首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In this study we examined the ability of Salmonella enterica serovar Typhimurium porins to activate activating protein 1 (AP-1) and nuclear factor kappaB (NF-kappaB) through the mitogen-activated protein kinase (MAPK) cascade, and we identified the AP-1-induced protein subunits. Our results demonstrate that these enzymes may participate in cell signaling pathways leading to AP-1 and NF-kappaB activation following porin stimulation of cells. Raf-1 was phosphorylated in response to the treatment of U937 cells with porins; moreover, the porin-mediated increase in Raf-1 phosphorylation is accompanied by the phosphorylation of MAPK kinase 1/2 (MEK1/2), p38, extracellular-signal-regulated kinase 1/2, and c-Jun N-terminal kinase. We used three different inhibitors of phosphorylation pathways: 2'-amino-3'-methoxyflavone (PD-098059), a selective inhibitor of MEK1 activator and the MAPK cascade; 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole (SB203580), a specific inhibitor of the p38 pathway; and 7beta-acetoxy-1alpha,6beta,9alpha-trihydroxy-8,13-epoxy-labd-14-en-11-one (forskolin), an inhibitor at the level of Raf-1 kinase. PD-098059 pretreatment of cells decreases AP-1 and NF-kappaB activation by lipopolysaccharide (LPS) but not by porins, and SB203580 pretreatment of cells decreases mainly AP-1 and NF-kappaB activation by porins; in contrast, forskolin pretreatment of cells does not affect AP-1 and NF-kappaB activation following either porin or LPS stimulation. Our data suggest that the p38 signaling pathway mainly regulates AP-1 and NF-kappaB activation in cells treated with S. enterica serovar Typhimurium porins. Antibody electrophoretic mobility shift assays showed that JunD and c-Fos binding is found in cells treated with porins, in cells treated with LPS, and in unstimulated cells. However, by 30 to 60 min of stimulation, a different complex including c-Jun appears in cells treated with porins or LPS, while the Fra-2 subunit is present only after porin stimulation. These data suggest different molecular mechanisms of activation induced by porins or by LPS.  相似文献   

3.
Topology of outer membrane porins in pathogenic Neisseria spp.   总被引:17,自引:5,他引:17       下载免费PDF全文
In Escherichia coli, membrane-spanning amphipathic beta-sheet structures are characteristic of many outer membrane proteins. By applying the principles that have been recognized for them to the four classes of neisserial porins, we have constructed a model for the topology of the porins within the outer membrane. This model predicts eight surface-exposed loops, both in the meningococcal class 1 and 2 proteins and in the gonococcal PIA and PIB proteins. The transmembrane sequences are highly conserved among these porins and are able to form an amphipathic beta-sheet structure. The surface-exposed hydrophilic loops show extensive variation in both length and sequence. Experimental evidence in support of this model has been obtained by using antisera against synthetic peptides which correspond to surface-exposed loops in class 1 and 2 proteins. Thus, binding to the cell surface was observed with antibodies against loops 1, 4, and 5 of class 1 and loops 1 and 5 of class 2. In class 1, these loops are the longest ones and show the highest sequence diversity among strains of different subtypes. Mapping of epitopes recognized by monoclonal antibodies with bactericidal activity has also provided strong support for the model. The epitopes are located in loops 1 and 4 of class 1 protein, loop 5 of PIB, and loop 6 of PIA. A nonbactericidal antibody that binds only weakly to whole cells was shown to recognize loop 3 of PIB. These results suggest that the longest loops are immunodominant, provide the binding sites for bactericidal antibodies, and display the greatest variation among different strains.  相似文献   

