首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The high density and atomic number of hip prostheses for patients undergoing pelvic radiotherapy challenge our ability to accurately calculate dose. A new clinical dose calculation algorithm, Monte Carlo, will allow accurate calculation of the radiation transport both within and beyond hip prostheses. The aim of this research was to investigate, for both phantom and patient geometries, the capability of various dose calculation algorithms to yield accurate treatment plans. Dose distributions in phantom and patient geometries with high atomic number prostheses were calculated using Monte Carlo, superposition, pencil beam, and no-heterogeneity correction algorithms. The phantom dose distributions were analyzed by depth dose and dose profile curves. The patient dose distributions were analyzed by isodose curves, dose-volume histograms (DVHs) and tumor control probability/normal tissue complication probability (TCP/NTCP) calculations. Monte Carlo calculations predicted the dose enhancement and reduction at the proximal and distal prosthesis interfaces respectively, whereas superposition and pencil beam calculations did not. However, further from the prosthesis, the differences between the dose calculation algorithms diminished. Treatment plans calculated with superposition showed similar isodose curves, DVHs, and TCP/NTCP as the Monte Carlo plans, except in the bladder, where Monte Carlo predicted a slightly lower dose. Treatment plans calculated with either the pencil beam method or with no heterogeneity correction differed significantly from the Monte Carlo plans.  相似文献   

2.
3.
目的 计算2 5 2 Cf裂变中子源的中子和γ辐射在组织等效模体内的剂量分布 ,为使用2 5 2 Cf裂变中子源进行中子放疗提供有用的剂量学参数。方法 建立2 5 2 Cf源和组织等效模体的三维几何计算模型 ,利用蒙特卡罗方法进行中子和γ辐射联合输运计算。结果 计算了两种医用2 5 2 Cf裂变中子源在水、血液、肌肉、皮肤、骨骼和肺组织等效材料构成的模体中距源不同距离点处的中子和γ辐射吸收剂量。结论 蒙特卡罗计算结果与文献数据以及使用双电离室实验测量的结果符合得较好。对2 5 2 Cf裂变中子源在 5种组织材料构成的模体中中子和γ辐射的剂量分布进行了比较 ,使用水作为组织等效材料对2 5 2 Cf裂变中子源在以肌肉、血液和皮肤构成的局部组织内的剂量分布进行模拟计算 ,可取得比较可靠的结果。  相似文献   

4.
目的:计算^252Cf裂变中子源的的中子和γ辐射在组织等模体内的剂量分布,为使用^252Cf裂变中子源进行中子放疗提供有用的剂量学参数。方法:建立^252Cf源和组织等效模体的三维几何计算模型,利用蒙特卡罗方法进行中子和γ辐射联合输运计算。结果:计算了两种医用^252Cf裂变中子源在水、血液、肌肉、皮肤、骨骼和肺组织等效材料构成的模体中距源不同距离点处的中子和γ辐射吸收剂量。结论:蒙特卡罗计算结果与文献数据以及使用双电离室实验测量的结果符合得较好。对^252Cf裂变中子源在5种组织材料构成的模体中中子和γ辐射的剂量分布进行了比较,使用水作为组织等效材料对^252Cf裂变中子源在在以肌肉、血液和皮肤构成的局部组织内的剂量分布进行模拟计算,可取得较可靠的结果。  相似文献   

5.
6.
The purpose of this study was to verify the accuracy of dose calculation algorithms of a treatment planning system for a single-isocenter volumetric modulated arc therapy (VMAT) plan in multiple brain metastases, by comparing the dose distributions of treatment planning system with those of Monte Carlo (MC) simulations. We used a multitarget phantom containing 9 acrylic balls with a diameter of 15.9 mm inside a Lucy phantom measuring 17 × 17 × 17 cm3. Seven VMAT plans were created using the multitarget phantom: 1 multitarget plan (MTP) and 6 single target plans (STP). Three of the STP plans had a large jaw field setting, almost equivalent to that of the MTP, while the other plans had a jaw field setting fitted to each planning target volume. The isocenter for all VMAT plans was set to the center of the phantom. The VMAT dose distributions were calculated using the analytical anisotropic algorithm (AAA) and were also recalculated through Acuros XB (AXB) and MC simulations under the same irradiation conditions. The AAA and AXB methods tended to overestimate dosage compared with the MC method in the MTP and in STPs with large jaw field settings. The dose distribution in single-isocenter VMAT plans for multiple brain metastases was influenced by jaw field settings. Finally, we concluded that MC-VMAT dose calculations are useful for 3D dose verification of single-isocenter VMAT plans for multiple brain metastases.  相似文献   

