首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic analogs of the opioid peptides endomorphin-2 and morphiceptin of the type Tyr-X-Phe-Phe-Y-NH2 and Tyr-X-Phe-D-Pro-Y-NH2 (X = Lys or Asp and Y = Lys or Asp), respectively, were synthesized in order to test their structure-activity relationships. Antinociceptive activity of the new analogs was assessed in the hot-plate test after intracerebroventricular administration in mice. The strong analgesic effect was observed for the analogs with Asp in position 2, while the analogs with Lys in the second position were inactive. Antinociception caused by Asp2 analogs was dose-dependent and reversed by the concomitant administration of the universal opioid antagonist naloxone and by the selective kappa antagonist, nor-BNI. However, receptor binding studies revealed poor affinity of all cyclic analogs at the mu-opioid receptor and no affinity at delta- and kappa-opioid receptors. It is most likely that the new cyclic analogs produced their antinociception by the release of dynorphin A, which subsequently acted on the kappa-opioid receptor.  相似文献   

2.
The structure of Z-Proψ[CN4]-Ala-OBzl has been determined by X-ray crystallographic techniques. The structure crystallizes in space group P21 with cell constants a = 22.176(3) Å, b = 6.141(1)Å, c = 8.275(1) Å, β= 98.31(1), and Z = 2. The structure has been refined to a residual of 0.038 for 2538 independent data. The amide bond between the prolyl and alanyl residues is cis, a result of the presence of the tetrazole ring system, as is the urethane bond linking the benzyloxycarbonyl and the prolyl groups. A comparison of the structures in this study to other structures containing cis amide bonds shows that the tetrazole ring system, when incorporated into peptides, mimics a cis amide bond. Changes in the distance between the α-carbons adjacent to the tetrazole rings in the linear peptide as compared with the bicyclic diketopiperazine required a reassessment of the conformational mimicry with the cis amide bond.  相似文献   

3.
In the present study we investigated and compared the in vivo analgesia of centrally administered endomorphin-2 and morphiceptin, and their analogs modified in position 3. Two series of analogs were synthesized by introducing unnatural aromatic amino acids in the D configuration: 3-(1-naphthyl)-D-alanine (D-1-Nal), 3-(2-naphthyl)-D-alanine (D-2-Nal), 3-(4-chlorophenyl)-D-alanine (D-ClPhe), 3-(3,4-dichlorophenyl)-D-alanine (D-Cl2Phe). Antinociceptive activity of endomorphin-2, morphiceptin, and their analogs was compared in the mouse hot-plate test, performed after i.c.v. administration of the peptides at a dose of 10 microg/animal. The best results were obtained for two morphiceptin analogs, [D-Phe3]morphiceptin and [D-1-Nal3]morphiceptin, which showed greatly improved analgesic activity, as compared to morphiceptin. In the endomorphin-2 series none of the modifications produced analogs more potent than the parent compound, but [D-1-Nal3]endomorphin-2 was the best analog. Antinociception induced by endomorphin-2 was reversed by concomitant i.c.v. administration of [D-Phe3]endomorphin-2, [D-2-Nal3]endomorphin-2, and [D-2-Nal3]morphiceptin, indicating that these analogs were weak mu-opioid antagonists.  相似文献   

4.
Seven dermorphin hepta- and tetrapeptide analogues containing [3,4] amide bond replacement by a carbon-carbon double and single bond were prepared. 1H NMR studies of the pseudoheptapeptide in DMSO indicate the presence of extended conformations with stacking of the side chains in the N-terminal part and an inverse γ-turn around Ser7 in the conformational equilibrium. The binding data show that the affinity of the analogues for the μ-receptor is only slightly diminished in the d -Ala2 series and is more affected in the d -Arg2 series. Since the Gly4NH is not present in these compounds we conclude that this NH is not required to stabilize the bioactive conformation nor is it directly involved in binding to the receptor.  相似文献   