4.
5.
The protozoan parasite Leishmania fails to activate naive macrophages for proinflammatory cytokines production, and selectively impairs signal transduction pathways in infected macrophages. Because mitogen-activated protein kinases (MAPK)- and NF-kappaB-dependent signaling pathways regulate proinflammatory cytokines release, we investigated their activation in mouse bone marrow-derived macrophages (BMM) exposed to Leishmania donovani promastigotes. In naive BMM, the parasite failed to induce the phosphorylation of p38 MAPK, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK)1/2, as well as the degradation of IkappaB-alpha. The use of L. donovani mutants defective in the biosynthesis of lipophosphoglycan revealed that evasion of ERK1/2 activation requires surface expression of the repeating unit moiety of this virulence determinant. In IFN-gamma-primed BMM, L. donovani promastigotes strongly induced the phosphorylation of p38 MAPK and ERK1/2, and the use of selective inhibitors for ERK (PD98059) and p38 MAPK (SB203580) revealed that both kinases are required for L. donovani-induced TNF-alpha but not NO(2)(-) release. Collectively, these data suggest that both p38 MAPK and ERK1/2 pathways participate in some Leishmania-induced responses in IFN-gamma-primed BMM. The ability of L. donovani promastigotes to avoid MAPK and NF-kappaB activation in naive macrophages may be part of the strategy evolved by this parasite to evade innate immune responses.  相似文献   

6.
The P2 porin protein is the most abundant protein in the outer membrane of nontypeable Haemophilus influenzae (NTHI). Analysis of sequences of P2 from different strains reveals the presence of both heterogeneous and conserved surface-exposed loops of the P2 molecule among strains. The present study was undertaken to test the hypothesis that antibodies to a conserved surface-exposed loop are bactericidal for multiple strains of NTHI and could thus form the basis of vaccines to prevent infection due to NTHI. Polyclonal antiserum to a peptide corresponding to loop 6 was raised and was immunopurified over a loop 6 peptide column. Analysis of the antibodies to whole organisms and peptides corresponding to each of the eight loops of P2 by immunoassays revealed that the antibodies were highly specific for loop 6 of P2. The immunopurified antibodies bound to P2 of 14 of 15 strains in immunoblot assays. These antibodies to loop 6 demonstrated complement-mediated bactericidal killing of 8 of 15 strains. These results support the concept of using conserved regions of the P2 protein as a vaccine antigen.  相似文献   

7.
Chlamydia pneumoniae is a common respiratory pathogen, which activates macrophages to induce inflammatory cytokines that may promote atherosclerosis. However, the antigens that induce macrophage activation have not been well defined. In the current study, three chlamydial proteins which are recognized during human infection, outer membrane protein 2 (OMP2) and two 53-kDa proteins (Cpn 0980 and Cpn 0809), were investigated to determine whether they activate macrophages and, if they do, what mechanism they use for this activation. It was shown that these three proteins could (i) induce expression of tumor necrosis factor alpha (TNF-alpha) and tissue factor and (ii) induce phosphorylation of p44/42 mitogen-activated protein kinases (MAPK) and activation of early growth response factor 1 (Egr-1). Control proteins, the N-terminal fragment of polymorphic membrane protein 8 and the thioredoxin portion of the fusion protein, had no effect on macrophages. Treatment of cells with a MEK1/2 inhibitor, U0126, dramatically reduced the phosphorylation of ERK, activation of Egr-1, and expression of TNF-alpha in macrophages treated with recombinant proteins. Toll-like receptors (TLRs) act as sensors for microbial antigens and can signal via the MAPK pathway. Chlamydial protein-induced expression of TNF-alpha was significantly reduced in macrophages lacking TLR2 or TLR4. These findings suggest that C. pneumoniae may activate macrophages through OMP2, Cpn 0980, and Cpn 0809 in addition to cHSP60 and that activation occurs via TLR2 or TLR4, Egr-1, and MAPK pathways.  相似文献   