7.
The accuracy of the dose planning system (Leksell GammaPlan), used in Gamma Knife (type B) radiosurgery at extreme irradiation depths, was verified using the Monte Carlo technique. EGS4 Monte Carlo calculations were employed to calculate the dose distribution along the x, y and z axes for an irradiation relatively shallow in a spherical bony cavity water phantom. Two different sizes of the collimator helmets, 8 and 18 mm, of the Leksell Gamma Knife Unit were studied. The results of GammaPlan showed good consistency with the Monte Carlo results. Furthermore, small dose enhancements were observed in the skull bone where accurate dose measurements are difficult due to the presence of the air-phantom interface. Therefore, the results of this project can promote confidence to all Gamma Knife centres in the world when using the Leksell GammaPlan.  相似文献   

8.
Monte Carlo calculation of depth doses for small field of CyberKnife   总被引:3,自引:0,他引:3  
PURPOSE: A Monte Carlo (MC) model of CyberKnife was developed as a quality assurance tool. The percentage depth dose (%dd) was verified by using this model. MATERIALS AND METHODS: An MC model was developed with Electron Gamma Shower version 4 (EGS4) in two steps: (1) a model of the CyberKnife treatment head and (2) a model of the collimator and phantom. The bremsstrahlung spectrum was calculated using the first model, and this spectrum was then used to calculate %dds with the second model. The calculated %dds for a large field (60 mm diameter) and three small fields (30, 15, and 5 mm diameter) were compared with those measured with a diamond detector. RESULTS AND DISCUSSION: The MC-calculated and measured %dd-curves for the 60 mm diameter field were in excellent agreement (<1.85%), thus confirming the validity of the model. Discrepancies between the calculated and measured %dd-curves increased with decreasing field size, with considerable discrepancy (11.62%) for the 5 mm diameter field due to lateral electron disequilibrium. Accurate dose can be determined with MC even in small fields. CONCLUSION: The MC technique can provide reliable standard data for accurate dose delivery with high-technology radiotherapies using small beams.  相似文献   

9.
In this paper, we present a novel implementation of a dose calculation application, based on the GEANT4 Monte Carlo toolkit. Validation studies were performed with an homogeneous water phantom and an Alderson–Rando anthropomorphic phantom both irradiated with high-energy photon beams produced by a clinical linear accelerator. As input, this tool requires computer tomography images for automatic codification of voxel-based geometries and phase-space distributions to characterize the incident radiation field. Simulation results were compared with ionization chamber, thermoluminescent dosimetry data and commercial treatment planning system calculations. In homogeneous water phantom, overall agreement with measurements were within 1–2%. For anthropomorphic simulated setups (thorax and head irradiation) mean differences between GEANT4 and TLD measurements were less than 2%. Significant differences between GEANT4 and a semi-analytical algorithm implemented in the treatment planning system, were found in low-density regions, such as air cavities with strong electronic disequilibrium.  相似文献   

10.
This article describes photon beam Monte Carlo simulation for multi leaf collimator (MLC)-based intensity-modulated radiotherapy (IMRT). We present the general aspects of the Monte Carlo method for the non-Monte Carloist with an emphasis given to patient-specific radiotherapy application. Patient-specific application of the Monte Carlo method can be used for IMRT dose verification, inverse planning, and forward planning in conventional conformal radiotherapy. Because it is difficult to measure IMRT dose distributions in heterogeneous phantoms that approximate a patient, Monte Carlo methods can be used to verify IMRT dose distributions that are calculated using conventional methods. Furthermore, using Monte Carlo as the dose calculation method for inverse planning results in better-optimized treatment plans. We describe both aspects and present our recent results to illustrate the discussion. Finally, we present current issues related to clinical implementation of Monte Carlo dose calculation. Monte Carlo is the most recent, and most accurate, method of radiotherapy dose calculation. It is currently in the process of being implemented by various treatment planning vendors and will be available for clinical use in the immediate future.  相似文献   

