首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lower extremity amputation not only limits mobility, but also increases the risk of knee osteoarthritis of the intact limb. Dynamic walking models of non-amputees suggest that pushing-off from the trailing limb can reduce collision forces on the leading limb. These collision forces may determine the peak knee external adduction moment (EAM), which has been linked to the development of knee OA in the general population. We therefore hypothesized that greater prosthetic push-off would lead to reduced loading and knee EAM of the intact limb in unilateral transtibial amputees.Seven unilateral transtibial amputees were studied during gait under three prosthetic foot conditions that were intended to vary push-off. Prosthetic foot-ankle push-off work, intact limb knee EAM and ground reaction impulses for both limbs during step-to-step transition were measured.Overall, trailing limb prosthetic push-off work was negatively correlated with leading intact limb 1st peak knee EAM (slope = −.72 ± .22; p = .011). Prosthetic push-off work and 1st peak intact knee EAM varied significantly with foot type. The prosthetic foot condition with the least push-off demonstrated the largest knee EAM, which was reduced by 26% with the prosthetic foot producing the most push-off. Trailing prosthetic limb push-off impulse was negatively correlated with leading intact limb loading impulse (slope = −.34 ± .14; p = .001), which may help explain how prosthetic limb push-off can affect intact limb loading.Prosthetic feet that perform more prosthetic push-off appear to be associated with a reduction in 1st peak intact knee EAM, and their use could potentially reduce the risk and burden of knee osteoarthritis in this population.  相似文献   

2.
Compensatory mechanisms in below-knee amputee gait are necessary due to the functional loss of the ankle muscles, especially at higher walking speeds when the mechanical energetic demands of walking are greater. The objective of this study was to examine amputee anterior/posterior (A/P) ground reaction force (GRF) impulses and joint kinetics across a wide range of steady-state walking speeds to further understand the compensatory mechanisms used by below-knee amputees. We hypothesized that amputees would rely more on their intact leg to generate greater propulsion relative to the residual leg, which would result in greater GRF asymmetry between legs as walking speed increased. Amputee and control subject kinematic and kinetic data were collected during overground walking at four different speeds. Group (n = 14) average amputee data showed no significant differences in braking or propulsive GRF impulse ratios, except the propulsive ratio at 0.9 m/s, indicating that the subjects maintained their initial levels of GRF asymmetry when walking faster. Therefore, our hypothesis was not supported (i.e., walking faster does not increase GRF loading asymmetry). The primary compensatory mechanism was greater positive residual leg hip joint power and work in early stance, which led to increased propulsion from the residual leg as walking speed increased. In addition, amputees had reduced residual leg positive knee work in early stance, suggesting increased output from the biarticular hamstrings. Thus, increasing residual leg hip extensor strength and output may be a useful mechanism to reduce GRF loading asymmetry between the intact and residual legs.  相似文献   

3.
We examined the effects of jump training with negative (-30% of the subject's body weight (BW)) VS. positive loading (+30% BW) on the mechanical behaviour of leg extensor muscles. 32 men were divided into control (CG), negative loading (NLG), or positive loading training group (PLG). Both training groups performed maximal effort countermovement jumps (CMJ) over a 7-week training period. The impact of training on the mechanical behaviour of leg extensor muscles was assessed through CMJ performed with external loads ranging from -30% BW to +30% BW. Both training groups showed significant ( P≤0.013) increase in BW CMJ height (NLG: 9%, effect size (ES)=0.85, VS. PLG: 3.4%, ES=0.31), peak jumping velocity ( V(peak); NLG: 4.1%; ES=0.80, P=0.011, VS. PLG: 1.4%, ES=0.24; P=0.017), and depth of the countermovement (Δ H(ecc); NLG: 20%; ES=-1.64, P=0.004, VS. PLG: 11.4%; ES=-0.86, P=0.015). Although the increase in both the V(peak) and Δ H(ecc) were expected to reduce the recorded ground reaction force, the indices of force- and power-production characteristics of CMJ remained unchanged. Finally, NLG (but not PLG) suggested load-specific improvement in the movement kinematic and kinetic patterns. Overall, the observed results revealed a rather novel finding regarding the effectiveness of negative loading in enhancing CMJ performance which could be of potential importance for further development of routine training protocols. Although the involved biomechanical and neuromuscular mechanisms need further exploration, the improved performance could be partly based on an altered jumping pattern that utilizes an enhanced ability of leg extensors to provide kinetic and power output during the concentric jump phase.  相似文献   