5.
Because of their poor metabolic stability and limited blood-brain barrier permeability, endomorphins have a low analgesic efficacy when administered systemically. Therefore, it is of great importance to design analogues with improved peptidase resistance and better delivery to the central nervous system. Recently, novel endomorphin-2 analogues have been synthesized, which proved to bind with high affinity and selectivity to the μ-opioid receptors and showed proteolytic resistance. In this study, we have analysed the transport characteristics of endomorphin-2 and three of its analogues [Dmt-Pro-Phe-Phe-NH(2) , Tyr-(1S,2R)Acpc-Phe-Phe-NH(2) and Tyr-(1S,2R)Achc-Phe-Phe-NH(2) ] using an in vitro blood-brain barrier model. The lipophilicity of the analogues, as assessed by their octanol/water partition coefficients, was higher than that of endomorphin-2. The flux of all four peptides from the apical (blood) side to the basolateral (brain) side was not saturable in the 10nm-1mm concentration range, suggesting that a passive mechanism plays a major role in their transport. The permeability coefficient of the analogues was significantly higher than that of endomorphin-2, suggesting increased blood-brain barrier penetration properties. We conclude that because of their good peptidase resistance and improved transport through brain endothelial cells, these endomorphin-2 analogues will have better analgesic properties in vivo.  相似文献   

6.
Endomorphin-1 (Tyr-Pro-Trp-Phe-NH(2)) and endomorphin-2 (Tyr-Pro-Phe-Phe-NH(2)) are two recently isolated mu-opioid selective peptides with a potent antinociceptive activity, involved in a number of physiological processes, including food intake, vasomotricity, sexual behavior, as well as neuroendocrine and cardiorespiratory functions. The neuroanatomical distribution of endomorphins prompted us to study their antidepressant activity in two animal behavioral models of depression: forced-swimming and tail-suspension tests. In both tests, the intracerebroventricular (i.c.v.) injection of either endomorphin-1 or endomorphin-2 significantly decreased the duration of immobility, interpreted as an expression of 'behavioral despair', which could be related to the depression syndrome. These effects of endomorphins did not result from the stimulation of the animal motor activity. We have also demonstrated that the antidepressant-like effect of endomorphins was antagonized by the universal opioid antagonist, naloxone and the mu-opioid receptor selective antagonist, beta-funaltrexamine. In contrast, this effect was not antagonized by delta- and kappa-opioid receptor selective antagonists, naltrindole and nor-binaltorphimine, respectively. The results of the present study demonstrate that endomorphin-1 and endomorphin-2 produce potent antidepressant-like effects after i.c.v. injection in mice. We may suggest that endomorphins and the mu-opioid receptors might be involved in the physiopathology of depressive disorders, and that the endomorphinergic system could serve as a novel target for the development of antidepressant drugs.  相似文献   

7.
Endomorphin-2 (EM-2: Tyr-Pro-Phe-Phe-NH(2)) is an endogenous tetrapeptide that combines potency and efficacy with high affinity and selectivity toward the μ opioid receptor, the most responsible for analgesic effects in the central nervous system. The presence of the Pro(2) represents a crucial factor for the ligand structural and conformational properties. Proline is in fact an efficient stereochemical spacer, capable of inducing favorable spatial orientation of aromatic rings, a key factor for ligand recognition and interaction with receptors. Here the Pro(2) has been replaced by 4(S)-NH(2)-2(S)-proline (cAmp), a proline/GABA cis-chimera residue. This bivalent amino acid maintains the capacity to influenc the tetrapeptide conformation and offers the opportunity to generate new linear models and unusually constrained cyclic analogues characterized by an N-terminal Tyr bearing a free α-amino group. The results indicate that the new analogues do not show affinity for both δ and κ opioid receptors and bind only poorly to the μ receptors (for cyclopeptide 9: K(i)(μ) = 660 nM; GPI (IC(50)) = 1.4% at 1 μM; for linear tetrapeptide acid 13: K(i)(μ) = 2000 nM; GPI (IC(50)) = 0% at 1 μM; for linear tetrapeptide amide 15: K(i)(μ) = 310 nM; GPI (IC(50)) = 894 nM).  相似文献   

