首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analytical speciation method, capable of separating inorganic arsenic (As (V), As (III] and its methylated metabolites (MMAA, DMAA) from common, inert, dietary organoarsenicals, was applied to the determination of arsenic in urine from a variety of workers occupationally exposed to inorganic arsenic compounds. Mean urinary arsenic (As (V) + As (III) + MMAA + DMAA) concentrations ranged from 4.4 micrograms/g creatinine for controls to less than 10 micrograms/g for those in the electronics industry, 47.9 micrograms/g for timber treatment workers applying arsenical wood preservatives, 79.4 micrograms/g for a group of glassworkers using arsenic trioxide, and 245 micrograms/g for chemical workers engaged in manufacturing and handling inorganic arsenicals. The maximum recorded concentration was 956 micrograms/g. For the most exposed groups, the ranges in the average urinary arsenic speciation pattern were 1-6% As (V), 11-14% As (III), 14-18% MMAA, and 63-70% DMAA. The highly raised urinary arsenic concentrations for the chemical workers, in particular, and some glassworkers are shown to correspond to possible atmospheric concentrations in the workplace and intakes in excess of, or close to, recommended and statutory limits and those associated with inorganic arsenic related diseases.  相似文献   

2.
In an attempt to establish a method for biological monitoring of inorganic arsenic exposure, the chemical species of arsenic were measured in the urine and hair of gallium arsenide (GaAs) plant and copper smelter workers. Determination of urinary inorganic arsenic concentration proved sensitive enough to monitor the low-level inorganic arsenic exposure of the GaAs plant workers. The urinary inorganic arsenic concentration in the copper smelter workers was far higher than that of a control group and was associated with high urinary concentrations of the inorganic arsenic metabolites, methylarsonic acid (MAA) and dimethylarsinic acid (DMAA). The results established a method for exposure level-dependent biological monitoring of inorganic arsenic exposure. Low-level exposures could be monitored only by determining urinary inorganic arsenic concentration. High-level exposures clearly produced an increased urinary inorganic arsenic concentration, with an increased sum of urinary concentrations of inorganic arsenic and its metabolites (inorganic arsenic + MAA + DMAA). The determination of urinary arsenobetaine proved to determine specifically the seafood-derived arsenic, allowing this arsenic to be distinguished clearly from the arsenic from occupational exposure. Monitoring arsenic exposure by determining the arsenic in the hair appeared to be of value only when used for environmental monitoring of arsenic contamination rather than for biological monitoring.  相似文献   

3.
The influence of ethylenediaminetetraacetic acid (EDTA) and chemical species on arsenic accumulation in aquatic floating macrophyte Spirodela polyrhiza L. (duckweed) was investigated. The uptake of inorganic arsenic species (arsenate; As(V) and arsenite; As(III)) into the plant tissue and their adsorption on iron plaque of plant surfaces were significantly (p<0.05) higher than those of organic species (monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA)). The addition of EDTA to the culture media increased the uptake of As(V) and As(III) into the plant tissue though the MMAA and DMAA uptake were not affected. About 4–6% of the inorganic arsenic species were desorbed or mobilized from iron plaque by EDTA. Desorption of organic arsenic species was not affected by EDTA addition because the co-precipitation occurs only with inorganic species. Phosphate uptake was not affected by EDTA though its concentration in citrate-bicarbonate-EDTA (CBE)-extract was much higher than that of plant tissue. Iron uptake into the plant increased significantly (p>0.05) by EDTA addition to the culture media while its concentration in CBE-extract decreased significantly (p<0.05). The As(inorganic)/Fe ratios in plant were higher than those of CBE-extract which indicate the increased uptake of these arsenic species into the plant relative to the iron. The lower As(organic)/Fe ratios in plant and on CBE-extract suggest the reduction of accumulation of these arsenic species relative to the iron.  相似文献   

4.
顾微  杨惠芬 《卫生研究》1999,28(6):372-374
应用氢化物发生——原子荧光分析技术建立了食品中总无机砷、三价砷[As(Ⅲ)]和五价砷[As(Ⅴ)]的测定方法。用6m ol/LHCl提取食品中无机砷,在2m ol/LHCl条件下测定总无机砷,再利用三价砷、五价砷氢化物发生酸度条件的不同对三价砷进行选择测定。本方法标准曲线线性范围:总无机砷为0~400μg/L,As(Ⅲ)为0~300μg/L;检出限:总无机砷1.6μg/L,As(Ⅲ)1.1μg/L;相对标准偏差:总无机砷为1.93% ,As(Ⅲ)为2.49% ;样品回收率:总无机砷为85% ~105% ,As(Ⅲ)为80% ~115% ;一般食品样品的测定无干扰。  相似文献   