4.
Soo CH  Donelan JM 《Gait & posture》2012,35(2):292-297
In human walking, each transition to a new stance limb requires redirection of the center of mass (COM) velocity from one inverted pendulum arc to the next. While this can be accomplished with either negative collision work by the leading limb, positive push-off work by the trailing limb, or some combination of the two, physics-based models of step-to-step transitions predict that total positive work is minimized when the push-off and collision work are equal in magnitude. Here, we tested the importance of the coordination of push-off and collision work in determining transition work using ankle and knee joint braces to limit the ability of a leg to perform positive work on the body. To isolate transitions from other contributors to walking mechanics, participants were instructed to rock back and forth from one leg to the other, restricting motion to the sagittal plane and eliminating the need to swing the legs. We found that reduced push-off work increased the collision work required to complete the redirection of the COM velocity during each transition. A greater amount of total mechanical work was required when rocking departed from the predicted optimal coordination of step-to-step transitions, in which push-off and collision work are equal in magnitude. Our finding that transition work increases if one or both legs do not push-off with the optimal coordination may help explain the elevated metabolic cost of pathological gait irrespective of etiology.  相似文献   

5.
The purpose of this study was to determine how lower-limb strength in older women affected gait speed, supportive forces, spatial, and temporal aspects of walking gait. Twenty-four women between 65 and 80 yr performed maximal voluntary isometric contractions for the knee extensors (KE), knee flexors (KF), ankle plantarflexors (PF) and ankle dorsiflexors (DF) and were separated into low strength and normal strength groups using a KE torque threshold of 1.5 Nm kg(-1). They walked at both a standard speed of 0.8 m s(-1) and at a self-selected maximal speed on an instrumented treadmill that recorded vertical ground reaction forces (vGRF) and spatiotemporal gait measures. Older women with low strength had 30% lower KE maximal torque, 36% lower PF maximal torque, 34% lower KE rate of torque development (RTD) and 30% lower KF RTD. Low strength women demonstrated slower maximal walking speeds (1.26±0.20 m s(-1) vs. 1.56±0.20 m s(-1)), lower vGRF during weight acceptance (1.15±0.10 BW vs. 1.27±0.13 BW), lower weight acceptance rates (11.3±0.5 BW s(-1) vs. 17.0±5.5 BW s(-1)), slower stride rates, shorter stride lengths, and longer foot-ground and double-limb support times (all P<0.05). Maximal gait speed was strongly correlated to peak vGRF and rate (r=0.60-0.85, P<0.01) and moderately related to lower-limb strength (r=0.42-0.60, P<0.05). In older women with low strength, diminished peak vGRFs were associated with slower walking speeds putting them at risk for mobility limitation, disability, poor health, and loss of independence.  相似文献   

