首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Overactive AMPA receptor-mediated transmission may be involved in the pathogenesis of levodopa-induced dyskinesia. The mechanism of action of the anticonvulsant drug topiramate involves attenuation of AMPA receptor-mediated transmission. In this study, the potential antidyskinetic action of topiramate was examined in the MPTP-lesioned marmoset model of Parkinson's disease and levodopa-induced dyskinesia. Topiramate significantly reduced levodopa-induced dyskinesia, without affecting the antiparkinsonian action of levodopa. Topiramate represents an exciting potential novel therapeutic approach to levodopa-induced dyskinesia in patients with Parkinson's disease.  相似文献   

2.
3.
Investigation of the pathophysiology of psychosis in Parkinson's disease (PD), as well as the assessment of potential novel therapeutics, has been limited by the lack of a well-validated animal model. MPTP-lesioned primates exhibit abnormal behaviors that are distinct from dyskinesia and parkinsonism and may represent behavioral correlates of neural processes related to psychosis in PD. Here we assess four types of behavior--agitation, hallucinatory-like responses to nonapparent stimuli, obsessive grooming, and stereotypies that are termed "psychosis-like"--and define their pharmacology using a psychosis-like behavior rating scale. By assessing the actions of drugs known to enhance or attenuate psychosis in PD patients, we find that the pharmacology of these behaviors recapitulates, in several respects, the pharmacology of psychosis in PD. Thus, levodopa and apomorphine elicited psychosis-like behaviors. Amantadine significantly decreased levodopa-induced dyskinesia but exacerbated psychosis-like behaviors. Haloperidol reduced psychosis-like behaviors but at the expense of increased parkinsonian disability while the atypical neuroleptics clozapine and quetiapine reduced psychosis-like behaviors without significant effect on parkinsonian disability. The response of different components of the psychotomimetic behavior suggested the involvement of both dopaminergic and nondopaminergic mechanisms in their expression.  相似文献   

4.
Dopamine replacement therapy in patients with Parkinson's disease is plagued by the emergence of abnormal involuntary movements known as L-dopa-induced dyskinesias. It has been demonstrated that yohimbine can reduce L-dopa-induced dyskinesia in the MPTP-lesioned primate model of Parkinson's disease. Yohimbine is, among other things, an alpha-adrenergic receptor antagonist. In this study, we demonstrate that the selective and potent alpha2-adrenergic receptor antagonist idazoxan reduces L-dopa-induced dyskinesia in the MPTP-lesioned marmoset model of Parkinson's disease. The alpha2-adrenergic receptor antagonists rauwolscine and yohimbine also reduce L-dopa-induced dyskinesia. Furthermore, we demonstrate that coadministration of idazoxan with L-dopa can provide an anti-parkinsonian action more than twice the length of that seen with L-dopa alone. However, idazoxan as a monotherapy displayed no anti-parkinsonian actions. We propose that idazoxan in combination with L-dopa may provide a novel approach to the treatment of Parkinson's disease that will not only reduce the dyskinetic side effects, but extend the anti-parkinsonian actions of L-dopa. Idazoxan, as an adjunct to dopamine replacement, may prove useful in the treatment of parkinsonian patients at all stages of disease progression.  相似文献   

5.
Long-term levodopa or dopamine agonist treatment in the MPTP-lesioned primate model of Parkinson's disease elicits dyskinesia, which is phenotypically similar to levodopa-induced dyskinesia in patients with Parkinson's disease. AMPA receptor antagonists have previously been shown to have both anti-parkinsonian and anti-dyskinetic actions in MPTP-lesioned primates, suggesting that AMPA receptor transmission is functionally overactive under these conditions. In this study, we investigated the level of striatal AMPA receptor binding in the MPTP lesioned primate using the selective AMPA ligand (3)H-(S)-5-fluorowillardiine. AMPA receptor binding was studied in non-parkinsonian, non-dyskinetic parkinsonian, and dyskinetic macaques. Striatal AMPA receptor binding was not different in any of the treatment groups (P > 0.05). Although AMPA receptor-mediated transmission is functionally overactive in Parkinson's disease and dyskinesia, changes in striatal AMPA receptor levels are not likely to be the cause of such movement disorders.  相似文献   

