首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Sarthy V  Hoshi H  Mills S  Dudley VJ 《Neuroscience》2007,144(3):1087-1093
Sensory information in the retina is transferred from rod and cone photoreceptors to higher visual centers via numerous parallel circuits that sample the photoreceptor mosaic independently. Each circuit consists of a unique combination of ganglion cell, bipolar and amacrine cell types. The morphology and physiological responses of many amacrine cells have been characterized. However, the synaptic connections and retinal circuits in which they participate are only rarely understood. A major problem that has prevented fuller characterization of retinal circuitry is the need for specific cellular markers for the more than 50 inner retinal cell types. One potential strategy for labeling cells is to use transgenic expression of a reporter gene in a specific cell type. In a recent study of cluster of differentiation 44 (CD44)-enhanced green fluorescent protein (EGFP) transgenic mice, we observed that the green fluorescent protein (GFP) was expressed in a population of amacrine and ganglion cells in the inner nuclear layer (INL) and the GCL. To characterize the morphology of the GFP-labeled cells, whole mount preparations of the retina were used for targeted iontophoretic injections of Lucifer Yellow and Neurobiotin. Furthermore, immunocytochemistry was used to characterize the antigenic properties of the cells. We found that many GFP-expressing cells were GABAergic and also expressed calretinin. In addition to the somatic staining, there was a strong GFP(+)-band located about 50-60% depth in the inner plexiform layer (IPL). Double labeling with an antibody to choline acetyltransferase (ChAT) revealed that the GFP-band was located at strata 3 inner retina. The best-labeled GFP-expressing cell type in the INL was a wide-field amacrine cell that ramified in stratum 3. The GFP-expressing cells in the GCL resemble the type B1, or possibly A2 ganglion cells. The CD44-EGFP mice should provide a valuable resource for electrophysiological and connectivity studies of amacrine cells in the mouse retina.  相似文献   

2.
3.
Evidence from toxicological studies suggested that an ionotropic GABA receptor of novel pharmacology (picrotoxin-insensitive, bicuculline-sensitive) exists in the chick embryo retina. In this report, we provide direct morphological and electrophysiological evidence for the existence of such an iGABA receptor. Chick embryo retinas (14-16 days old) incubated in the presence of kainic acid showed pronounced histopathology in all retinal layers. Maximal protection from this toxicity required a combination of bicuculline and picrotoxin. Individual application of the antagonists indicated that a picrotoxin-insensitive, bicuculline-sensitive GABA receptor is likely to be present on ganglion and amacrine, but not bipolar, cells. GABA currents in embryonic and mature chicken retinal neurons were measured by whole cell patch clamp. GABA was puffed at the dendritic processes in the IPL. Picrotoxin (500 microM, in the bath) eliminated all (>95%) the GABA current in the majority of ganglion and amacrine cells tested, but many cells possessed a substantial picrotoxin-insensitive component. This current was eliminated by bicuculline (200 microM). This current was not a transporter-associated current, since it was not altered by GABA transport blockers or sodium removal. The current-voltage relation was linear and reversed near E(Cl), as expected for a ligand-gated chloride current. Both pentobarbital and lorazepam enhanced the picrotoxin-insensitive current. We conclude that chicken retinal ganglion and amacrine cells express a GABA receptor that is GABA-A-like, in that it can be blocked by bicuculline, and positively modulated by barbiturates and benzodiazepines, but is insensitive to the noncompetitive blocker picrotoxin. Understanding the molecular properties of this receptor will be important for understanding both physiological GABA neurotransmission and the pathology of GABA receptor overactivation.  相似文献   