8.
Two highly selective mu-opioid receptor agonists, endomorphin-1 (EM-1) and endomorphin-2 (EM-2), have been identified and postulated to be endogenous mu-opioid receptor ligands. The present minireview describes the antinociceptive properties with the tail-flick test of these two ligands given intracerebroventricularly (i.c.v.) and intrathecally (i.t.) in ICR mice. EM-1 or EM-2 given i.c.v. or i.t. dose-dependently produce antinociception. These antinociceptive effects induced by EM-1 and EM-2 given i.c.v. or i.t. are selectively mediated by the stimulation of mu-, but not delta- or kappa-opioid receptors. Like other mu-opioid agonists morphine and DAMGO ([D-Ala2,NMePhe4,Gly5-ol]enkephalin), EM-1 and EM-2 given i.c.v. activate descending pain controls by the releases of noradrenaline and 5-HT and subsequently act on alpha2-adrenoceptors and 5-HT receptors, respectively, in the spinal cord to produce antinociception. However, the antinociception induced by EM-2 given i.c.v. or i.t. also contain an additional component, which is mediated by the release of dynorphin A(1-17) acting on kappa-opioid receptors at the supraspinal and spinal sites. In addition, the antinociception induced by EM-2 given i.c.v. contains another component, which is mediated by the release of Met-enkephalin acting on delta2-opioid receptors in the spinal cord. It is proposed that there are two subtypes of mu-opioid receptors,which are involved in EM-1- and EM-2-induced antinociception. One subtype of mu-opioid receptors is stimulated by EM-1, EM-2 and other mu-opioid agonists morphine and DAMGO; and another subtype of mu-opioid is sorely stimulated by EM-2 and is involved in the releases of dynorphin A(1-17) and Met-enkephalin for the production of antinociception.  相似文献   

9.
The antitussive effects of endomorphin-1 and endomorphin-2, endogenous mu-opioid receptor agonists, on capsaicin-induced coughs were examined in mice. Endomorphin-2, at doses of 3, 10 and 30 microg, i.c.v., dose-dependently inhibited the number of capsaicin-induced coughs. However, the same doses (3, 10 and 30 microg) of endomorphin-1 injected with i.c.v. had no significant effects on the number of capsaicin-induced coughs. The antitussive effect of endomorphin-2 was significantly reduced by beta-funaltrexamine, a mu(1)/mu(2)-opioid receptor antagonist, but not naloxonazine, a selective mu(1)-opioid receptor antagonist. Furthermore, the antitussive effect of endomorphin-2 was also partially but significantly reduced by nor-binaltorphimine, a selective kappa-opioid receptor antagonist. These results indicate that the administration of the endogenous mu-opioid ligand endomorphin-2, but not endomorphin-1, into the brain produces an antitussive effect via mainly naloxonazine-insensitive mu-opioid receptors, namely mu(2)-opioid receptors and partially kappa-opioid receptors.  相似文献   

10.
The crystal and molecular structures of estramustine and two of its analogues have been determined by X-ray crystallographic techniques (a total of three different compounds). The compounds studied are estramustine [1,3,5(10)-estratriene-3,17 beta-diol-3-N,N-bis(2'- chloroethyl)carbamate] and its monohydrate, estromustine [17-oxo-1,3,5(10)-estratriene-3-yl-N,N-bis(2'-chloroethyl)carbamate], and 17-oxo-5-androsten-3 beta-yl-N,N-bis(2'-chloroethyl)carbamate. Three views of estramustine were obtained from the study of its two crystal forms. The main structural features found are as follows: (a) the geometries of the steroid moieties are closely similar to those of the parent steroids, (b) the bonds around the nitrogen atom of the nitrogen mustard grouping lie approximately in a plane in each structure, (c) the plane through the carbon atoms of the steroid A-ring lies approximately perpendicular to the plane through the carbamate atoms in each structure, (d) the carbonyl C-O of the carbamate points to the alpha side of the steroid moiety in each structure, and (e) one chlorine atom of the nitrogen mustard grouping makes a close contact [3.13 A], in each structure, to the nitrogen atom. Hydrogen bonding to the carbamate appears to occur from the alpha side of the steroid; there is no hydrogen bonding to the nitrogen atom of the carbamate group. These structural data provide some steric explanations for the resistance of the carbamate to enzymatic hydrolysis. The long in vivo half-life of the intact estramustine molecule is a result of this stability. This is responsible for the absence of alkylating ability and the propensity of the drug to bind microtubule-associated proteins and express an antimitotic mechanism of action.  相似文献   