6.
Long-term treatment of Parkinson's disease with levodopa is complicated by the emergence of involuntary movements, known as levodopa-induced dyskinesia. It has been hypothesized that increased opioid transmission in striatal output pathways may be responsible for the generation of dyskinesia. In this study, we have investigated the effect of blockade of opioid peptide transmission on levodopa-induced dyskinesia in a primate model of Parkinson's disease-the MPTP-lesioned marmoset. Coadministration of nonselective and mu- or delta-subtype-selective opioid receptor antagonists with levodopa resulted in a significant decrease in dyskinesia. There was no attenuation of the anti-parkinsonian actions of levodopa. These data suggest that specific mu- or delta-opioid receptor antagonists might be applicable clinically in the treatment of levodopa-induced dyskinesia in Parkinson's disease.  相似文献   

7.
8.
Administration of MPTP (1-4 mg/kg ip daily for 5-7 days) to common marmosets induced persistent parkinsonian motor deficits. The subcutaneous administration of (+)-PHNO [(+)-4-propyl-9-hydroxynaphthoxazine; 1-4 micrograms/kg] caused a dose-dependent reversal of the akinesia and incoordination of movement. Similarly, oral administration of (+)-PHNO (5-20 micrograms/kg) caused an equivalent reversal of the motor abnormalities. No dyskinetic phenomena were induced by (+)-PHNO on oral or subcutaneous administration. Oral or subcutaneous administration of (+)-PHNO to normal control marmosets also increased the usual repetoire of motor behaviour, but this was not as marked as in MPTP-treated animals. (+)-PHNO is a potent dopamine agonist drug of potential use in the treatment of Parkinson's disease.  相似文献   

9.
Long-term treatment with levodopa in Parkinson's disease results in the development of motor fluctuations, including reduced duration of antiparkinsonian action and involuntary movements, i.e., levodopa-induced dyskinesia. Cannabinoid receptors are concentrated in the basal ganglia, and stimulation of cannabinoid receptors can increase gamma-aminobutyric acid transmission in the lateral segment of globus pallidus and reduce glutamate release in the striatum. We thus tested the hypothesis that the cannabinoid receptor agonist nabilone (0.01, 0.03, and 0.10 mg/kg) would alleviate levodopa-induced dyskinesia in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) -lesioned marmoset model of Parkinson's disease. Coadministration of nabilone (0.1 mg/kg) with levodopa was associated with significantly less total dyskinesia (dyskinesia score, 12; range, 6-17; primate dyskinesia rating scale) than levodopa alone (22; range, 14-23; P < 0.05). This effect was more marked during the onset period (0-20 minutes post levodopa). There was no reduction in the antiparkinsonian action of levodopa. Furthermore, the intermediate dose of nabilone used (0.03 mg/kg) increased the duration of antiparkinsonian action of levodopa by 76%. Thus, cannabinoid receptor agonists may be useful in the treatment of motor complications in Parkinson's disease.  相似文献   

10.
In Parkinson's disease (PD), degeneration of the dopaminergic nigrostriatal pathway leads to enhanced transmission at NMDA receptors containing NR2B subunits. Previous studies have shown that some, but not all, NR2B-containing NMDA receptor antagonists alleviate parkinsonian symptoms in animal models of PD. Furthermore, enhanced NMDA receptor-mediated transmission underlies the generation of L-DOPA-induced dyskinesia (LID). The subunit content of NMDA receptors responsible for LID is not clear. Here, we assess the actions of the NMDA antagonist CP-101,606 in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmoset model of Parkinson's disease. CP-101,606 is selective for NMDA receptors containing NR2B subunits, with higher affinity for NR1/NR2B complexes compared to ternary NR1/NR2A/NR2B complexes. CP-101,606 had no significant effect on parkinsonian symptoms when administered as monotherapy over a range of doses (0.1-10 mg/kg). CP-101,606 provided a modest potentiation of the anti-parkinsonian actions of L-DOPA (8 mg/kg), although, at doses of 1 and 3 mg/kg, CP-101,606 exacerbated LID. Results of this study provide further evidence of differences in the anti-parkinsonian activity and effects on LID of the NR2B subunit selective NMDA receptor antagonists. These distinctions may reflect disparities in action on NR1/NR2B as opposed to NR1/NR2A/NR2B receptors.  相似文献   