8.
The P2 porin protein is the major outer membrane protein of nontypeable Haemophilus influenzae and is a potential target of a protective immune response. Nine monoclonal antibodies (MAbs) to P2 were developed by immunizing mice with nontypeable H. influenzae whole organisms. Each MAb reacted exclusively with the homologous strain in a whole-cell immunodot assay demonstrating exquisite strain specificity. All nine MAbs recognized abundantly expressed surface-exposed epitopes on the intact bacterium by immunofluorescence and immunoelectron microscopy. Each MAb was bactericidal to the homologous strain in an in vitro complement-mediated killing assay. Immunoblot assay of cyanogen bromide cleavage products of purified P2 indicated that MAb 5F2 recognized the 10-kDa fragment, and the other eight MAbs recognized the 32-kDa fragment. Competitive ELISAs confirmed that 5F2 recognized an epitope that is different from the other eight MAbs. To further localize epitopes, MAbs 5F2 and 6G3 were studied in protein footprinting by using reversed-phase high-performance liquid chromatography. Three potential epitope-containing peptides which were reactive in an enzyme-linked immunosorbent assay with both 5F2 and 6G3 were isolated. These peptides were identified by N-terminal amino acid sequence and localized to loops 5 and 8 of the proposed model for P2. Fusion proteins consisting of glutathione S-transferase fused with variable-length peptides from loops 5 and 8 were expressed in the pGEX-2T vector. Immunoblot assay of fusion peptides of loops 5 and 8 confirmed that 5F2 recognized an epitope within residues 338 to 354 of loop 8; 6G3 and the remaining MAbs recognized an epitope within residues 213 to 229 of loop 5. These studies indicate that nontypeable H. influenzae contains bactericidal epitopes which have been mapped to two different surface-exposed loops of the P2 molecule. These potentially protective epitopes are strain specific and abundantly expressed on the surface of the intact bacterium.  相似文献   

9.
Mitogen-activated protein kinases (MAPKs) have been implicated in the signal transduction of the endothelial response to growth factors and inflammatory stimuli. The objective of this study was to test the hypothesis that the p42/44 MAPK pathway plays a common role in mediating the microvascular hyperpermeability response to vascular endothelial growth factor (VEGF) and histamine. The apparent permeability coefficient of albumin was measured in isolated and perfused coronary venules. Application of VEGF induced a rapid increase in venular permeability, and the effect was blocked by PD98059 and UO126, selective inhibitors of the mitogen-activated protein kinase kinase MEK1/2, in a dose-dependent pattern. The same MEK1/2 inhibitors dose-dependently attenuated the increase in venular permeability caused by histamine. In addition, the increases in venular permeability caused by agents that are known to activate the nitric oxide pathway, including the calcium ionophore ionomycin, the nitric oxide donor S -nitroso- N -acetylpenicillamine, and the protein kinase G activator 8-bromo-cGMP, were significantly attenuated in venules pretreated with the MEK1/2 inhibitors. Furthermore, transfection of venules with active MEK1 increased baseline permeability. In contrast, transfection of active ERK1, a downstream target of MEK1/2, did not significantly alter the basal permeability of venules. Moreover, inhibition of ERK1/2 with a specific inhibiting peptide did not prevent the hyperpermeability response to VEGF or histamine. The results suggest that activation of MEK1/2 may play a central role in the signal transduction of microvascular hyperpermeability in response to growth factors and inflammatory mediators.  相似文献   

10.
Antigenic drift of the major outer membrane protein (MOMP) P2 of nonencapsulated Haemophilus influenzae as observed during persistent infections in patients with chronic bronchitis was mimicked in a rabbit model in which H. influenzae persisted in subcutaneous cages. The antigenic drift resulted from amino acid substitutions in potentially surface-exposed loops of MOMP P2. Since in a rabbit model the appearance of antigenic variants was associated with the presence of strain-specific bactericidal antibodies (L. Vogel, B. Duim, F. Geluk, P. Eijk, H. Jansen, J. Dankert, and L. van Alphen, Infect. Immun. 64:980-986, 1996), we determined the epitope specificities of these bactericidal antibodies. The eight loops of MOMP P2 of H. influenzae d1 were separately expressed as fusion proteins with glutathione S-transferase. Sera of rabbits persistently infected with H. influenzae reacted with the loop 5 and loop 6 fusion proteins in immunoblotting and enzyme-linked immunosorbent assay. For fine mapping of the epitopes with pepscan analysis, overlapping synthetic peptides consisting of 12 amino acids were made. Rabbit sera contained antibodies reacting with peptides derived from loop 5 and peptides containing amino acids of the side of loop 6. In addition, MOMP P2 variant-specific reactions with the amino acids located at the tip of loop 6 were detected. The rabbit sera showed variant-specific complement-dependent bactericidal activities, which were eliminated by affinity chromatography with fusion proteins of loop 6 but not of loop 5. We conclude that, during persistence of H. influenzae in rabbits, variant-specific bactericidal antibodies are elicited to the variable tip of MOMP P2 loop 6.  相似文献   