11.
The antinociceptive effects of endomorphin-1 and endomorphin-2, endogenous mu-opioid receptor agonists, were examined using the tail-flick test in non-diabetic and diabetic mice. Endomorphin-1, at doses of 1 to 10 microg, i.c.v., and endomorphin-2, at doses of 3 to 30 microg, i.c.v., each dose dependently inhibited the tail-flick response in both non-diabetic and diabetic mice. There was no significant difference between the antinociceptive effects of endomorphin-1 in non-diabetic mice and diabetic mice. The antinociceptive effect of endomorphin-2 was greater in non-diabetic mice than in diabetic mice. In non-diabetic mice, the antinociceptive effects of endomorphin-1 and endomorphin-2 were significantly reduced by beta-funaltrexamine, a mu-opioid receptor antagonist, and naloxonazine, a selective mu(1)-opioid receptor antagonist, but not by naltrindole, a delta-opioid receptor antagonist, or nor-binaltorphimine, a kappa-opioid receptor antagonist. In diabetic mice, the antinociceptive effect of endomorphin-2 was significantly reduced by beta-funaltrexamine and naloxonazine. However, these micro-opioid receptor antagonists had no significant effect on the antinociceptive effect of endomorphin-1 in diabetic mice. The antinociception induced by endomorphin-1 in diabetic mice was significantly reduced by naltrindole and 7-benzylidenenaltrexon, a selective delta(1)-opioid receptor antagonist, administered i.c.v. However, nor-binaltorphimine had no significant effect on the antinociceptive effects of endomorphin-1 and endomorphin-2 in diabetic mice. These results indicate that the antinociceptive effects of endomorphin-1 and endomorphin-2 in non-diabetic mice are mediated through the activation of mu(1)-opioid receptors, whereas in diabetic mice, endomorphin-1 and endomorphin-2 may produce antinociception through different actions at delta(1)- and mu(1)-opioid receptors, respectively.  相似文献   

12.
In search for the bioactive conformation of glucagon, "positional cyclization scanning" was used to determine secondary structures of glucagon required for maximal interaction with the glucagon receptor. Because glucagon is flexible in nature, its bioactive conformation is not known except for an amphiphilic helical conformation at the C-terminal region. To understand the conformational requirement for the N-terminal region that appears to be essential for signal transduction, a series of glucagon analogues conformationally constrained by disulfide or lactam bridges have been designed and synthesized. The conformational restrictions via disulfide bridges between cysteine i and cysteine i + 5, or lactam bridges between lysine i and glutamic acid i + 4, were applied to induce and stabilize certain corresponding secondary structures. The results from the binding assays showed that all the cyclic analogues with disulfide bridges bound to the receptor with significantly reduced binding affinities compared to their linear counterparts. On the contrary, glucagon analogues containing lactam bridges, in particular, c[Lys(5), Glu(9)]glucagon amide (10) and c[Lys(17), Glu(21)]glucagon amide (14), demonstrated more than 7-fold increased receptor binding affinities than native glucagon. These results suggest that the bioactive conformation of glucagon may adopt a helical conformation at the N-terminal region as well as the C-terminal region, which was not evident from earlier biophysical studies of glucagon.  相似文献   

13.
14.
Syntheses of analogues of the C-terminal octa- and heptapeptide of cholecystokinin are described. These analogues were obtained by replacing the C-terminal phenylalanine residue by 2-phenylethyl alcohol or by 2-phenylethylamine derivatives and by replacing the tryptophan residue by a d -tryptophan. The CCK-derivatives were tested for their ability to inhibit binding of labeled CCK-8 to rat pancreatic acini and to guinea pig brain membranes, and for their action on stimulation of amylase release from rat pancreatic acini. Some of these derivatives appeared to exhibit only part of the CCK-activity on amylase release, the d -Trp analogues behaving as CCK-antagonists.  相似文献   