6.
BackgroundThe differences and relationship between joint stiffness and leg stiffness can be used to characterize the lower limb behavior during different walking speeds.Research questionThis study aimed to investigate the differences in whole leg and lower limb joint stiffness at different walking speeds and the interactions between leg and lower limb joint stiffness.MethodsTwenty-seven healthy adults, seventeen males (age: 19.6 ± 2.2 years, height: 176.0 ± 6.0 cm, mass: 69.7 ± 8.9 kg), and ten females (age: 19.1 ± 1.9 years, height: 164.0 ± 3.0 cm, mass: 59.6 ± 3.8 kg), were recruited. Dynamic leg and joint stiffness were calculated during eccentric loading from data recorded using 3D infrared motion analysis and force plates at slow, normal, and fast walking speeds. Differences in dynamic stiffness, joint angles and moments were explored between the walking speeds using Repeated Measures ANOVA with Sidak post-hoc tests. Correlations between leg, joint stiffness, and walking speed were also explored.ResultsThe results indicated that the leg dynamic stiffness is decreased by walking speed, however, hip and ankle joint stiffness were increased (p < 0.001) and knee stiffness was unaffected. Leg stiffness showed no correlation with hip, knee, or ankle stiffness. A positive significant correlation was seen between hip and ankle stiffness (p < 0.01) and between knee and ankle stiffness (p < 0.001), however, no correlation was seen between hip and knee stiffness.SignificanceThese results suggest leg stiffness is not associated with lower limb joint stiffness during eccentric loading. This provides new information on the responses of ankle, knee and hip joint stiffness to walking speed.  相似文献   

7.
BackgroundShoe mileage may influence the risk of sustaining injuries during walking.Research questionWhat are the effects of shoe mileage on knee and ankle muscle co-contraction during walking in females with genu varus?MethodsFifteen healthy and 15 women diagnosed with genu varus received a new pair of running shoes. They were asked to wear these shoes over 6 months. Pre and post intervention, muscle activities of the dominant limb were recorded during a walking test at preferred gait speed. Two dependent variables were assessed to examine muscle co-contraction: (1) directed co-contraction ratios of agonists and antagonists, and (2) general joint muscle co-contraction.FindingsResults demonstrated significant main effects of the “shoe” factor for general ankle co-contraction during the push-off phase (p = 0.013, d = 1.503). Irrespective of experimental group, paired comparisons revealed significantly lower general ankle co-contraction during the push-off phase after the intervention. A significant main effects of “shoe” for general knee co-contraction during loading phase (p = 0.025, d = 0.895) was also observed. In both groups, paired comparison revealed significantly lower general knee co-contraction during the push-off phase in the post condition. We did not find any significant main effect of group nor group-by-shoe interaction for general ankle co-contraction during the stance phase. Likewise, we did not observe any significant main effect of “shoe”, “group” and “group-by-shoe” interaction for mediolateral directed knee co-contraction during stance phase of walking (p > 0.05).SignificanceOur findings showed that the shoe mileage but not the genu varus condition affects the general and directed co-contraction of the muscles stabilizing the knee and ankle joints. Together with the observed findings on ankle and knee muscle co-contraction, it is essential to change running shoes after a long wearing time in both healthy and genu varus females.  相似文献   

8.
9.
During rehabilitation, many patient groups are being trained using bodyweight-supported treadmill training. However, little is known about modulation of time and distance parameters, joint movements and leg muscle EMG patterns by very low walking speeds or partial bodyweight unloading. We collected data from 20 healthy young volunteers who walked on a treadmill at walking speeds varying between 0.5 and 5.0 km h(-1) (0.14-1.39 ms(-1)) and with 0%, 25%, 50% and 75% bodyweight unloading. We found that cadence and stride length were largely influenced by walking speed, while bodyweight unloading influenced these measures only at 75%. However, the relative duration of the gait phases changed largely only at walking speeds less than 2.5 km h(-1), but was influenced by all different bodyweight unloading conditions. Joint trajectories of knee and ankle joint, as well as leg muscle EMG activity patterns changed largely at walking speeds slower than 2.5 km h(-1) and with 75% bodyweight unloading. We concluded that the parameters we investigated changed minimally at walking speeds faster than 2.5 km h(-1) and bodyweight unloading conditions less than 50%. Therefore, standards for EMG activity and joint angle trajectories should only be compared when the training is done with velocities higher than 2.5 km h(-1) and less than 50% body weight unloading.  相似文献   