11.
Animal studies investigating the efficacy of neurotrophic factors as treatments for Parkinson's disease (PD) ideally require partial dopamine (DA) lesion models. The intrastriatal 6-hydroxydopamine (6-OHDA) lesion model may be suitable for this purpose. Although this model has been well characterized in rodents, it has not previously been used in monkeys. The goal of the present study was to characterize the behavioral effects of unilateral injections of 6-OHDA in the basal ganglia of common marmoset monkeys (Callithrix jacchus). Cell counts from tyrosine hydroxylase immunochemistry 5 months postlesion revealed DA cell loss in the substantia nigra on the lesioned side to approximately 46% of relative to the unlesioned side. 6-OHDA lesioned monkeys showed a variety of behavioral deficits. Apomorphine induced rotation and simple sensorimotor measures (head position bias and PD disability rating score) were most affected by the lesion. The largest deficits were seen at 1 or 2 weeks postsurgery but had recovered by week 10. 6-OHDA lesioned monkeys took longer to complete a more complex sensorimotor staircase task. At 3.5 months postlesion, 6-OHDA monkeys also showed deficits on an object retrieval task designed to measure sensorimotor planning and skilled hand use. alpha-Methyl-p-tyrosine, a tyrosine hydroxylase inhibitor, reinstated those deficits which had undergone recovery in the lesioned animals and also exacerbated the deficits on the staircase task. This model has potential in assessing treatments for PD aimed at curtailing disease progression such as continuous delivery of neurotrophic factors.  相似文献   

12.
L-dopa-induced dyskinesia (LID) remains a major complication of the treatment of Parkinson's disease. The neural mechanisms underlying LID are thought to involve overactivity of striatal glutamatergic neurotransmission, with resultant underactivation of the output regions of the basal ganglia. Histamine H3 heteroreceptors can reduce glutamate and gamma-aminobutyric acid (GABA) transmission in the striatum and substantia nigra reticulata, respectively. Thus, we tested whether the histamine H3 receptor agonists immepip and imetit can alleviate LID in the MPTP-lesioned marmoset model of Parkinson's disease. Coadministration of immepip (1 mg/kg) with L-dopa (15 mg/kg) was associated with significantly less total dyskinesia than L-dopa alone. When dyskinesia was separately rated as chorea and dystonia, coadministration of L-dopa with either immepip or imetit (both 10 mg/kg) significantly reduced chorea but had no effect on dystonia. The antidyskinetic actions of the H3 agonists were not accompanied by alteration of the antiparkinsonian actions of L-dopa. However, immepip (10 mg/kg), when administered as monotherapy, significantly increased parkinsonian disability compared to vehicle. Overall, the results obtained in this study suggest that histamine H3 receptors may be involved in the neural mechanisms underlying L-dopa-induced dyskinesia in Parkinson's disease.  相似文献   