11.
Monocyte Chemoattractant Proteins (MCPs) form a distinct, structurally-related subclass of CC chemokines. They are major chemoattractants for monocytes and T lymphocytes. The MCPs bind to specific G-protein-coupled receptors, initiating a signal cascade within the cell. Though the signal transduction pathways involved in MCP-1-mediated chemotaxis have been studied, the signalling pathways through which MCP-2, -3 and -4 trigger cell migration are not established. In this study, we examined the mitogen-activated protein kinase (MAPK) activation elicited by the MCPs (1-4) and its specific role in chemotaxis. Within 2 min, the MCPs (1-4) elicited a rapid and transient activation of MAPK in peripheral blood mononuclear cells and in HEK-293 cells expressing CCR2b. U0126, an inhibitor of MAPK-kinase (MEK) activation, not only prevented extracellular signal-regulated kinase 1/2 (ERK1/2) activation but also significantly inhibited the MCP-mediated chemotaxis. PI3K inhibitors Wortmannin and LY294002 also partially inhibited the MCP-induced chemotaxis. However, these compounds did not significantly inhibit ERK1/2 activation. As PI3K inhibitors partially inhibit the MCP-mediated chemotaxis but do not significantly effect ERK1/2 activation, these data suggest that co-ordinated action of distinct signal pathways is required to produce chemokine-mediated chemotaxis.  相似文献   

12.
Xie J  Ajibade AO  Ye F  Kuhne K  Gao SJ 《Virology》2008,371(1):139-154
Lytic replication of Kaposi's sarcoma-associated herpesvirus (KSHV) promotes the progression of Kaposi's sarcoma (KS), a dominant malignancy in patients with AIDS. While 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced KSHV reactivation from latency is mediated by the protein kinase C delta and MEK/ERK mitogen-activated protein kinase (MAPK) pathways, we have recently shown that the MEK/ERK, JNK and p38 MAPK pathways modulate KSHV lytic replication during productive primary infection of human umbilical vein endothelial cells [Pan, H., Xie, J., Ye, F., Gao, S.J., 2006. Modulation of Kaposi's sarcoma-associated herpesvirus infection and replication by MEK/ERK, JNK, and p38 multiple mitogen-activated protein kinase pathways during primary infection. J. Virol. 80 (11), 5371-5382]. Here, we report that, besides the MEK/ERK pathway, the JNK and p38 MAPK pathways also mediate TPA-induced KSHV reactivation from latency. The MEK/ERK, JNK and p38 MAPK pathways were constitutively activated in latent KSHV-infected BCBL-1 cells. TPA treatment enhanced the levels of activated ERK and p38 but not those of activated JNK. Inhibitors of all three MAPK pathways reduced TPA-induced production of KSHV infectious virions in BCBL-1 cells in a dose-dependent fashion. The inhibitors blocked KSHV lytic replication at the early stage(s) of reactivation, and reduced the expression of viral lytic genes including RTA, a key immediate-early transactivator of viral lytic replication. Activation of MAPK pathways was necessary and sufficient for activating the promoter of RTA. Furthermore, we showed that the activation of RTA promoter by MAPK pathways was mediated by their downstream target AP-1. Together, these findings suggest that MAPK pathways might have general roles in regulating the life cycle of KSHV by mediating both viral infection and switch from viral latency to lytic replication.  相似文献   