10.
BackgroundIndividuals with unilateral transtibial amputations (ITTAs) are asymmetrical in quadriceps strength. It is unknown if this is associated with gait performance characteristics such as walking speed and limb symmetry.Research questionAre quadriceps strength asymmetries related to walking speed and/ or gait asymmetries in ITTAs?MethodsKnee-extensor isometric maximum voluntary torque (MVT) and rate of torque development (RTD) were measured in eight ITTAs. Gait data were captured as the ITTAs walked at self-selected habitual and fast speeds. Step length and single support time, peak knee extension moments and their impulse and peak vertical ground reaction force (vGRF) in the braking and propulsive phases of stance were extracted. Bilateral Asymmetry Index (BAI) and, for gait variables only, difference in BAI between walking speeds (ΔBAI) were calculated. Correlation analyses assessed the relationships between MVT and RTD asymmetry and (1) walking speed; (2) gait asymmetries.ResultsAssociations between strength and gait BAIs generally became more apparent at faster walking speeds, and when the difference in BAI between fast and habitual walking speed was considered. BAI RTD was strongly negatively correlated with habitual and fast walking speeds (r=∼0.83). Larger BAI RTD was strongly correlated with propulsive vGRF BAI in fast walking, and larger ΔBAIs in vGRF during both the braking and propulsion phases of gait (r = 0.74–0.92). ITTAs who exhibited greater BAI MVT showed greater ΔBAI in single support time (r = 0.83).SignificanceWhile MVT and RTD BAI appear to be associated with gait asymmetries in ITTAs, the magnitude of the asymmetry in RTD appears to be a more sensitive marker of walking speed. Based on these results, it’s possible that strengthening the knee-extensors of the amputated limb to improve both MVT and RTD symmetry may benefit walking speed, and reduce asymmetrical loading in gait.  相似文献   

11.
The present study examined the behaviour of the Achilles tendon (AT) - triceps surae (TS) muscle complex during running and long jump take-off. High AT forces were measured in the push-off phase in running even with very low EMG activity. In the long jump, high rate of stiffness development was a characteristic of the braking phase of the jump. The results suggest that high and well-coordinated activation patterns of the leg extensor muscles during the preactivation and eccentric phases together with high stretching velocities of muscle-tendon complex provide basis for appropriate tendomuscular stiffness. This together with high force at the end of the eccentric phase enables an effective push-off (concentric) phase.  相似文献   

12.
BackgroundTibial plateau fractures are one of the most common intra-articular fractures resulting from high or low energy impact trauma. Few studies have assessed postoperative outcomes of these fractures with respect to changes in knee joint loading post-surgery. This gait analysis study compared lower limb joint loading up to two years post-surgery.MethodsTwenty patients (range 27–67 years; 9:11(male:female)) were treated with open reduction internal fixation and instructed to weight bear as tolerated immediately following surgery. Joint loading at the hip, knee and ankle were assessed at six time points post-operatively up to two years. Gait analyses were performed at each time point and a musculoskeletal model was used to compute external joint moments for the lower limb.ResultsHip flexion and extension (P = <0.001, P = <0.001), knee flexion (P = 0.014) and ankle plantarflexion moments (P = <0.001) showed significant increases with time. The hip flexion moment increased between six months and one year (mean difference = 0.16 Nm/kg) but did not increase thereafter (mean difference = 0.01 Nm/kg). Knee flexion and extension, and ankle plantarflexion moments increased up to six months (mean difference = 0.22 Nm/kg, 0.14 Nm/kg, 0.80 Nm/kg, respectively), but no further differences were seen with time from six months postoperative.DiscussionThe greatest changes in joint loads were observed at the hip and ankle within the first six months, likely a result of mechanical adaptations attempting to account for limited motion at the knee. Knee joint loading plateaued beyond six months suggesting functional outcomes are largely reliant on postoperative management within the initial three months while the bone is healing.  相似文献   