13.
The opioid peptides localized in striatal projection neurons are of great relevance to Parkinson's disease, not only as a consequence of their distribution, but also due to the pronounced changes in expression seen in Parkinson's disease. It has long been suspected that increased expression of enkephalin may represent one of the many mechanisms that compensate for dopamine (DA) depletion in Parkinson's disease. Here we demonstrate that a systemically delivered, selective delta opioid agonist (SNC80) has potent antiparkinsonian actions in both rat and primate models of Parkinson's disease. In rats treated with either the D2-preferring DA antagonist haloperidol (1 mg/kg) or the selective D1 antagonist SCH23390 (1 mg/kg), but not a combination of D1 and D2 antagonists, SNC80 (10 mg/kg) completely reversed the catalepsy induced by DA antagonists. In rats rendered immobile by treatment with reserpine, SNC80 dose-dependently reversed akinesia (EC(50) 7.49 mg/kg). These effects were dose-dependently inhibited (IC(50) 1.05 mg/kg) by a selective delta opioid antagonist (naltrindole) and by SCH23390 (1 mg/kg), but not by haloperidol (1 mg/kg). SNC80 also reversed parkinsonian symptoms in the MPTP-treated marmoset. At 10 mg/kg (ip), scores measuring bradykinesia and posture were significantly reduced and motor activity increased to levels comparable with pre-MPTP-treatment scores. Any treatment that serves to increase delta opioid receptor activation may be a useful therapeutic strategy for the treatment of Parkinson's disease, either in the early stages or as an adjunct to dopamine replacement therapy. Furthermore, enhanced enkephalin expression observed in Parkinson's disease may serve to potentiate dopamine acting preferentially at D1 receptors.  相似文献   

14.
Long-term dopamine replacement therapy of Parkinson's disease leads to the occurrence of dyskinesias. Altered firing patterns of neurons of the internal globus pallidus, involving a pathological synchronization/desynchronization process, may contribute significantly to the genesis of dyskinesia. Levetiracetam, an antiepileptic drug that counteracts neuronal (hyper)synchronization in animal models of epilepsy, was assessed in the MPTP-lesioned marmoset model of Parkinson's disease, after coadministration with (1) levodopa (L-dopa) or (2) ropinirole/L-dopa combination. Oral administration of levetiracetam (13-60 mg/kg) in combination with either L-dopa (12 mg/kg) alone or L-dopa (8 mg/kg)/ropinirole (1.25 mg/kg) treatments was associated with significantly less dyskinesia, in comparison to L-dopa monotherapy during the first hour after administration. Thus, new nondopaminergic treatment strategies targeting normalization of abnormal firing patterns in basal ganglia structures may prove useful as an adjunct to reduce dyskinesia induced by dopamine replacement therapy without affecting its antiparkinsonian action.  相似文献   

15.
Loss of dopaminergic innervation of the striatum results in overactivity of the glutamatergic pathways from the subthalamic nucleus to the internal segment of the globus pallidus and the substantia nigra pars reticulata, the output nuclei of the basal ganglia. Previous work has shown that local blockade of glutamate receptors in the internal segment of the globus pallidus or substantia nigra pars reticulata leads to marked suppression of parkinsonian signs. We have now examined whether systemic administration of a glutamate receptor antagonist has antiparkinsonian effects in rodent and primate models of Parkinson's disease. Remacemide hydrochloride is an anticonvulsant, neuroprotective compound with antagonist activity at the N-methyl-D -aspartate receptor ion channel. In normal rats and monoaminedepleted rats, remacemide hydrochloride did not cause locomotor hyperactivity, unlike MK-801. When monoaminedepleted rats were treated with a subthreshold dose of levodopa methylester, remacemide hydrochloride (5–40mg/kg, orally) caused a dose-dependent increase in locomotor activity. Moreover, remacemide hydrochloride (10 mg/kg, orally) potentiated the effects of each suprathreshold dose of levodopa methylester tested (100–200 mg/kg, intraperitoneally). Parkinsonian rhesus monkeys were tested with oral doses of vehicle plus vehicle, vehicle plus levodopa-carbidopa, and remacemide hydrochloride (5 mg/kg) plus levodopa-carbidopa. Blinded clinical scoring of videotapes revealed that treatment with remacemide hydrochloride plus levodopa-carbidopa was substantially better than levodopa-carbidopa plus vehicle or vehicle plus vehicle. The effects of remacemide hydrochloride lasted at least 5 hours. We conclude that certain N-methyl-D -aspartate receptor antagonists have antiparkinsonian actions and low potential for side effects. Clinical trials of remacemide hydrochloride in patients with Parkinson's disease may be warranted.  相似文献   