5.
The relation between exposure to As2O3 fumes and dust, and the urinary excretion of inorganic arsenic metabolites (monomethylarsonic acid, dimethylarsinic acid, unchanged inorganic arsenic) has been studied in 18 workers from a sulphuric acid producing plant. The concentration of arsenic in the breathing zone of each worker was measured during five consecutive days and urine samples were obtained after one shift and before the next. The collection efficiency of the air sampling system exceeded 95%. The time weighted average exposure (TWA) concentrations of As2O3 ranged from 6 to 502 micrograms As/m3 and were log normally distributed. Although exposure probably occurred by ingestion as well as inhalation, statistically significant correlations (log scales) were found between airborne TWA of As2O3 and the inorganic arsenic metabolites in urine collected immediately after the shift, or just before the next shift. For a TWA of 50 micrograms As/m3, the mean concentration of the sum of the three inorganic arsenic metabolites in a postshift urine sample amounted to about 55 micrograms arsenic/g creatinine (95% confidence interval (95% CI) 47-62). Higher estimates of urinary arsenic reported by other authors are probably due either to the influence of dietary organoarsenicals when total arsenic is measured in urine or to a low retention efficiency of the air sampling system for As2O3 in the vapour phase.  相似文献   

6.
The relation between exposure to As2O3 fumes and dust, and the urinary excretion of inorganic arsenic metabolites (monomethylarsonic acid, dimethylarsinic acid, unchanged inorganic arsenic) has been studied in 18 workers from a sulphuric acid producing plant. The concentration of arsenic in the breathing zone of each worker was measured during five consecutive days and urine samples were obtained after one shift and before the next. The collection efficiency of the air sampling system exceeded 95%. The time weighted average exposure (TWA) concentrations of As2O3 ranged from 6 to 502 micrograms As/m3 and were log normally distributed. Although exposure probably occurred by ingestion as well as inhalation, statistically significant correlations (log scales) were found between airborne TWA of As2O3 and the inorganic arsenic metabolites in urine collected immediately after the shift, or just before the next shift. For a TWA of 50 micrograms As/m3, the mean concentration of the sum of the three inorganic arsenic metabolites in a postshift urine sample amounted to about 55 micrograms arsenic/g creatinine (95% confidence interval (95% CI) 47-62). Higher estimates of urinary arsenic reported by other authors are probably due either to the influence of dietary organoarsenicals when total arsenic is measured in urine or to a low retention efficiency of the air sampling system for As2O3 in the vapour phase.  相似文献   

7.
An intercomparison exercise was conducted for the quantification of arsenic species in spiked human urine. The primary objective of the exercise was to determine the variance among laboratories in the analysis of arsenic species such as inorganic As (As+3 and As+5), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA). Laboratories that participated had previous experience with arsenic speciation analysis. The results of this interlaboratory comparison are encouraging. There is relatively good agreement on the concentrations of these arsenic species in urine at concentrations that are relevant to research on the metabolism of arsenic in humans and other mammals. Both the accuracy and precision are relatively poor for arsenic concentrations of less than about 5 micrograms/l.  相似文献   

8.
目的:建立新颖、准确、可靠的水中无机砷的形态分析方法。方法:利用纳米二氧化钛在不同pH值溶液中对As(Ⅲ)、As(V)吸附能力的差异,调节溶液pH值,可实现As(Ⅲ)、As(V)的分离测定。结果:As(Ⅲ)在pH1-pH12范围内可被纳米二氧化钛完全吸附,As(V)在pH12的溶液中完全不吸附,用浓NaOH溶液调节溶液pH值为12,被纳米二氧化钛吸附的As(Ⅲ)在40 g/L NaOH溶液的洗脱下完全解吸附,可完成As(Ⅲ)的测定。总砷与As(Ⅲ)的差值即为As(V)含量。结论:纳米二氧化钛吸附分离结合原子荧光光谱法进行水中无机砷的形态分析,可得到满意的结果。  相似文献   

