首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Carrier-mediated transport of drugs occurs in various tissues in the body and may largely affect the rate of distribution and elimination. Saturable translocation mechanisms allowing competitive interactions have been identified in the kidneys (tubular secretion), mucosal cells in the gut (intestinal absorption and secretion), choroid plexus (removal of drug from the cerebrospinal fluid), and liver (hepatobiliary excretion). Drugs with quaternary and tertiary amine groups represent the large category of organic cations that can be transported via such mechanisms. The hepatic and to a lesser extent the intestinal cation carrier systems preferentially recognize relatively large molecular weight amphipathic compounds. In the case of multivalent cationic drugs, efficient transport only occurs if large hydrophobic ring structures provide a sufficient lipophilicity-hydrophilicity balance within the drug molecule. At least two separate carrier systems for hepatic uptake of organic cations have been identified through kinetic and photoaffinity labeling studies. In addition absorptive endocytosis may play a role that along with proton-antiport systems and membrane potential driven transport may lead to intracellular sequestration in lysosomes and mitochondria. Concentration gradients of inorganic ions may represent the driving forces for hepatic uptake and biliary excretion of drugs. Recent studies that aim to the identification of potential membrane carrier proteins indicate multiple carriers for organic anions, cations, and uncharged compounds with molecular weights around 50,000 Da. They may represent a family of closely related proteins exhibiting overlapping substrate specificity or, alternatively, an aspecific transport system that mediates translocation of various forms of drugs coupled with inorganic ions. Consequently, extensive pharmacokinetic interactions can be anticipated at the level of uptake and secretion of drugs regardless of their charge.  相似文献   

2.
Drug transport in intestine, liver and kidney is similar, because in each case transport occurs across a barrier of epithelial cells. However, the physiological conditions differ in each organ: intestinal drug absorption is largely influenced by physicochemical conditions in the intestinal lumen; actual transport across the epithelial barrier occurs mainly by diffusion; carrier-mediated transport plays a subordinate role. In contrast, hepatic uptake is mediated by specific carriers, which transport a wide variety of drugs into the liver cell and then release them either into bile, or back into the portal blood. It is unclear how many carrier systems are involved, how they are organized in the liver cell membrane, and to what extent their substrate specificities overlap. Renal secretion and reabsorption of drugs is mediated by highly active carrier systems for cations and anions. Their cooperative action results in either active reabsorption or active secretion of drugs.Dedicated to Professor Dr. med. Herbert Remmer on the occasion of his 65th birthday  相似文献   