13.
The biochemical pathways involved in CD40 signaling have been extensively studied in B cells and B cell lines, and appear to be primarily initiated by recruitment of the tumor necrosis factor (TNF) receptor-associated factor (TRAF) signaling proteins to the CD40 cytoplasmic domain. Signaling pathways activated through CD40 in monocytes/macrophages have not been characterized as well as in B cells. Using human monocytes and the human monocytic cell line THP1, we examined signal transduction events induced by CD40 engagement with its ligand, CD154. In human monocytes, all TRAF mRNAs were expressed constitutively and CD40 ligation resulted in a strong up-regulation of TRAF1 mRNA. In THP1 cells, CD40 ligation induced expression of TRAF1 and TRAF5 mRNAs. Engagement of CD40 in both monocytes and THP1 cells led to the rapid and transient activation of the extracellular signal-regulated kinases (ERK) 1 and 2, and to low levels of JNK activation. No CD40-dependent activation of p38 mitogen-activated protein kinase (MAPK) was found. In CD154-stimulated monocytes and THP1 cells the upstream ERK1/2 activator, MAPK kinase (MEK) 1/2, and downstream substrate, c-Myc, were activated. By blocking activation of ERK1/2 with a MEK-specific inhibitor, PD98059, CD40-dependent secretion of the pro-inflammatory cytokines, TNF-alpha, IL-6 and IL-8, was demonstrated to be linked to the ERK1/2 pathway. The ERK1/2 pathway did not appear to be involved in up-regulating TRAF1 and TRAF5 mRNAs in THP1 cells. Collectively, these results suggest distinct differences between B cells and monocytic cells in CD40-dependent activation of MAPK pathways.  相似文献   

14.
15.
目的: 利用小鼠LPS血症模型,探讨封闭枯否细胞(KCs)对LPS诱导MAPK信号转导通路的影响。方法: 雄性昆明种小鼠在注射LPS(5 mg/kg)前48 h及24 h,分别静脉注射GdCl3(10 mg/kg)或等量的生理盐水,于LPS或生理盐水注射后30 min,分别取出肝脏或分离KCs;体外培养小鼠KCs经GdCl3(100 μmol/L)预处理1 h,加入含LPS(100 μg/L)的DMEM培养基继续孵育30 min,分别检测肝脏及体内外KCs ERK1/2、p38MAPK蛋白表达和磷酸化水平,及GdCl3对KCs吞噬、分泌功能的影响。结果: GdCl3可抑制LPS 诱导KCs活化和TNF-α分泌,但不能抑制LPS诱导KCs或肝脏ERK1/2、p38MAPK磷酸化,也不能影响ERK1/2、p38MAPK蛋白表达,KCs 经GdCl3单独短时间处理(1 h),可使其少量分泌TNF-α。结论: 封闭KCs并不能通过调节细胞内ERK1/2、p38MAPK信号转导途径,抑制LPS诱导的KCs活化及TNF-α释放,而可能是通过其它信号转导途径(JNK、NF-кB、GPCR等)间的相互作用减轻肝损伤。  相似文献   

16.
《Research in microbiology》2017,168(8):685-699
Epidemiologically unrelated Providencia stuartii strains isolated in hospitals in the south of France were investigated for their porin sequences and profiles. Noticeable resistance to β-lactams was found to be associated with production of extended spectrum β-lactamases or AmpC overproduction, but not metallo-β-lactamases. At the same time, the expression level of outer membrane porins was unmodified in these isolates. The identity of the amino acid sequences of the major porin OmpPst1 was less than 90% in the tested clinical strains, whereas sequences of the second major porin OmpPst2 were found to be identical in all isolates. Sequence diversity identified in the OmpPst1 porins was mainly located in two cell-surface-exposed loops (L5 and L7): these loops were found to be responsible for 80% of the main movements of the protein. Parallel tempering MD simulations indicated possible coordinated movement of these loops that might affect the electrostatic interaction of the porin with membrane components (e.g. LPS) or with external molecules/surfaces. This suggests that such flexibility of surface-exposed domains of OmpPst1 may participate in bacterial adaptation to the environment.  相似文献   

17.
Eosinophil activation during allergic diseases has a detrimental role in the generation of pathophysiologic responses. Stem cell factor (SCF) has recently shown an inflammatory, gene-activating role on eosinophils and contributes to the generation of pathophysiologic changes in the airways during allergic responses. The data in the present study outline the signal transduction events that are induced by SCF in eosinophils and further demonstrate that MEK-mediated signaling pathways are crucial for SCF-induced CCL6 chemokine activation and eosinophil survival. SCF-mediated eosinophil activation was demonstrated to include PI-3K activation as well as MEK/MAPK phosphorylation pathways. Subsequent analysis of CCL6 gene activation and production induced by SCF in the presence or absence of rather specific inhibitors for certain pathways demonstrated that the MEK/MAPK pathway but not the PI-3K pathway was crucial for the SCF-induced CCL6 gene activation. These same signaling pathways were shown to initiate antiapoptotic events and promote eosinophil survival, including up-regulation of BCL2 and BCL3. Altogether, SCF appears to be a potent eosinophil activation and survival factor.  相似文献   