4.
Substance P is the preferred ligand for the neurokinin 1 (NK1) receptor. In vertebrate retinas, substance P is expressed by amacrine, interplexiform and ganglion cells. Substance P influences the activity of amacrine and ganglion cells and it is reported to evoke dopamine release. We investigated NK1 receptor expression in the rabbit retina using affinity-purified NK1 receptor antibodies. NK1 receptors were expressed by two distinct populations of retinal neurons. One is a population of ON-type bipolar cells characterized by axonal arborizations that ramified in the inner plexiform layer near the ganglion cell layer. Double-label studies showed that NK1 receptor-expressing bipolar cells were distinct from rod bipolar cells and from other immunocytochemically identified types of cone bipolar cells. Their density was about 2250 cells/mm2 in the visual streak and 1115 cells/mm2 in ventral mid-periphery. They were distributed in a non-random pattern. In the outer plexiform layer, the dendrites of these bipolar cells converged into heavily immunostained clusters having a punctate appearance. The density of these clusters in mid-peripheral ventral regions (about 13000 clusters/mm2) was similar to the reported cone density [Famiglietti and Sharpe (1995) Vis. Neurosci. 12, 1151-1175], suggesting these dendrites contact all cone photoreceptors. The second NK1 receptor expressing cell population corresponds to the tyrosine hydroxylase-containing amacrine cell population. NK1 receptor immunostaining was localized to the cell body and processes, but not to the processes that form the 'rings' that are known to encircle somata of AII amacrine cells. These findings show that NK1 receptor immunoreactivity is localized to a population of ON-type cone bipolar cells and to dopaminergic amacrine cells, suggesting that substance P acting on NK1 receptors influences multiple retinal circuits in the rabbit retina.  相似文献   

5.
The nervous system frequently integrates parallel streams of information to encode a broad range of stimulus strengths. In mammalian retina it is generally believed that signals generated by rod and cone photoreceptors converge onto cone bipolar cells prior to reaching the retinal output, the ganglion cells. Near absolute visual threshold a specialized mammalian retinal circuit, the rod bipolar pathway, pools signals from many rods and converges on depolarizing (AII) amacrine cells. However, whether subsequent signal flow to OFF ganglion cells requires OFF cone bipolar cells near visual threshold remains unclear. Glycinergic synapses between AII amacrine cells and OFF cone bipolar cells are believed to relay subsequently rod-driven signals to OFF ganglion cells. However, AII amacrine cells also make glycinergic synapses directly with OFF ganglion cells. To determine the route for signal flow near visual threshold, we measured the effect of the glycine receptor antagonist strychnine on response threshold in fully dark-adapted retinal cells. As shown previously, we found that response threshold for OFF ganglion cells was elevated by strychnine. Surprisingly, strychnine did not elevate response threshold in any subclass of OFF cone bipolar cell. Instead, in every OFF cone bipolar subclass strychnine suppressed tonic glycinergic inhibition without altering response threshold. Consistent with this lack of influence of strychnine, we found that the dominant input to OFF cone bipolar cells in darkness was excitatory and the response threshold of the excitatory input varied by subclass. Thus, in the dark-adapted mouse retina, the high absolute sensitivity of OFF ganglion cells cannot be explained by signal transmission through OFF cone bipolar cells.  相似文献   

6.
In retinal ganglion cells (RGCs), the expression of various types of voltage-gated sodium channel (Nav) alpha-subunits (Nav1.1, Nav1.2, Nav1.3, and Nav1.6) has been reported. Like RGCs, certain subsets of retinal amacrine cells, including AII amacrine cells, generate tetrodotoxin (TTX)-sensitive action potentials in response to light; however, the Nav subtypes expressed in these cells have not been identified. We examined the Nav subtypes expressed in rat retinal amacrine cells by in situ hybridization (ISH) using RNA probes specific for TTX-sensitive Na(v)s (Nav1.1, Nav1.2, Nav1.3, Nav1.6, and Nav1.7). Our results confirmed that Nav1.1, Nav1.2, Nav1.3, and Nav1.6 are localized in the ganglion cell layer (GCL). Interestingly, Nav1.1 was expressed not only in the GCL, but also in the inner nuclear layer (INL). The cell bodies of the Nav1.1-positive cells in the INL were located at the INL/inner plexiform layer (IPL) border. The cell bodies of AII amacrine cells are located close to the INL/IPL border, and these cells can be labeled with antibodies against parvalbumin (PV). Therefore, we combined ISH with immunohistochemistry and discovered that most of the PV-immunoreactive cells located at the INL/IPL border express Nav1.1. Our results show that AII amacrine cells express Nav1.1.  相似文献   