3.
Saturable pharmacokinetics in the renal excretion of drugs   总被引:5,自引:0,他引:5  
The renal excretion of drugs is the result of different mechanisms: glomerular filtration, passive back diffusion, tubular secretion and tubular reabsorption. Of these mechanisms the last 2 are saturable, as they involve carrier transport. This also implies that both tubular secretion and tubular reabsorption are susceptible to competition between similar substrates for a common carrier site. Furthermore, transport via these mechanisms is energy-dependent, so-called active transport, able to concentrate a drug. Tubular secretion takes place in the proximal tubule of the nephron. Many organic compounds are actively secreted, but there are separate carrier systems for anions and cations. Anions appear to be transported actively over the basolateral membrane and by a less efficient non-active carrier-mediated process (facilitated diffusion) over the brush border membrane. As a result of these mechanisms, anions tend to accumulate in proximal tubular cells. For cations, however, the active transport step operates over the brush border membrane, whereas the uptake of the cation in the cell occurs via facilitated diffusion over the basolateral membrane. Active reabsorption is most prominent for many nutrients and endogenous substrates (amino acids, glucose, vitamins), but various exogenous compounds also have a certain affinity for the reabsorptive carrier systems. Uricosuric drugs, for instance, interfere with carrier-mediated reabsorption of urate. The occurrence of saturable excretion routes causes dose-dependent, non-linear pharmacokinetics. In clinical pharmacokinetics, tubular secretion can adequately be described with the use of a Michaelis-Menten equation. This implies that a compound undergoing tubular secretion exhibits a concentration-dependent renal clearance. At low plasma concentrations the clearance will be maximal, and for several drugs may be as high as the effective renal plasma flow. Increasing concentrations cause decreasing renal clearance, until eventually the secretion mechanism becomes fully saturated. Then the excretion of the drug in urine will depend primarily on its net rate of filtration. It is important to realise that the non-linear kinetics will be evident from the plasma kinetics only when the saturable pathway contributes to at least some 20% of the total body clearance. Interactions with other substrates, however, are likely to occur even when only a very small amount of drug is transported by the carrier system. Non-linear kinetics inevitably lead to disproportionate accumulation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
  1. In the present study it was tested whether known P-glycoprotein (P-gp) substrates/MDR reversal agents interact with small (type 1) and bulky (type 2) cationic drugs at the level of biliary excretion in the rat isolated perfused liver model (IPRL). The studies were performed with model compounds tri-n-butylmethylammonium (TBuMA) (a relatively small type 1 organic cation), rocuronium (Roc) (a bulky type 2 organic cation) and the classical P-gp substrate doxorubicin (Dox).
  2. Inhibitors were given in a 4 fold molar excess to the substrate studied. To minimize an interaction of the substrates at the hepatic uptake level, the competing compounds were added when over 55% to 85% of the administered dose of the model compounds had been removed from the perfusate and taken up by the liver.
  3. We found a mutual interaction between TBuMA and procainamidethobromide (PAEB), both type 1 cationic compounds during biliary excretion. Interestingly, type 2 compounds, such as rocuronium, clearly inhibited type 1 cationic drugs as well as Dox secretion into bile, whereas type 1 compounds did not significantly inhibit type 2 drug excretion into bile. The type 1 cations PAEB and TBuMA only moderately inhibited Dox biliary excretion. Dox did not inhibit the biliary excretion of the type 2 agent rocuronium whereas rocuronium reduced Dox biliary excretion by 50% compared to controls.
  4. MDR substrates/reversal agents like verapamil, quinine, quinidine and vinblastine strongly reduced both type 1 and type 2 organic cation excretion into bile. Dox secretion into bile was also profoundly reduced by these drugs, vinblastine being the most potent inhibitor in general.
  5. The lack of mutual inhibition observed in some combinations of substrates may indicate that major differences in affinity of the substrates for a single excretory system exist. Alternatively, multiple organic cation transport systems with separate substrate specificities may be involved in the biliary excretion of amphiphilic drugs. Furthermore, the present study revealed a clear positive correlation between the lipophilicity of the potential inhibitors studied and their respective inhibitory activity on the biliary excretion of the model drugs investigated.
  6. Our data are compatible with a potential involvement of P-glycoprotein in the hepatobiliary excretion of doxorubicin as well as of some type 1 and type 2 organic cations. Furthermore we postulate that the hydrophobic properties of the amphiphilic cationic drugs studied play a crucial role in the accommodation of these agents by P-glycoprotein and/or other potential cationic drug carrier proteins in the canalicular membrane.
  相似文献   

5.
The secretion of cationic drugs and endogenous metabolites is a major function of the kidney. This is accomplished by organic cation transport systems, mainly located in the proximal tubules. Here, we describe a model for continuous measurement of organic cation (OC) transport. In this model, organic cation transport in individual freshly isolated rat proximal tubules is investigated by use of digital fluorescence imaging. To directly measure organic cation transport across the basolateral membrane, the fluorescent organic cation 4-(4-dimethylaminostyryl)-N-methylpyridinium (ASP+) is used with a customized perfusion chamber. ASP+ uptake in this model displayed the characteristics of organic cation transport. Over the tested range of 1 to 50 microM, it showed a concentration-dependent uptake across the basolateral membrane. In the presence of competitive inhibitors of OC transport such as N1-methylnicotinamide+, tetraethylammonium+, and choline+, a concentration-dependent and reversible inhibition of ASP+ uptake could be documented. In conclusion, continuous measurement of organic cation transport in freshly isolated rat proximal tubules by digital fluorescence imaging using ASP+ is a useful tool for investigation of drug transport and interactions and, furthermore, may be helpful for investigation of organic cation transport under pathophysiological conditions.  相似文献   

