which demonstrates that covalent addition occurs in a single turnover. Rasagiline has the highest specificity for MAO B, as demonstrated by a 100-fold higher inhibition potency (k(inact)/K(i)) compared to MAO A, with the remaining compounds exhibiting lower isozyme specificities. MAO B and MAO A are more selective for the R-enantiomer (rasagiline) compared to the S-enantiomer (S-PAI) by 2500-fold and 17-fold, respectively. Differences in UV/vis and CD spectral data of the complexes of the studied compounds with both MAO A and MAO B are interpreted in light of crystallographic data of complexes of MAO B with rasagiline and its analogues (Binda, C.; et al. J. Med. Chem. 2004, 47, 1767-1774.  相似文献   

18.
19.
20.
The common marmoset (Callithrix jacchus), a New World primate, is currently attracting much attention as a nonhuman primate model for pharmacological and pharmacokinetic studies in preclinical research. In this study, we newly isolated the cDNAs of marmoset monoamine oxidase A (MAO-A) and MAO-B from liver and brain, respectively. MAO-A and MAO-B cDNAs, respectively, contained open reading frames of 527 and 520 amino acids and were approximately 92% and 95% identical to their human orthologs. Marmoset MAOs were phylogenetically closer to primate MAOs, including human MAOs, than to pig, dog, or rodent MAOs. The genomic and gene structures of marmoset MAOs were similar to those of humans. Among the five marmoset tissue types analyzed, the expression levels of MAO-A mRNA were relatively abundant in lung, liver, kidney, and small intestine, whereas the expression levels of MAO-B mRNA were relatively abundant in brain, liver, kidney, and small intestine; these tissue distributions are similar to those of human MAOs. These results suggest that MAO-A and MAO-B are similar at a molecular level in marmosets and humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号