11.
Precise calibration of Hounsfield units (HU) to electron density (HU-density) is essential to dose calculation. On-board kV cone beam computed tomography (CBCT) imaging is used predominantly for patients' positioning, but will potentially be used for dose calculation. The impacts of varying 3 imaging parameters (mAs, source-imager distance [SID], and cone angle) and phantom size on the HU number accuracy and HU-density calibrations for CBCT imaging were studied. We proposed a site-specific calibration method to achieve higher accuracy in CBCT image-based dose calculation. Three configurations of the Computerized Imaging Reference Systems (CIRS) water equivalent electron density phantom were used to simulate sites including head, lungs, and lower body (abdomen/pelvis). The planning computed tomography (CT) scan was used as the baseline for comparisons. CBCT scans of these phantom configurations were performed using Varian Trilogy? system in a precalibrated mode with fixed tube voltage (125 kVp), but varied mAs, SID, and cone angle. An HU-density curve was generated and evaluated for each set of scan parameters. Three HU-density tables generated using different phantom configurations with the same imaging parameter settings were selected for dose calculation on CBCT images for an accuracy comparison. Changing mAs or SID had small impact on HU numbers. For adipose tissue, the HU discrepancy from the baseline was 20 HU in a small phantom, but 5 times lager in a large phantom. Yet, reducing the cone angle significantly decreases the HU discrepancy. The HU-density table was also affected accordingly. By performing dose comparison between CT and CBCT image-based plans, results showed that using the site-specific HU-density tables to calibrate CBCT images of different sites improves the dose accuracy to ~2%. Our phantom study showed that CBCT imaging can be a feasible option for dose computation in adaptive radiotherapy approach if the site-specific calibration is applied.  相似文献   

12.
This study verified the dose calculation accuracy of the analytical anisotropic algorithm (AAA), Acuros XB version 10 (AXB10), and version 11 (AXB11) installed in an Eclipse treatment planning system, by comparing with Monte Carlo (MC) simulations. First, the algorithms were compared in terms of dose distributions using four types of virtual heterogeneous multi-layer phantom for 6 and 15 MV photons. Next, the clinical head and neck intensity-modulated radiation therapy (IMRT) dose distributions for 6 MV photons were evaluated using dose volume histograms (DVHs) and three-dimensional gamma analysis. In percentage depth doses (PDDs) for virtual heterogeneous phantoms, AAA overestimated absorbed doses in the air cavity, bone, and aluminum in comparison with MC, AXB10, and AXB11. The PDDs of AXB10 almost agreed with those of MC and AXB11, except for the air cavity. The dose in the air cavity was higher for AXB10 than for AXB11, because their electron cutoff energies are set at 500 and 200 keV, respectively. For head and neck IMRT dose distributions, the D95 in the clinical target volume (CTV) for AAA was almost the same as that for AXB10 and was approximately 7 % larger than that for MC. Comparing each approach with MC using a criterion of 3 %/3 mm, the pass rates for AXB10, AXB11, and AAA were 92.4, 94.7, and 90.4 % in the CTV, respectively. In conclusion, AAA produces dose errors in heterogeneous regions, while AXB11 provides calculation accuracy comparable to MC. AXB10 overestimates the dose in regions that include an air cavity.  相似文献   

13.
Using Monte Carlo simulation and the convolution/superposition algorithm, this work examines percent depth dose curves of the central axis in an acrylic phantom (20×20×20 cm3) with variously sized air cavities (20×20×1.0, 20×20×2.0, 20×20×3.0, 20×20×4.0 and 20×20×4.95 cm3 for study of longitudinal electron disequilibrium (ED) and 3.6×3.6×4.95, 4.5×4.5×4.95, 5.4×5.4×4.95 and 20×20×4.95 cm3 for study of lateral ED). Radiochromic film samples are also measured to verify the Monte Carlo results. The Monte Carlo simulation is performed using OMEGA/BEAM and DOSXYZ codes, and the convolution/superposition calculation relies on an ADAC commercial treatment planning system.