6.
Trientine dihydrochloride is used to treat Wilson's disease by chelating copper and increasing its urinary excretion. The mechanism of renal excretion of trientine has been investigated in-vivo and in-vitro. Trientine clearance in the rat was significantly faster than creatinine clearance. When trientine and the same number of moles of copper ions were administered simultaneously to the rat, however, trientine clearance decreased to almost the same level as the creatinine clearance. To clarify this active excretion system for trientine, the uptake of trientine and a physiological polyamine compound, spermine, was investigated using rat renal brush-border membrane vesicles. Although, because trientine and spermine are organic cations, the H+/organic cation transporter is expected to recognize these compounds, neither an outwardly directed H+ gradient nor an inward Na+ gradient stimulated trientine uptake. [14C]Spermine uptake was, nevertheless, trans-stimulated by both unlabelled spermine and trientine and the trans-stimulating effect of spermine on trientine uptake was, furthermore, completely abolished by addition of copper ions to the incubation medium. These results suggest that there is a specific transport system for spermine and trientine on the renal brush-border membrane. This transport system contributes to the secretion of trientine in the kidney proximal tubule but does not recognize the trientine-copper complex.  相似文献   

7.
The mechanism involved in the renal excretion of disopyramide (DPM) is still incompletely understood. The purpose of this study was to examine the renal handling of DPM and the interactions between DPM and several organic anionic or cationic drugs related to the renal tubular secretion, using the renal clearance and renal cortical slices uptake techniques in rats. The clearance ratio of DPM was greater than that of glomerular filtration and this suggests the tubular secretion of DPM. The clearance ratio of DPM did not change after infusion of either anionic drugs (p-aminohippurate and probenecid) or a cationic drug (cimetidine). The results of time and concentration-dependent experiments using renal cortical slices demonstrated that DPM was accumulated against a concentration gradient by a saturable process. Inhibition of uptake by 2,4-dinitrophenol and cyanide indicated an energy dependence. DPM uptake was considerably inhibited by the cationic drugs, cimetidine and quinine, suggesting that DPM was transported by the cation transport mechanism. Probenecid, a competitor for the anion transport mechanism, moderately inhibited DPM uptake.  相似文献   

8.
The intestine, primarily regarded as an absorptive organ, is also prepared for the elimination of certain organic acids, bases and neutral compounds depending on their affinity to intestinal carrier systems. Several of the transport systems known to mediate efflux in the major clearing organs--liver and kidney--are also expressed in the intestine. Examples of secretory transporters in the intestine are P-glycoprotein, members of the multidrug resistance associated protein family, breast cancer resistance protein, organic cation transporters and members of the organic anion polypeptide family. In this communication, the P-glycoprotein mediated intestinal secretion of talinolol, a model compound showing metabolic stability, has been investigated in the jejunum, ileum and colon of rat intestine by single-pass perfusion. A model has been developed which demonstrates an increase in carrier-mediated secretion in the order jejunum相似文献   

9.
The use of polytherapy in clinical practice necessitates an appreciation and understanding of the potential for drug interactions. Recent publications provide insight into the role of the active transport systems P-glycoprotein (P-gp) and human organic anion-transporting polypeptides (OATPs) in drug interactions. Active drug transporters influence the bioavailability of a number of drugs by controlling their movement into, and out of, cells. The active transport systems P-gp and OATP play an important role in drug elimination. The activity of these transport systems is controlled, in part, by genetic factors; however, drugs and foods also influence the activity of these systems. It appears that interference with P-gp or OATP, either as upregulation or inhibition, may affect plasma drug concentrations by altering intestinal absorption, proximal renal-tubular excretion or biliary excretion. Overall, the net bioavailability of a drug or substance is affected by the relative contributions of cellular efflux (P-gp) and influx (OATP) mechanisms and to what extent these systems are active during phases of uptake and absorption versus removal and excretion from the body. Many of the drugs and foods that affect active drug transport activity are known to interact with the cytochrome P450 enzyme system; therefore, the net effect of concomitant drug administration is complex. One must now consider the impact of metabolism (CYP-mediated drug biotransformation), P-gp-mediated drug efflux and OATP-mediated uptake when making assessments of drug absorption and distribution.  相似文献   