9.
The inorganic arsenic species As(III), As(V) and the organic species methylarsonate (MMA(V)), dimethylarsinate (DMA(V)) and arsenobetaine (AsB) were determined in human urine by a fast anion exchange HPLC-ICP-MS method, which was developed for clinical laboratories with high sample throughput. This paper compares typical chromatograms of the arsenic species in urine samples collected in different medical cases, for example, for the non-exposed population, for environmentally (plant protectants) and occupationally (glass manufacture) exposed persons, for a person after a failed suicide attempt with As2O3 and for persons before and after administration of the antidot sodium 2,3-dimercapto-1-propane-sulfonate (DMPS). Concentration data of the urinary As species for the non-exposed German population (n=82) are compared with the concentrations before and after administration of DMPS (n=37). For the non-exposed group the toxicologically relevant As in urine consists of 81% DMA(V), 10% MMA(V) and 9% inorganic As. However, a few hours after an acute intoxication with inorganic As this distribution changes dramatically and As(III) and As(V) are predominantly found in urine. After treatment with DMPS the total As concentration increases significantly and mainly MMA(V) and As(III) were found in urine samples.  相似文献   

10.
Biological monitoring of occupational exposure to inorganic arsenic   总被引:1,自引:0,他引:1       下载免费PDF全文
OBJECTIVES: This study was undertaken to assess reliable biological indicators for monitoring the occupational exposure to inorganic arsenic (iAs), taking into account the possible confounding role of arsenicals present in food and of the element present in drinking water. METHODS: 51 Glass workers exposed to As trioxide were monitored by measuring dust in the breathing zone, with personal air samplers. Urine samples at the end of work shift were analysed for biological monitoring. A control group of 39 subjects not exposed to As, and eight volunteers who drank water containing about 45 micrograms/l iAs for a week were also considered. Plasma mass spectrometry (ICP-MS) was used for the analysis of total As in air and urine samples, whereas the urinary As species (trivalent, As3; pentavalent, As5; monomethyl arsonic acid, MMA; dimethyl arsinic acid, DMA; arsenobetaine, AsB) were measured by liquid chromatography coupled with plasma mass spectrometry (HPLC-MS) RESULTS: Environmental concentrations of As in air varied widely (mean 84 micrograms/m3, SD 61, median 40) and also the sum of urinary iAs MMA and DMA, varied among the groups of exposed subjects (mean 106 micrograms/l, SD 84, median 65). AsB was the most excreted species (34% of total As) followed by DMA (28%), MMA (26%), and As3 + As5 (12%). In the volunteers who drank As in the water the excretion of MMA and DMA increased (from a median of 0.5 to 5 micrograms/day for MMA and from 4 to 13 micrograms/day for DMA). The best correlations between As in air and its urinary species were found for total iAs and As3 + As5. CONCLUSIONS: To avoid the effect of As from sources other than occupation on urinary species of the element, in particular on DMA, it is proposed that urinary As3 + As5 may an indicator for monitoring the exposure to iAs. For concentrations of 10 micrograms/m3 the current environmental limit for iAs, the limit for urinary As3 + As5 was calculated to be around 5 micrograms/l, even if the wide variation of values needs critical evaluation and application of data. The choice of this indicator might be relevant also from a toxicological point of view. Trivalent arsenic is in fact the most active species and its measure in urine could be the best indicator of some critical effects of the element, such as cancer.

 

  相似文献   

11.
Summary The relationship between airborne concentrations of arsenic and the urinary excretion of inorganic arsenic metabolites (inorganic arsenic + methylarsonic acid + dimethylarsinic acid) have been studied among smelter workers exposed to arsenic trioxide. The urinary concentrations of arsenic metabolites were found to increase steadily during the first day of the working week (after 2–3 d off from work), whereafter they reached a steady state. The concentration in the late evening after a day of exposure was very similar to that in the early morning after. Both were well correlated to the total daily excretion. In the second part of the study, comprising 18 subjects, the first-void morning urine of each participant was collected for 2 to 3 d during the steady-state phase. Total concentration of arsenic in the breathing zones was measured by personal air samplers. Airborne arsenic (8-h values) varied between 1 and 194 g As/m3, and urinary arsenic between 16 and 328 g As/g creatinine. With the urinary arsenic concentrations (mean values of 2–3 d for each subject) plotted against the corresponding airborne arsenic concentrations, the best fit was obtained by a power curve with the equation y = 17 x x0.56. However, four of the participants were found to excrete far more (105–260%) arsenic in the urine than possibly could have been inhaled, most likely due to oral intake of arsenic via contaminated hands, cigarettes or snuff. If these four were excluded, the best fit was obtained by a straight regression line with the slope 2.0 and the intercept 29 g As/g creatinine (coefficient of correlation 0.92; P < 0.001).  相似文献   