Underestimating the dose kernel expansion leads to overestimating the dose of what was found in the air cavity of ED using the convolution/superposition algorithm. Consequently, the dose in the rebuild-up region is influenced. The influenced region is on the acrylic phantom surface to a depth of about 0.5 cm. The density scaling method of the convolution/superposition algorithm, applied to heterogeneous media, should be enhanced to account for the over-expansion of the dose kernel in the cavity of ED.  相似文献   


14.
《Medical Dosimetry》2020,45(2):159-167
The aim of this work was to evaluate the accuracy of the RayStation treatment planning system electron Monte Carlo algorithm against measured data for a range of clinically relevant scenarios. This was done by comparing measured percentage depth dose data (PDD) in water, profiles at oblique incidence and with heterogeneities in the beam path, and output factor data and that generated using the RayStation treatment planning system Monte Carlo VMC++ based calculation algorithm. While electron treatments are widely employed in the radiotherapy setting accurate modelling is challenging (TPS) in the presence of patient being both heterogeneous and nonrectangular. Watertank-based measurements were made on a Varian TrueBeam linear accelerator covering electron beam energies 6 to 18 MeV. These included both normal and oblique incidence, heterogeneous geometries, and irregular shaped cut-outs. The measured geometries were replicated in RayStation and the Monte Carlo dose calculation engine used to generate dosimetric data for comparison against measurement in what were considered clinically relevant settings. Water-based PDDs and profile comparisons showed excellent agreement for all electron beam energies. Profiles measured with oblique beam incidence demonstrated acceptable agreement to the treatment planning system calculations although the correspondence worsened as the angle increased with the planning system overestimating the dose in the shoulder region. Profile measurements under inhomogeneities were generally good. The planning system had a tendency to overestimate dose under the heterogeneity and also demonstrated a broader penumbra than measurement. Of the 170 different output factors calculated in RayStation over the range of electron energies commissioned, 141 were within ± 3% of measured values and 164 within ± 5%. Four of the 6 comparisons beyond 5% were at 18 MeV and all had a cut-out edge within 3 cm of the beam central axis/measurement point. The RayStation implementation of a VMC++ electron Monte Carlo dose calculation algorithm shows good agreement with measured data for a range of scenarios studied and represented sufficient accuracy for clinical use.  相似文献   

15.
PURPOSE: To evaluate the accuracy of dose calculation algorithms of different planning systems for postoperative tangential radiotherapy in breast cancer. MATERIAL AND METHODS: On a CT dataset of an anthropomorphic phantom, a structure set of the left lung, clinical target volume (CTV), planning target volume, heart, and external contour were delineated. The dataset was processed by six radiation oncology centers participating in this multicenter dosimetry project. Conventional plans with two tangential wedged fields were generated in MasterPlan, Pinnacle, Eclipse, TMS, and PrecisePLAN. Plan calculations were done using the beam data of local linacs. The dose distributions were verified under local conditions with Gafchromic-EBT films. RESULTS: In all planning systems, deviations between calculation and measurement were around +/-3% in the CTV in the measured plane. Only small areas with deviations of +/-5% were detected. Pencil-beam (PB) calculations overestimated the dose inside the lung by up to 23%. Collapsed cone (CC) underestimated the lung dose by up to 6%. CONCLUSION: CC calculates the dose distribution more accurately than PB. Inside regions with electron disequilibrium, however, the dose is slightly underestimated.  相似文献   