13.
BackgroundModular organization in muscular control is generally specified as synergistic muscle groups that are hierarchically organized. There are conflicting perspectives regarding modular organization for regulation of walking speeds, with regard to whether modular organization is relatively consistent across walking speeds. This conflict might arise from different stride time (time for one stride) and stride length combinations for achieving the same walking speed.Research questionDoes the regulation of the modular organization depend on stride time and stride length (stride time-length) combinations?MethodsTen healthy men walked at a moderate speed (nondimensional speed = 0.4) on a treadmill at five different stride time-length combinations (very short, short, preferred, long, and very long). Surface electromyograms from 16 muscles in the trunk and lower limb were recorded. The modular organization was modeled as muscle synergies, which represent groups of synchronously activated muscles. Muscle synergies were extracted using a decomposition technique. The number of synergies and their activation durations were analyzed.ResultsThe number of synergies was consistent in the preferred and quasi-preferred condition (median: 4.5 [short], 4.5 [preferred], 5 [long]), while it varied in the extreme condition (median: 4 [very short] and 6 [very long]; 0.02 ≤ p ≤ 0.09). Gait parameters (stride time, stride length, stance time, swing time, and double stance time) were significantly different for preferred and quasi-preferred conditions (p < 0.03).SignificanceOur results provide additional insights on the flexibility of modular control during walking, namely that the number of synergies or activations are fine-tuned even within one walking speed. Our finding implies that a variety of walking patterns can be achieved by consistent synergies except for extreme walking patterns.  相似文献   

14.
《Gait & posture》2015,41(4):561-563
Leg length discrepancy (LLD) is commonly recognised as a complication of total hip arthroplasty. Some patients with only minor LLD complain of major difficulties. The effect of LLD has been described in the dynamic phase, but not static phase. The aim of this project was to investigate the effect of leg length discrepancy on static limb loading (i.e. Standing). A pedobarograph was used to measure the limb loading of 20 normal volunteers whilst changing the height of the other foot thus simulating a LLD. With both feet at the same level, the left limb took 54% of the load. When the right foot was lower, (simulating a long left leg), the left leg took 39% of the load. When the right foot was higher, (simulating a long right leg), the left leg took 65% of the load. A paired t-test comparison of the simulation with the level load showed a significant difference with P = 0.002. Our results show that weight distribution increased in the shorter limb when LLD was simulated. This uneven distribution is likely to lead to premature fatigue when standing and may explain why some patients with LLD post hip arthroplasty have poorer outcomes.  相似文献   

15.
《Gait & posture》2014,39(4):561-563
Leg length discrepancy (LLD) is commonly recognised as a complication of total hip arthroplasty. Some patients with only minor LLD complain of major difficulties. The effect of LLD has been described in the dynamic phase, but not static phase. The aim of this project was to investigate the effect of leg length discrepancy on static limb loading (i.e. Standing). A pedobarograph was used to measure the limb loading of 20 normal volunteers whilst changing the height of the other foot thus simulating a LLD. With both feet at the same level, the left limb took 54% of the load. When the right foot was lower, (simulating a long left leg), the left leg took 39% of the load. When the right foot was higher, (simulating a long right leg), the left leg took 65% of the load. A paired t-test comparison of the simulation with the level load showed a significant difference with P = 0.002. Our results show that weight distribution increased in the shorter limb when LLD was simulated. This uneven distribution is likely to lead to premature fatigue when standing and may explain why some patients with LLD post hip arthroplasty have poorer outcomes.  相似文献   