12.
The large disparity between arsenic concentrations in drinking water and urine remains unexplained. This study aims to evaluate predictors of urinary arsenic in a population exposed to low concentrations (≤50?μg/l) of arsenic in drinking water. Urine and drinking water samples were collected from a subsample (n=343) of a population enrolled in a bladder cancer case-control study in southeastern Michigan. Total arsenic in water and arsenic species in urine were determined using ICP-MS: arsenobetaine (AsB), arsenite (As[III]), arsenate (As[V]), methylarsenic acid (MMA[V]), and dimethylarsenic acid (DMA[V]). The sum of As[III], As[V], MMA[V], and DMA[V] was denoted as SumAs. Dietary information was obtained through a self-reported food intake questionnaire. Log(10)-transformed drinking water arsenic concentration at home was a significant (P<0.0001) predictor of SumAs (R(2)=0.18). Associations improved (R(2)=0.29, P<0.0001) when individuals with less than 1?μg/l of arsenic in drinking water were removed and further improved when analyses were applied to individuals who consumed amounts of home drinking water above the median volume (R(2)=0.40, P<0.0001). A separate analysis indicated that AsB and DMA[V] were significantly correlated with fish and shellfish consumption, which may suggest that seafood intake influences DMA[V] excretion. The Spearman correlation between arsenic concentration in toenails and SumAs was 0.36 and between arsenic concentration in toenails and arsenic concentration in water was 0.42. Results show that arsenic exposure from drinking water consumption is an important determinant of urinary arsenic concentrations, even in a population exposed to relatively low levels of arsenic in drinking water, and suggest that seafood intake may influence urinary DMA[V] concentrations.  相似文献   

13.
The environmental impact of chromated copper arsenate (CCA)-treated utility poles is linked to the possible soil and groundwater contamination with arsenic. The objective of the present study was to determine the arsenic speciation in soil and groundwater near in-service CCA-treated poles. Arsenite (As[III]) and arsenate (As[V]) concentrations were determined in 29 surface and subsurface soil samples collected near eight CCA-treated wood poles. Temporal variability of total arsenic concentrations and inorganic arsenic speciation was also assessed in groundwater at two sites through four sampling events over a 19-month period. Arsenic speciation was carried out by a solvent extraction method using ammonium pyrrolidine dithiocarbamate-methyl isobutyl ketone, and total arsenic was quantified by inductively coupled plasma/atomic emission spectrometry/hydride generation. Average arsenic concentrations in surface soils immediately adjacent to utility poles ranged from 153+/-49 to 410+/-150 mg/kg but approached background levels (below 5 mg/kg) within 0.50 m from the poles. A positive correlation was found between surface soil As concentration and total Fe content. In subsurface samples (0.50 m), arsenic levels were generally high in sandy soils (up to 223+/-32 mg/kg), moderate in clayey soils (up to 126+/-26 mg/kg), and relatively lower in organic soils (up to 56+/-24 mg/ kg). Arsenic(V) was the predominant arsenic species in surface (>78%) and subsurface soils (>66%). Total arsenic concentrations in groundwater below the clayey site were high and varied widely over time (79-390 microg/L), with 30 to 68% as As(III). Below the utility pole located on the organic site with a high Fe content, lower total arsenic levels (12-33 microg/L) were found, with As(III) ranging from 0 to 100%.  相似文献   

14.
The influence of site-specific conditions on contaminant bioavailability and toxicity to benthic invertebrates is a key consideration in the environmental risk assessment process. This is particularly relevant for contaminants with complex speciation chemistries, such as arsenic. The present study addressed uncertainties regarding arsenic toxicity to a mayfly (Baetis tricaudatus) under low dissolved oxygen (DO) conditions characteristic of many contaminated sites. Arsenic toxicity (arsenite, As(III); arsenate, As(V)) to mayfly nymphs was assessed under two DO scenarios (68 and 84% saturation). Arsenic speciation ratios were determined during testing to confirm the nature of arsenic exposure. The present study found that As(III) was more lethal and bioaccumulated to a greater degree in B. tricaudatus compared to As(V), but the sublethal toxicities of the two arsenic species were similar. Nymph growth and development were significantly inhibited after 12 d of exposure to both 1 mg/L of As(III) and As(V). Exposure to arsenic under low DO conditions (6.5 mg/L, 68% saturation) did not significantly affect As(III) or As(V) toxicity and bioaccumulation over 12 d. The DO level of 6.5 mg/L, however, appeared to be marginally lethal to B. tricaudatus. Results indicate that the Canadian arsenic criterion for the protection of aquatic life (5 microg/L) is protective of B. tricaudatus and is low enough to accommodate differences in arsenic toxicity because of the interconversions between As(III) and As(V). These findings provide insight regarding the toxicity and speciation of arsenic under DO conditions considered to be low for this lotic mayfly species and representative of existing conditions at mine sites in northern Canada.  相似文献   