7.
The bio-active peptide, angiotensin II (Ang II), has been suggested to exert a neuromodulatory effect on inner retinal neurons. In this study, we examined the distribution of angiotensin receptors (ATRs) in the developing and mature rat retina and optic nerve using immunofluorescence immunocytochemistry. Double-labeling experiments were performed with established markers to identify different retinal cell populations. In adult retinae, ATRs were observed on neurons involved in “ON” pathways of neurotransmission. Angiotensin II type 1 receptors (AT1Rs) were expressed by a sub-population of “ON” cone bipolar cells that also labeled for Gα0 and islet-1. Extra-neuronal expression of AT1Rs was evident on retinal astrocytes, Müller cells and blood vessels. Immunoreactivity for the angiotensin II type 2 receptor (AT2R) was observed on conventional and displaced GABAergic amacrine cells. Co-localization studies showed that AT2R-expressing amacrine cells constituted at least two separate sub-populations. Cell counts revealed that all wide-field amacrine cells expressing protein kinase C-alpha were also AT2R-positive; a further subset of amacrine cells expressing AT2Rs and stratifying in sublamina “b” of the inner plexiform layer (IPL) was identified. Developmental expression of AT1Rs was dynamic, involving multiple inner neuronal classes. At postnatal day 8 (P8), AT1R immunoreactivity was observed on putative ganglion cells. The characteristic bipolar cell labeling observed in adults was not evident until P13. In contrast, AT2Rs were detected as early as P2 and localized specifically to amacrine cells from this age onward. These data provide further evidence for the potential role of angiotensin II in the modulation of retinal neurons and glia. The differential pattern of expression of these receptors across these cell types is similar to that observed in the brain and suggests that a similar functional role for Ang II may also exist within the retina.  相似文献   

8.
Lim EJ  Kim IB  Oh SJ  Chun MH 《Neuroscience letters》2007,424(3):199-202
Mammalian neurons express the neural intermediate filament protein neurofilament (NF). In the retina, NFs have been detected primarily in the axons and processes of retinal ganglion and horizontal cells. We found an amacrine cell type that was immunolabeled with an antibody against SMI32, a non-phosphorylated epitope on neurofilament proteins of high molecular weight, in the mouse retina. This type of amacrine cell was non-randomly distributed, and these cells exhibited a central-peripheral density gradient. Most of these cells co-expressed GABA and ChAT, but not glycine or any other amacrine cell marker. These results suggest that some SMI32-immunoreactive amacrine cells belong to a GABAergic population, and that SMI32 can therefore be used as a marker for a subset of amacrine cells in addition to ganglion cells and horizontal cells in the mouse retina.  相似文献   

9.
Although most CNS neurons require sodium action potentials (Na-APs) for normal stimulus-evoked release of classical neurotransmitters, many types of retinal and other sensory neurons instead use only graded potentials for neurotransmitter release. The physiological properties and information processing capacity of Na-AP-producing neurons appear significantly different from those of graded potential neurons. To classify amacrine cells in this dichotomy, we investigated whether Na-APs, which are often observed in these cells, are required for functional light-evoked release of inhibitory neurotransmitters from these cells. We recorded light-evoked inhibitory postsynaptic currents (IPSCs) from retinal ganglion cells, neurons directly postsynaptic to amacrine cells, and applied TTX to block Na-APs. In control solution, TTX application always led to partial suppression of the light-evoked IPSC. To isolate release from glycinergic amacrine cells, we used either bicuculline, a GABAA receptor antagonist, or picrotoxin, a GABAA and GABAC receptor antagonist. TTX application only partially suppressed the glycinergic IPSC. To isolate release from GABAergic amacrine cells, we used the glycine receptor blocker strychnine. TTX application only partially suppressed the light-evoked GABAergic IPSC. Glycinergic and GABAergic amacrine cells did not obviously differ in the usage of Na-APs for release. These observations, in conjunction with previous studies of other retinal neurons, indicate that amacrine cells, taken as a class, are the only type of retinal neuron that uses both Na-AP-dependent and -independent modes for light-evoked release of neurotransmitters. These results also provide evidence for another parallel between the properties of retinal amacrine cells and olfactory bulb granule cells.  相似文献   