15.
Ionotropic glutamate receptors (iGluRs) possess in their extracellular region a large N-terminal domain (NTD) that precedes the agonist-binding domain and displays a clamshell-like architecture similar to the bacterial leucine/isoleucine/valine-binding protein (LIVBP). In addition to their role in receptor assembly, in NMDA receptors (NMDARs), the NTDs of GluN2A and GluN2B subunits form a major site for subunit-specific regulation of ion channel activity, in particular through binding of allosteric modulators such as the synaptically-enriched zinc ion. A recent crystallographic study of the isolated GluN2B NTD has revealed an unexpected twisted closed-cleft conformation caused by a rotation of ∼50° in the interlobe orientation compared with all other known LIVBP-like structures (Karakas et al., 2009). By measuring currents carried by recombinant NMDARs, we now provide functional evidence, through disulfide cross-linking and the identification of a new zinc-binding residue (D283), that the GluN2A NTD of intact GluN1/GluN2A receptors adopts a similar twisted conformation in its closed-cleft state. We propose that the twisted NTD conformation is a distinct structural feature of NMDARs (at least for GluN2A and GluN2B subunits), arguing for interactions between the NTDs in the tetrameric complex that are likely to differ between NMDA and AMPA/kainate receptors.  相似文献   

16.
The synthesis of six close analogues of baclofen [3-(4-chlorophenyl)-4-aminobutyric acid] (BAC), a potent GABAB agonist, are reported. The compounds were designed starting from the structural informations contained in the solid state of BAC, regarded as a possible bioactive conformation, in which the p-chlorophenyl ring is perpendicular to the GABA backbone. A similar conformational situation was created by rigidifying the BAC structure by means of methylene (1), ethylene (2 and 6), or propylene (3) units, or by introducing chlorine atoms (4 and 5) into the ortho positions ("ortho effect"). Only compound 5 showed affinity for the GABAB receptor. Compound 6 [1-(aminomethyl)-5-chloro-2,3-dihydro-1H-indene-1-acetic acid], which was initially considered as representing the optimal mimic of the solid-state conformation of BAC, was surprisingly found inactive. An extensive conformational analysis was performed on compounds 1-6 in order to evaluate their flexibility and the overlap of their conformational population with respect to BAC. For this purpose a distance map was generated from three possible pharmacophoric groups: the amino and the carboxylic functions, and the phenyl ring. Finally, several explanations are proposed to account for the poor affinities of the prepared compounds such as steric hindrance or flexibility demand of the receptor.  相似文献   

17.
The C terminus of endomorphin-2 (EM-2) analogues (Tyr-Pro-Phe-NH-X) was modified with aromatic, heteroaromatic, or aliphatic groups (X = phenethyl,benzyl, phenyl, naphthyl, pyridyl, quinolyl, isoquinolyl, tert-butyl, cyclohexyl, or adamantyl; 3-18) to study their effect on opioid activity. Only 9 (1-naphthyl), 11 (5-quinolyl), 16 (cyclohexyl), and 18 (2-adamantyl) exhibited mu-opioid receptor affinity in the nanomolar range (K(i) = 2.41-6.59 nM), which, however, was 3- to 10-fold less than the parent peptide. Replacement of Tyr(1) by Dmt (2',6'-dimethyl-l-tyrosine) (19-32) exerted profound effects: (i) acquisition of high mu-opioid receptor affinity (K(i) = 0.11-0.52 nM) except 23 (Ph); (ii) presence of potent functional mu-opioid receptor agonism (IC(50) < 1 nM) for 19 ([Dmt(1)]EM-2), 27 (1-naphthyl), 29 (5-quinolyl), and 32 (5-isolquinolyl); (iii) association of weak delta-opioid antagonist activity (pA(2) = 5.41-7.18) except 19 ([Dmt(1)]EM-2), 20 (H), 27 (1-naphthyl), and in particular 29 (5-quinolyl) with its potent delta-agonism (IC(50) = 0.62 nM, pA(2) = 5.88); (iv) production of antinociception after ic administration of 32 (5-isoquinolyl) in mice, a bioactivity absent in the corresponding Tyr(1) analogue (14); and (v) preferential cis orientation (cis/trans = 3:2 to 7:3) at the Dmt-Pro amide bond, in contrast to the Tyr-Pro amide trans orientation (cis/trans = 1:2 to 1:3). Thus, [Dmt(1)]EM-2 analogues with hydrophobic C-terminal extensions provide model compounds with potent mu-opioid receptor bioactivity and dual functional agonism.  相似文献   