16.
In-phantom measurement of physical dose distribution is very important for Boron Neutron Capture Therapy (BNCT) planning validation. If any changes take place in therapeutic neutron beam due to the beam shaping assembly (BSA) change, the dose will be changed so another group of simulations should be carried out for dose calculation. To avoid this time consuming procedure and speed up the dose calculation to help patients not wait for a long time, response matrix method was used. This procedure was performed for neutron beam of the optimized BSA as a reference beam. These calculations were carried out using the MCNPX, Monte Carlo code. The calculated beam parameters were measured for a SNYDER head phantom placed 10 cm away from beam the exit of the BSA. The head phantom can be assumed as a linear system and neutron beam and dose distribution can be assumed as an input and a response of this system (head phantom), respectively. Neutron spectrum energy was digitized into 27 groups. Dose response of each group was calculated. Summation of these dose responses is equal to a total dose of the whole neutron/gamma spectrum. Response matrix is the double dimension matrix (energy/dose) in which each parameter represents a depth–dose resulted from specific energy. If the spectrum is changed, response of each energy group may be differed. By considering response matrix and energy vector, dose response can be calculated. This method was tested for some BSA, and calculations show statistical errors less than 10%.  相似文献   

17.
目的 针对我国自主生产的某型伽玛刀,建立一套快速、准确的蒙特卡罗算法模型,并利用所建立的模型对伽玛刀剂量场特性进行研究。 方法 利用蒙特卡罗核粒子输运程序建立伽玛刀的蒙特卡罗算法模型,并用实验结果对模拟结果进行验证。 结果 离轴比:和实验结果符合良好,随着准直器孔径的减小,顶部剂量率平台随之减小,半影区也有减小的趋势但不明显;等剂量曲线:旋转轴垂直平面上的剂量梯度最小。 结论 (1)所建立蒙特卡罗算法模型是准确有效的;(2)在制定治疗计划时,需要考虑到肿瘤和体表距离、肿瘤大小、形状以及射野不均匀性带来的影响。  相似文献   

18.
《Brachytherapy》2014,13(6):632-639
PurposeBrachytherapy dose calculation is commonly performed using the Task Group-No 43 Report-Updated protocol (TG-43U1) formalism. Recently, a more accurate approach has been proposed that can handle tissue composition, tissue density, body shape, applicator geometry, and dose reporting either in media or water. Some model-based dose calculation algorithms are based on Monte Carlo (MC) simulations. This work presents a software platform capable of processing medical images and treatment plans, and preparing the required input data for MC simulations.Methods and MaterialsThe A Medical Image-based Graphical platfOrm—Brachytherapy module (AMIGOBrachy) is a user interface, coupled to the MCNP6 MC code, for absorbed dose calculations. The AMIGOBrachy was first validated in water for a high-dose-rate 192Ir source. Next, dose distributions were validated in uniform phantoms consisting of different materials. Finally, dose distributions were obtained in patient geometries. Results were compared against a treatment planning system including a linear Boltzmann transport equation (LBTE) solver capable of handling nonwater heterogeneities.ResultsThe TG-43U1 source parameters are in good agreement with literature with more than 90% of anisotropy values within 1%. No significant dependence on the tissue composition was observed comparing MC results against an LBTE solver. Clinical cases showed differences up to 25%, when comparing MC results against TG-43U1. About 92% of the voxels exhibited dose differences lower than 2% when comparing MC results against an LBTE solver.ConclusionThe AMIGOBrachy can improve the accuracy of the TG-43U1 dose calculation by using a more accurate MC dose calculation algorithm. The AMIGOBrachy can be incorporated in clinical practice via a user-friendly graphical interface.  相似文献   

19.
20.
General-purpose radiation transport Monte Carlo codes have been used for estimation of the absorbed dose distribution in external photon and electron beam radiotherapy patients since several decades. Results obtained with these codes are usually more accurate than those provided by treatment planning systems based on non-stochastic methods. Traditionally, absorbed dose computations based on general-purpose Monte Carlo codes have been used only for research, owing to the difficulties associated with setting up a simulation and the long computation time required. To take advantage of radiation transport Monte Carlo codes applied to routine clinical practice, researchers and private companies have developed treatment planning and dose verification systems that are partly or fully based on fast Monte Carlo algorithms. This review presents a comprehensive list of the currently existing Monte Carlo systems that can be used to calculate or verify an external photon and electron beam radiotherapy treatment plan. Particular attention is given to those systems that are distributed, either freely or commercially, and that do not require programming tasks from the end user. These systems are compared in terms of features and the simulation time required to compute a set of benchmark calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号