16.
The cause of the degeneration of dopamine-containing cells in the zona compacta of the substantia nigra in Parkinson's disease remains unknown. The ability of the selective nigral toxin 1-methyl-4-phenyl-1,2,3,6tetrahydropyridine (MPTP) (via its metabolite MPP+) to destroy nigral dopamine cells selectively by inhibiting complex I of the mitochondrial energy chain may provide a clue. Indeed, recent studies of post-mortem brain tissue have suggested the presence of an on-going toxic process in the substantia nigra in Parkinson's disease leading to excess lipid peroxidation. This appears also to involve a disruption of mitochondrial function since mitochondrial superoxide dismutase activity is increased and there is impairment of complex I. These changes may in turn relate to a selective increase in the total iron content of substantia nigra coupled to a generalised decrease in brain ferritin content. Piribedil is used in the symptomatic treatment of Parkinson's disease and is particularly effective against tremor. Piribedil (and its metabolites) acts as a dopamine D-2 receptor agonist. However, in our studies in contrast to other dopamine agonists, in vivo piribedil interacts with dopamine receptors in the substantia nigra and nucleus accumbens but not those in the striatum. In patients with Parkinson's disease the beneficial effects of piribedil may be limited by nausea and drowsiness. Indeed, in MPTP-treated primates piribedil reverses motor deficits but marked side-effects occur. However, pre-treatment with the peripheral dopamine receptor antagonist domperidone prevents the unwanted effects and piribedil produces a profound and longer-lasting reversal of all components of the motor syndrome. These results suggest that combined with domperidone piribedil could be used as an effective monotherapy in the treatment of Parkinson's disease.  相似文献   

17.
Journal of Neurology - The cause of the degeneration of dopamine-containing cells in the zona compacta of the substantia nigra in Parkinson's disease remains unknown. The ability of the...  相似文献   

18.
Previous studies in the MPTP-lesioned primate model of Parkinson's disease have demonstrated that alpha(2) adrenergic receptor antagonists such as idazoxan, rauwolscine, and yohimbine can alleviate L-dopa-induced dyskinesia and, in the case of idazoxan, enhance the duration of anti-parkinsonian action of L-dopa. Here we describe a novel alpha(2) antagonist, fipamezole (JP-1730), which has high affinity at human alpha(2A) (K(i), 9.2 nM), alpha(2B) (17 nM), and alpha(2C) (55 nM) receptors. In functional assays, the potent antagonist properties of JP-1730 were demonstrated by its ability to reduce adrenaline-induced (35)S-GTPgammaS binding with K(B) values of 8.4 nM, 16 nM, 4.7 nM at human alpha(2A), alpha(2B), and alpha(2C) receptors, respectively. Assessment of the ability of JP-1730 to bind to a range of 30 other binding sites showed that JP-1730 also had moderate affinity at histamine H1 and H3 receptors and the serotonin (5-HT) transporter (IC(50) 100 nM to 1 microM). In the MPTP-lesioned marmoset, JP-1730 (10 mg/kg) significantly reduced L-dopa-induced dyskinesia without compromising the anti-parkinsonian action of L-dopa. The duration of action of the combination of L-dopa and JP-1730 (10 mg/kg) was 66% greater than that of L-dopa alone. These data suggest that JP-1730 is a potent alpha(2) adrenergic receptor antagonist with potential as an anti-dyskinetic agent in the treatment of Parkinson's disease.  相似文献   

19.
Viewing action-relevant stimuli such as a graspable object or another person moving can affect the observer's own motor system. Evidence exists that external stimuli may facilitate or hinder movement in Parkinson's disease, so we investigated whether action-relevant stimuli would exert a stronger influence. We measured the effect of action-relevant stimuli (graspable door handles and finger movements) on reaction times compared with baseline stimuli (bars and object movements). Parkinson's patients were influenced by the location of the baseline stimuli, but unlike healthy controls, action-relevant stimuli did not exert a stronger influence. This suggests that external cues exert their influence in Parkinson's disease through lower-level visual processes and the influence of action-relevant stimuli on the motor system is disrupted.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号