15.
The Binational Arsenic Exposure Survey (BAsES) was designed to evaluate probable arsenic exposures in selected areas of southern Arizona and northern Mexico, two regions with known elevated levels of arsenic in groundwater reserves. This paper describes the methodology of BAsES and the relationship between estimated arsenic intake from beverages and arsenic output in urine. Households from eight communities were selected for their varying groundwater arsenic concentrations in Arizona, USA and Sonora, Mexico. Adults responded to questionnaires and provided dietary information. A first morning urine void and water from all household drinking sources were collected. Associations between urinary arsenic concentration (total, organic, inorganic) and estimated level of arsenic consumed from water and other beverages were evaluated through crude associations and by random effects models. Median estimated total arsenic intake from beverages among participants from Arizona communities ranged from 1.7 to 14.1 μg/day compared to 0.6 to 3.4 μg/day among those from Mexico communities. In contrast, median urinary inorganic arsenic concentrations were greatest among participants from Hermosillo, Mexico (6.2 μg/L) whereas a high of 2.0 μg/L was found among participants from Ajo, Arizona. Estimated arsenic intake from drinking water was associated with urinary total arsenic concentration (p < 0.001), urinary inorganic arsenic concentration (p < 0.001), and urinary sum of species (p < 0.001). Urinary arsenic concentrations increased between 7% and 12% for each one percent increase in arsenic consumed from drinking water. Variability in arsenic intake from beverages and urinary arsenic output yielded counter intuitive results. Estimated intake of arsenic from all beverages was greatest among Arizonans yet participants in Mexico had higher urinary total and inorganic arsenic concentrations. Other contributors to urinary arsenic concentrations should be evaluated.  相似文献   

16.
This study aims at evaluating the suitability of adjusting urinary concentrations of arsenic, or any other urinary biomarker, for variations in urine dilution by creatinine and specific gravity in a malnourished population. We measured the concentrations of metabolites of inorganic arsenic, creatinine and specific gravity in spot urine samples collected from 1466 individuals, 5-88 years of age, in Matlab, rural Bangladesh, where arsenic-contaminated drinking water and malnutrition are prevalent (about 30% of the adults had body mass index (BMI) below 18.5 kg/m(2)). The urinary concentrations of creatinine were low; on average 0.55 g/L in the adolescents and adults and about 0.35 g/L in the 5-12 years old children. Therefore, adjustment by creatinine gave much higher numerical values for the urinary arsenic concentrations than did the corresponding data expressed as microg/L, adjusted by specific gravity. As evaluated by multiple regression analyses, urinary creatinine, adjusted by specific gravity, was more affected by body size, age, gender and season than was specific gravity. Furthermore, urinary creatinine was found to be significantly associated with urinary arsenic, which further disqualifies the creatinine adjustment.  相似文献   

17.
The study was conducted to measure the effectiveness of providing bottled water in reducing arsenic exposure. Urine, tap-water and toenail samples were collected from non-smoking adults residing in Ajo (n=40) and Tucson (n=33), Arizona, USA. The Ajo subjects were provided bottled water for 12 months prior to re-sampling. The mean total arsenic (microg/L) in tap-water was 20.3+/-3.7 in Ajo and 4.0+/-2.3 in Tucson. Baseline urinary total inorganic arsenic (microg/L) was significantly higher among the Ajo subjects (n=40, 29.1+/-20.4) than among the Tucson subjects (n=32, 11.0+/-12.0, p<0.001), as was creatinine-adjusted urinary total inorganic arsenic (microg/g) (35.5+/-25.2 vs 13.2+/-9.3, p<0.001). Baseline concentrations of arsenic (microg/g) in toenails were also higher among the Ajo subjects (0.51+/-0.72) than among the Tucson subjects (0.17+/-0.21) (p<0.001). After the intervention, the mean urinary total inorganic arsenic in Ajo (n=36) dropped by 21%, from 29.4+/-21.1 to 23.2+/-23.2 (p=0.026). The creatinine-adjusted urinary total inorganic arsenic and toenail arsenic levels did not differ significantly with the intervention. Provision of arsenic-free bottled water resulted in a modest reduction in urinary total inorganic arsenic.  相似文献   