18.
19.
The opioid properties of endomorphin derivatives containing a C-terminal alcoholic(-ol) function were compared to the parent amidated compounds in isolated organs (longitudinal muscle strip of guinea-pig ileum and mouse vas deferens). Similar data were also generated for the mu-opioid receptor selective agonist synthetic peptide (D-Ala2, MePhe4, Gly5-ol)-enkephalin (DAMGO) and its Gly5-NH2 congener (DAMGA). Endomorphin-1-ol (Tyr-Pro-Trp-Phe-ol) had an IC50 of 80.6 nM in mouse vas deferens and 61.2 nM in guinea-pig ileum; the corresponding values for endomorphin-2-ol (Tyr-Pro-Phe-Phe-ol) were 49.6 and 48.2 nM, for DAMGO 59.8 and 29.2 nM, respectively. As it was indicated by the antagonism by naltrexone, the agonist actions were exerted exclusively at mu-opioid receptors in both organs. The -ol derivatives were slightly (2.3-4.3 times) less potent than the parent amides in the bioassays: all peptides had, apparently, full agonist properties in intact preparations. With the aim of revealing potential partial agonist properties among the investigated peptides, we partially inactivated the mu-opioid receptor pool in mouse vas deferens by 5x10(-7) M beta-funaltrexamine. The calculated receptor constants indicated a "high-affinity, low intrinsic efficacy" profile (i.e. a potential partial agonist property) for endomorphin-1, an intermediate character for endomorpin-1-ol and full agonism for DAMGA and DAMGO. Apparently, a higher receptor fraction remained accessible for endomorphin-1 (42.8%) than for the -ol congener (14.0%), DAMGO (20.2%) and DAMGA (14.1%) after partial inactivation.  相似文献   

20.
The morphine-like (+)-phenylmorphan, the atypical (-)-enantiomer, and some analogues have been tested in receptor binding assays selective for opioid mu 1, mu 2, delta, kappa 1, and kappa 3 receptors. The affinities of all of the compounds except one, including the atypical (-)-phenylmorphan, were greatest for mu 1 and mu 2 receptors. The only exception was the (+)-9 alpha-methyl analogue which had slightly greater affinity for the kappa 1 receptor. The selective receptor binding assays provide evidence that opioids in which the phenyl ring is constrained to be equatorial on the piperidine ring can have considerable affinity for mu receptors. In addition, dose-response curves were determined for (+)- and (-)-phenylmorphan using the mouse tail-flick assay with the (+)-enantiomer found to be about 7 times more potent. Pretreatment with the selective opioid antagonists beta-FNA (mu 1 and mu 2), naloxonazine (mu 1), nor-BNI (kappa 1), and naltrindole (delta) suggests that the antinociceptive activity of both enantiomers is mediated through mu receptors. The pretreatment with naloxonazine, which attenuated the antinociceptive effect, shows that both (+)- and (-)-phenylmorphan are mu 1 agonists while intrathecal administration shows that both are mu 2 agonists. Conformational energy calculations on the compounds were also performed using the MM2-87 program. Consistent with previous conformational results for the phenylmorphans (J. Med. Chem. 1984, 27, 1234-1237), the most potent antinociceptive compounds preferred a particular orientation of the phenyl ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号