18.
To identify potential immunodominant and/or adhesin binding domains of the outer membrane protein P5-homologous fimbrin adhesin of nontypeable Haemophilus influenzae (NTHI), three sets of synthetic peptides were synthesized and assayed in an adherence inhibition assay, by Western blotting, and in a biomolecular interaction analysis (BIA) system. The first series of 34 8- to 10-mer peptides represented the entire mature protein sequentially. The second set of four peptides (each 19 to 28 residues) represented the four predicted major surface-exposed regions (or loops) of this adhesin. The third series of seven peptides (each 27 to 34 residues) were specifically designed to map the third surface-exposed region. Data obtained by BIA indicated limited reactivity of a panel of high-titered immune chinchilla sera to the 8- to 10-mer peptides representing the mature protein, likely because these linear peptides did not represent continuous epitopes. However, several of these short peptides did inhibit adherence of multiple NTHI strains to a human respiratory epithelial cell. Overall, greatest relative reactivity in both BIA and adherence inhibition assays was demonstrated against, or shown by, peptides mapping to the third and fourth predicted surface-exposed regions of this adhesin, thereby indicating the presence of immunodominant and adhesin binding domains at these sites. Middle ear fluids sequentially recovered from a chinchilla with an ongoing NTHI-induced otitis media (OM) as well as sera from children with OM due to NTHI also reacted exclusively with peptides representing the third and fourth surface-exposed regions of the P5-fimbrin adhesin, indicating a similarity in immune recognition of this bacterial protein by these two hosts. Collectively, these data together with the previously demonstrated protective efficacy of immunogens derived from this adhesin in chinchilla models support the continued development of P5-fimbrin based vaccine components.  相似文献   

19.
Ahn YM  Oh SW  Kang UG  Park J  Kim YS 《Neuroscience letters》2000,296(2-3):101-104
Electroconvulsive shock (ECS) activates the mitogen-activated protein kinase (MAPK) family in the rat hippocampus, but the signaling pathways for this activation are not well understood. We investigated whether N-methyl-D-aspartate (NMDA) receptor mediated signaling is involved in the phosphorylation-activation of the MAPK family. The NMDA receptor antagonist, MK-801, dose-dependently reduced ECS-induced phosphorylation of p38 and its upstream kinase MKK6 up to 1 mg/kg. MK-801 also reduced the phosphorylation of ERK1/2 and MEK1, but only at high dosage, 2 mg/kg. Moreover, the reduction in the phosphorylation of p38 and MKK6 was greater than that of ERK1/2 and MEK1. Our results suggest that ECS activates p38 and ERK1/2 partly through an NMDA receptor-mediated signaling system in the rat hippocampus and that NMDA receptor mediated signaling is more responsible for the activation of the MKK6-p38 pathway than the MEK1-ERK pathway.  相似文献   

20.
Mitogen-activated protein kinase (MAPK) cascades are evolutionary conserved transduction pathways involved in many cellular processes. Kinase modules are associated with scaffold proteins that regulate signaling by providing critical spatial and temporal specificities. Some of these scaffold proteins have been shown to be conserved, both in sequence and function. In mouse, the scaffold MP1 (MEK Partner 1) forms a signaling complex with MEK1 and ERK1. In this work, we focus on Drosophila MP1 (dMP1). We show that dMP1 is expressed ubiquitously during embryonic and larval development. By in vitro and in vivo experiments, we show that dMP1 is located in the cytoplasm and the nuclei, and that it interacts with MEK and ERK. Genetic studies with transgenic Drosophila lines allowing either dMP1 over-expression or dMP1 down-regulation by RNA interference highlight dMP1 function in the control of cell differentiation during development of the Drosophila wing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号