10.
Because rat organic cation transporter 1 (Oct1, SLC22a1) is expressed mainly in the liver and mediates drug transport, its activity may determine the hepatic handling of cationic drugs. Here, we studied the regulation mechanism of the expression of Oct1, focusing on the nuclear receptors. In vitro studies using cultured hepatocytes indicated that expression of Oct1 was up-regulated by treatment with pregnenolone-16 alpha-carbonitrile (PCN) and by overexpression of rat pregnane X receptor (PXR). In addition, isolated rat hepatocytes exhibited an increase of 1-methyl-4-phenylpyridinium (MPP(+)) uptake on treatment with PCN. When rats were subcutaneously administered PCN, an increase of biliary excretion clearance and distribution volume was observed for drugs such as MPP(+), metformin, and tetraethylammonium, although the effects on pharmacokinetic parameters were variable among the tested drugs. In addition, the expression of Oct2 in kidney was increased by treatment with PCN. Thus, PXR ligands appear to regulate the expression of organic cation transporters in rats and thereby to influence the pharmacokinetic properties of cationic drugs. Because PXR ligands include various clinically used drugs, alterations of hepatic drug handling may arise from interactions between cationic drugs that are substrates of Oct1 and ligands of PXR.  相似文献   

11.
The H2-receptor antagonists famotidine and cimetidine are both basic drugs that are predominantly eliminated by the kidneys. Cimetidine has been shown to inhibit the renal secretion of tetraethyl-ammonium bromide (TEAB) but not p-aminohippuric acid (PAH), suggesting that cimetidine is secreted by an organic cation transport system [Weiner and Roth: J. Pharmacol. Exp. Ther. 216: 516 (1981)]. The present study shows that famotidine behaves like cimetidine in that it also inhibits TEAB but not PAH excretion. Where a high concentration of cimetidine in plasma has an inhibitory effect on the renal excretion of famotidine, the reverse is not true, i.e. high plasma levels of famotidine have no effect on the excretion of cimetidine. Further evidence that additional transport systems are involved in the renal tubular secretion of cimetidine is as follows. Quinine, a potent competitor of the organic cation transport system, inhibits the secretory component of famotidine renal clearance but not that of cimetidine. Probenecid, a classic competitor for the organic anion transport system, inhibits the renal excretion of cimetidine but not famotidine. However, the effect of probenecid is minor and not sufficient to account for other components of cimetidine secretion not affected by famotidine and quinine.  相似文献   

12.
Recently, hepatic transport processes have been recognized as important determinants of drug disposition. Therefore, it is not surprising that characterization of the hepatic transport and biliary excretion properties of potential drug candidates is an important part of the drug development process. Such information also is useful in understanding alterations in the hepatobiliary disposition of compounds due to drug interactions or disease states. Basolateral transport systems are responsible for translocating molecules across the sinusoidal membrane, whereas active canalicular transport systems are responsible for the biliary excretion of drugs and metabolites. Several transport proteins involved in basolateral transport have been identified including the Na(+)-taurocholate co-transporting polypeptide [NTCP (SLC10A1)], organic anion transporting polypeptides [OATPs (SLCO family)], multidrug resistance-associated proteins [MRPs (ABCC family)], and organic anion and cation transporters [OATs, OCTs (SLC22A family)]. Canalicular transport is mediated predominantly via P-glycoprotein (ABCB1), MRP2 (ABCC2), the bile salt export pump [BSEP (ABCB11)], and the breast cancer resistance protein [BCRP (ABCG2)]. This review summarizes current knowledge regarding these hepatic basolateral and apical transport proteins in terms of substrate specificity, regulation by nuclear hormone receptors and intracellular signaling pathways, genetic differences, and role in drug interactions. Transport knockout models and other systems available for hepatobiliary transport studies also are discussed. This overview of hepatobiliary drug transport summarizes knowledge to date in this rapidly growing field and emphasizes the importance of understanding these fundamental processes in hepatic drug disposition.  相似文献   