16.
Bilaterally asymmetric stepping during walking is common to a number of pathological gaits (e.g., hemiplegia, limping). In the present work, the attention level of asymmetric stepping was studied by having subjects walk on a split-belt treadmill with symmetric (2 km/h) and asymmetric (2 km/h vs 4 km/h and 2 km/h vs 6 km/h) belt speeds both with and without a dual auditory Stroop task. There was no significant change in response reaction times across walking conditions or between walking and standing. The proportion of stance phase was unchanged by the dual task during symmetric walking. Stance phase proportions, however, significantly increased during dual tasking for the limb on the faster belt for both asymmetric conditions, while they decreased for the limb on the slower belt for the most asymmetric condition. There were also small modifications to double support proportions and a main effect of dual tasking to double support proportion variability. Observed dual task changes showed interference by the cognitive task with asymmetric gait performance, suggesting that asymmetric stepping, such as seen in limping gaits, requires more attention than symmetric walking. Such attention may, in part, be due to the dynamic balance required in asymmetric limb loading and unloading.  相似文献   

17.
Background: Physical activity (PA) interventions, designed to increase exposure to ground reaction force (GRF) loading, are a common target for reducing fracture risk in post-menopausal women with low bone mineral density (BMD). Unfortunately, accurate tracking of PA in free-living environments and the ability to translate this activity into evaluations of bone health is currently limited.Research question: This study evaluates the effectiveness of ankle-worn accelerometers to estimate the vertical GRFs responsible for bone and joint loading in post-menopausal women at a range of self-selected walking speeds during barefoot walking.Methods: Seventy women, at least one year post-menopause, wore Actigraph GT3X + on both ankles and completed walking trials at self-selected speeds (a minimum of five each at fast, normal and slow walking) along a 30 m instrumented walkway with force plates and photocells to measure loading and estimate gait velocity. Repeated measures correlation analysis and step-wise mixed-effects modelling were performed to evaluate significant predictors of peak vertical GRFs normalized to body weight (pVGRFbw), including peak vertical ankle accelerations (pVacc), walking velocity (Velw) and age.Results: A strong repeated measures correlation of r = 0.75 (95%CI [0.71-0.76] via 1000 bootstrap passes) between pVacc and pVGRFbw was observed. Five-fold cross-validation of mixed-model predictions yielded an average mean-absolute-error (MAE[95%CI]) and root-mean-square-error (RMSE) rate of 5.98%[5.61–6.42] and 0.076 [0.069-0.082] with a more complex model (including Velw,) and 6.80%[6.37–7.54] and 0.087BW[0.081-0.095] with a simpler model (including only pVacc), when comparing accelerometer-based estimations of pVGRFbw to force plate measures of pVGRFbw. Age was not found to be significant.Significance: This study is the first to show a strong relationship among ankle accelerometry data and high fidelity lower-limb loading approximations in post-menopausal women. The results provide the first steps necessary for estimation of real-world limb and joint loading supporting the goals of accurate PA tracking and improved individualization of clinical interventions.  相似文献   

18.
BackgroundAchilles tendon injuries are commonly treated with stability boots that secure the ankle at a specific position and aim to reduce loading of the tendon. These boots allow full weight bearing by limiting the range of movement. It is, however, unknown, to what extent these boots can reduce tendon loading and if the biomechanics are altered during walking.Research questionHow do orthopedic boots influence lower extremity biomechanics during walking?MethodsFor this cross-sectional study, ten healthy participants walked with three orthopedic boots (Oped Vacoped, Kuenzli Ortho Rehab Absolut, Orthotech Variostabil) commonly used to treat Achilles tendon injuries. Kinematics and kinetics of the lower extremity of the booted leg and spatiotemporal parameters of both sides were collected using motion-capturing system and dynamometry. Each boot was tested in the maximally plantarflexed position. Group differences between boot conditions were analyzed by means of repeated-measures ANOVA and post-hoc paired t-test.ResultsThe boot dorsiflexion range of motion differed significantly between boots with Vacoped (1.8° (0.3)) showing the smallest range, followed by Kuenzli (5.0° (1.3)) and Orthotech (7.9° (1.7)). Orthotech displayed a higher peak plantarflexion moment (1.36 Nm/kg (0.09)) than both Kuenzli (1.06 Nm/kg (0.12)) and Vacoped (1.04 Nm/kg (0.14)). Concerning loading over time, significant differences in the plantarflexion impulse were found, with the highest impulse in Vacoped (0.42 Nms/kg (0.06)), followed by Orthotech (0.29 Nms/kg (0.03)) and Kuenzli (0.25 Nms/kg (0.05)). In addition, asymmetries were seen in stance and step length for the booted and contralateral sides.SignificanceThe lower extremity biomechanics were affected by the boots, with Kuenzli showing the lowest joint loading, Vacoped the smallest joint motion and Orthotech the most natural gait pattern. Future research is needed to determine the most relevant variable expressing the risk of re-rupture of the Achilles tendon in order to conclude which boot may be most favorable to use in clinical practice.  相似文献   