18.
In this study we report on the finding of monomethylarsonous acid [MMA(III)] in human urine. This newly identified arsenic species is a key intermediate in the metabolic pathway of arsenic biomethylation, which involves stepwise reduction of pentavalent to trivalent arsenic species followed by oxidative addition of a methyl group. Arsenic speciation was carried out using ion-pair chromatographic separation of arsenic compounds with hydride generation atomic fluorescence spectrometry detection. Speciation of the inorganic arsenite [As(III)], inorganic arsenate [As(V)], monomethylarsonic acid [MMA(V)], dimethylarsinic acid [DMA(V)], and MMA(III) in a urine sample was complete in 5 min. Urine samples collected from humans before and after a single oral administration of 300 mg sodium 2,3-dimercapto-1-propane sulfonate (DMPS) were analyzed for arsenic species. MMA(III) was found in 51 out of 123 urine samples collected from 41 people in inner Mongolia 0-6 hr after the administration of DMPS. MMA(III )in urine samples did not arise from the reduction of MMA(V) by DMPS. DMPS probably assisted the release of MMA(III) that was formed in the body. Along with the presence of MMA(III), there was an increase in the relative concentration of MMA(V) and a decrease in DMA(V) in the urine samples collected after the DMPS ingestion.  相似文献   

19.
We report the results of a screen for genetic association with urinary arsenic metabolite levels in three arsenic metabolism candidate genes, PNP, GSTO, and CYT19, in 135 arsenic-exposed subjects from the Yaqui Valley in Sonora, Mexico, who were exposed to drinking water concentrations ranging from 5.5 to 43.3 ppb. We chose 23 polymorphic sites to test in the arsenic-exposed population. Initial phenotypes evaluated included the ratio of urinary inorganic arsenic(III) to inorganic arsenic(V) and the ratio of urinary dimethylarsenic(V) to monomethylarsenic(V) (D:M). In the initial association screening, three polymorphic sites in the CYT19 gene were significantly associated with D:M ratios in the total population. Subsequent analysis of this association revealed that the association signal for the entire population was actually caused by an extremely strong association in only the children (7-11 years of age) between CYT19 genotype and D:M levels. With children removed from the analysis, no significant genetic association was observed in adults (18-79 years). The existence of a strong, developmentally regulated genetic association between CYT19 and arsenic metabolism carries import for both arsenic pharmacogenetics and arsenic toxicology, as well as for public health and governmental regulatory officials.  相似文献   

20.
Little information is available on the relationship between occupational exposure to inorganic arsenic in coal fly ash and urinary excretion of arsenic metabolites. This study ws undertaken in a coal-fired power plant in Slovakia during a routine maintenance outage. Arsenic was measured in the breathing zone of workers during 5 consecutive workdays, and urine samples were obtained for analysis of arsenic metabolites--inorganic arsenic (Asi), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA)--prior to the start of each shift. Results from a small number of cascade impactor air samples indicated that approximately 90% of total particle mass and arsenic was present in particle size fractions >/= 3.5 micron. The 8-hr time-weighted average (TWA) mean arsenic air concentration was 48.3 microg/m3 (range 0.17-375.2) and the mean sum of urinary arsenic (SigmaAs) metabolites was 16.9 microg As/g creatinine (range 2.6-50.8). For an 8-hr TWA of 10 microg/m3 arsenic from coal fly ash, the predicted mean concentration of the SigmaAs urinary metabolites was 13.2 microg As/G creatinine [95% confidence interval (CI), 10.1-16.3). Comparisons with previously published studies of exposure to arsenic trioxide vapors and dusts in copper smelters suggest that bioavailability of arsenic from airborne coal fly ash (as indicated by urinary excretion) is about one-third that seen in smelters and similar settings. Arsenic compound characteristics, matrix composition, and particle size distribution probably play major roles in determining actual uptake of airborne arsenic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号