13.
Drugs are exsorbed from the blood across the gastrointestinal membranes by passive or active processes. In the case of a passive transport mechanism, the exsorption of drugs depends on the concentration gradients between the serosal and mucosal sides. The extent of secretion (exsorption) is determined by numerous factors such as extent of binding to serum proteins, distribution volume, lipophilicity, pKa and molecular size of drugs, and the blood flow rate in the gut. Specific transport systems such as P-glycoprotein (P-gp), organic cation and organic anion transporters are found to be involved in active intestinal secretion of drugs. Intestinal secretory transport systems reduce the extent of drug absorption sometimes resulting in low oral bioavailability. It is, therefore, important to know whether poor drug absorption is due to the involvement of specialized secretory transport systems. Modulation of intestinal secretory transport can be a means to enhance absorption of drugs with low oral bioavailability if exsorption of drugs is based on active secretion pathways that are open for control from the "outside.  相似文献   

14.
Mechanisms and clinical implications of renal drug excretion.   总被引:3,自引:0,他引:3  
The body defends itself against potentially harmful compounds like drugs, toxic compounds, and their metabolites by elimination, in which the kidney plays an important role. Renal clearance is used to determine renal elimination mechanisms of a drug, which is the result of glomerular filtration, active tubular secretion and reabsorption. The renal proximal tubule is the primary site of carrier-mediated transport from blood to urine. Renal secretory mechanisms exists for, anionic compounds and organic cations. Both systems comprises several transport proteins, and knowledge of the molecular identity of these transporters and their substrate specificity has increased considerably in the past decade. Due to overlapping specificities of the transport proteins, drug interactions at the level of tubular secretion is an event that may occur in clinical situation. This review describes the different processes that determine renal drug handling, the techniques that have been developed to attain more insight in the various aspects of drug excretion, the functional characteristics of the individual transport proteins, and finally the implications of drug interactions in a clinical perspective.  相似文献   

15.
Both in humans and animals hepatic elimination is an important factor determining the duration of action of non-depolarizing neuromuscular blocking drugs. To elucidate the hepato-biliary disposition of muscle relaxants the pharmacokinetics of several structurally related but physicochemically distinct steroidal neuromuscular blocking drugs were studied in isolated perfused rat livers. Pharmacokinetics analysis with the DIFFIT computer program enabled the simultaneous fitting of independently measured perfusate disappearance and biliary excretion rate curves using a numerical approach. The hepatic disposition of the steroidal muscle relaxants could be adequately described by a three compartment model with elimination from the peripheral compartment V2 (biliary excretion) and storage in a deep compartment (V3) connected to V2. In addition, for vecuronium only slow ester hydrolysis occurring in V2 and V3 was included in the model. The lipophilicity rather than the relative mobility of the muscle relaxants showed a positive relationship with biliary clearance (Cl20) and the initial hepatic uptake (Cl12), indicating that hepato-biliary transport of these organic cations is highly dependent on the hydrophobic character of the compounds. In addition, net hepatic uptake of the steroidal cations was influenced markedly by transport from the liver to perfusate (hepatic efflux). This hepatic efflux (k21) decreased with increasing lipophilicity. In contrast, the extent of intracellular sequestration into deep compartments, indicated by high k23/k32 ratios, seemed to be inversely related to the lipophilicity of the muscle relaxants and might explain the observed prolonged hepatic storage of some of these compounds. In combination with data from subfractionation studies the results indicate that the pharmacokinetic analysis of the hepatic disposition of steroidal muscle relaxants may be used to evaluate actual transport phenomena participating in the hepatic disposition of these drugs.  相似文献   

16.
17.
The hepatobiliary system and the kidneys are the main routes by which drugs and their metabolites leave the body. Compounds that are mainly excreted into bile in general have relatively high molecular weights, are amphipathic and highly bound to plasma proteins. In contrast, compounds that are predominantly excreted into urine have relatively low molecular weights, are more hydrophilic and generally less protein bound. The first step in drug elimination in liver and kidney is uptake into hepatocytes or into proximal tubular cells. The substrate specificity and affinity of the uptake carriers expressed at the basolateral membranes of hepatocytes and proximal tubular cells could therefore play an important role for the determination of the main elimination route of a compound. This review discusses the tissue distribution, substrate specificity, transport mechanism, and regulation of the members of the organic anion transporting polypeptide (Oatp/OATP) superfamily (solute carrier family SLC21A) and the SLC22A family containing transporters for organic cations (OCTs) and organic anions (OATs). The Oatps/OATPs are mainly important for the hepatic uptake of large amphipathic organic anions, organic cations and uncharged substrates, whereas OCTs and OATs mediate uptake of predominantly small organic cations and anions in liver and kidney.  相似文献   