19.
The adaptation of leg movements to split-belt conditions was studied during treadmill walking in 10 healthy subjects. Four different belt speeds (0.5/1.0/1.5/2.0 m/s) were offered in all possible combinations for the left and right leg. All subjects automatically adapted to split-belt conditions. Although in all subjects and in all conditions the adaptation of leg movements within the stride cycle resulted in a walking pattern, the stepping pattern in conditions with extreme speed differences could be best described as limping. Regardless of the speed combination offered to the left and right leg, the adaptation to differences in left and right belt speed always involved: (1) Changes in stride cycle duration. The stride frequency in split-belt conditions was always intermediate to the values found during normal walking at speeds corresponding to the left and right belt speeds. There was a tendency towards the normal value of the faster belt, however. (2) An asymmetrical adaptation of the amplitude of leg movements. The support length of a leg generally tended towards the normal value for the speed offered to this leg. Thus, within the same cycle duration, the leg on the faster moving belt always made larger amplitudes than the slower leg. (3) An altered timing of support, swing and double support durations within the stride cycle. An increase in the relative duration of the support phase of the slower leg and the swing phase of the faster leg allowed for the larger amplitude of leg movements of the faster leg. Contrary to the asymmetric adaptation in support and swing durations the adaptation in the durations of both double support periods were more or less symmetric. The results of this split-belt walking study point to a high degree of flexibility in the relative timing of leg movements during walking. It is argued that the adaptation to split-belt conditions involves the tuning of low level coordinative mechanisms to the specific task requirements during split-belt walking by means of the afferent feedback resulting from the movement pattern.  相似文献   

20.
Treadmill walking was used to assess the consistent gait differences between six individuals with post-stroke hemiparesis and six non-disabled, healthy controls at matched speeds. The hemiparetic subjects walked on the treadmill at their comfortable speeds, while each control walked at the same speed as the hemiparetic subject with whom he or she was matched. Kinematic and insole pressure data were collected from multiple, steady-state gait cycles. A large set of gait differences found between hemiparetic and non-disabled subjects was consistent with impaired swing initiation in the paretic limb (i.e., inadequate propulsion of the leg during pre-swing, increased percentage swing time, and reduced knee flexion at toe-off and mid-swing in the paretic limb) and related compensatory strategies (i.e., pelvic hiking and swing-phase propulsion and circumduction of the paretic limb). Exaggerated positive work associated with raising the trunk during pre-swing and swing of the paretic limb, consistent with pelvic hiking, contributed to increased mechanical energetic cost during walking. A second set of gait differences found was consistent with impaired single limb support on the paretic limb (i.e., shortened support time on the paretic limb) and related compensatory strategies (i.e., exaggerated propulsion of the non-paretic limb during pre-swing to shorten its swing time). Other significant gait differences included asymmetry in step length and increased step width. We conclude that consistent gait differences exist between hemiparetic and non-disabled subjects walking at matched speeds. The differences provide insights, concerning hemiparetic impairment and related compensatory strategies, that are in addition to the observation of slow walking speed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号