18.
Purpose. The mechanism(s) responsible for the significantly higher biliary excretion of tributyl methyl ammonium (TBuMA) than of tri-ethyl methyl ammonium (TEMA) was investigated in canalicular liver plasma membrane vesicles (cLPM). Methods. The uptake of [3H]TBuMA and [3H]TEMA into cLPM in the presence of a pH gradient or ATP was measured by a rapid filtration technique. Results. The uptake of substrates into the vesicle was significantly increased by an outwardly directed pH gradient. The pH dependent uptake was saturable and cross-inhibited by the other organic cation, indicating that TEMA and TBuMA share a common transport mechanism. Kinetic analysis revealed the two compounds show similar characteristics for the pH-gradient dependent uptake. Thus, the organic cation/H+ exchange mechanism does not appear to explain the significant difference in biliary excretion of the organic cations. In the presence of ATP, however, uptake into cLPM was readily observed for TBuMA while TEMA uptake was negligible. Inhibition studies with typical P-glycoprotein substrates indicated the uptake may be mediated by the P-glycoprotein. Conclusions. Differences between TBuMA and TEMA in reactivity for an ATP dependent transport process, rather than for an organic cation/H+ exchanger, may be responsible for the markedly different biliary excretion of TBuMA and TEMA.  相似文献   

19.
A wide variety of drugs and endogenous bioactive amines are organic cations (OCs). Approximately 40% of all conventional drugs on the market are OCs. Thus, the transport of xenobiotics or endogenous OCs in the body has been a subject of considerable interest, since the discovery and cloning of a family of OC transporters, referred to as organic cation transporter (OCTs), and a new subfamily of OCTs, OCTNs, leading to the functional characterization of these transporters in various systems including oocytes and some cell lines. Organic cation transporters are critical in drug absorption, targeting, and disposition of a drug. In this review, the recent advances in the characterization of organic cation transporters and their distribution in the small intestine are discussed. The results of the in vitro transport studies of various OCs in the small intestine using techniques such as isolated brush-border membrane vesicles, Ussing chamber systems and Caco-2 cells are discussed, and in vivo knock-out animal studies are summarized. Such information is essential for predicting pharmacokinetics and pharmacodynamics and in the design and development of new cationic drugs. An understanding of the mechanisms that control the intestinal transport of OCs will clearly aid achieving desirable clinical outcomes.  相似文献   

20.
1. In the kidney, a number of transport proteins involved in the secretion of permanently charged organic cations have recently been cloned. To evaluate the possible similarities between intestine and kidney in the handling of organic cations we investigated the transport of 1-methyl-4-phenylpyridinium (MPP+) across monolayers of intestinal Caco-2 cells. MPP+ is a prototypic substrate of the cloned organic cation transporters hOCT1 and hOCT2. 2. In Caco-2 cell monolayers, the basolateral to apical flux of MPP+ was significantly greater than the apical to basolateral flux, consistent with net secretion of MPP+. 3. Net secretion of MPP+ was abolished by addition of either 10 microM cyclosporin A or 100 microM verapamil to the apical membrane. In contrast, secretion of MPP+ was unaffected by addition of either TEA (2 mM) or decynium-22 (2 microM) to either apical or basolateral membranes. These results suggest that MPP+ secretion is mediated primarily by P-glycoprotein located at the apical membrane. We found no evidence of a role for hOCT1 or hOCT2 in the secretion of MPP+. 4. In addition to net secretion of MPP+, we found evidence of a Na(+)-dependent MPP+ uptake mechanism at the apical membrane of Caco-2 cells. 5. Na(+)-dependent MPP+ uptake was sensitive to inhibition by the organic cations; decynium-22 (2 microM), TEA (2 mM) and cimetidine (5 mM) but not by carnitine, guanidine or proline. 6. These results suggest that net secretion of MPP+ across the apical membrane of Caco-2 cells is a function of the relative contributions of MPP+ secretion mediated by P-glycoprotein and MPP+ absorption mediated by a novel Na(+)-dependent transport mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号