10.
Neurogenesis in the retinal ganglion cell layer of the rat.   总被引:3,自引:0,他引:3  
The present study has examined the birthdates of neurons in the retinal ganglion cell layer of the adult rat. Rat fetuses were exposed to tritiated thymidine in utero to label neurons departing the mitotic cycle at different gestational stages from embryonic days 12 through to 22. Upon reaching adulthood, rats were either given unilateral injections of horseradish peroxidase into target visual nuclei in order to discriminate (1) ganglion cells from displaced amacrine cells, (2) decussating from non-decussating ganglion cells, and (3) alpha cells from other ganglion cell types; or, their retinae were immunohistochemically processed to reveal the choline acetyltransferase-immunoreactive amacrine cells in the ganglion cell layer. Retinae were embedded flat in resin and cut en face to enable reconstruction of the distribution of labelled cells. Retinal sections were autoradiographically processed and then examined for neurons that were both tritium-positive and either horseradish peroxidase-positive or choline acetyltransferase-positive. Tritium-positive neurons in the ganglion cell layer were present in rats that had been exposed to tritiated thymidine on embryonic days E14-E22. Retinal ganglion cells were generated between E14 and E20, the ipsilaterally projecting ganglion cells ceasing their neurogenesis a full day before the contralaterally projecting ganglion cells. Alpha cells were generated from the very outset of retinal ganglion cell genesis, at E14, but completed their neurogenesis before the other cell types, by E17. Tritium-positive, horseradish peroxidase-negative neurons in the ganglion cell layer were present from E14 through to E22, and are interpreted as displaced amacrine cells. Choline acetyltransferase-positive displaced amacrine cells were generated between E16 and E20. Individual cell types showed a rough centroperipheral neurogenetic gradient, with the dorsal half of the retina slightly preceding the ventral half. These results demonstrate, first, that retinal ganglion cell genesis and displaced amacrine cell genesis overlap substantially in time. They do not occur sequentially, as has been commonly assumed. Second, they demonstrate that the alpha cell population of retinal ganglion cells and the choline acetyltransferase-immunoreactive population of displaced amacrine cells are each generated over a limited time during the periods of overall ganglion cell and displaced amacrine cell genesis, respectively. Third, they show that the very earliest ganglion cells to be generated in the temporal retina have exclusively uncrossed optic axons, while the later cells to be generated therein have an increasing propensity to navigate a crossed chiasmatic course.  相似文献   

11.
The expression and distribution of AMPA, kainate and NMDA glutamate receptor subunits was studied in the goldfish retina. For the immunocytochemical localization of the AMPA receptor antisera against GluR2, GluR2/3 and GluR4 were used, and for in situ hybridization rat specific probes for GluR1 and GluR2 and goldfish specific probes for GluR3 and GluR4 were used. The localization of the low affinity kainate receptor and NMDA receptor was studied using antisera against GluR5-7 and NR1. All AMPA receptor subtypes were demonstrated to be present in the goldfish retina both by immunocytochemistry and in situ hybridization. In situ hybridization revealed expression of all AMPA receptors subunit at the inner border of the INL. Only GluR3 was also strongly expressed in the outer border of the INL. Some of the ganglion cells displayed a strong signal for GluR1, GluR3 and GluR4. GluR1-immunoreactivity was present in subsets of bipolar, amacrine, and ganglion cells. GluR2 and GluR2/3-immunoreactivity was mainly localized in the outer plexiform layer. GluR2 and GluR2/3-immunoreactivity are associated with the photoreceptor synaptic terminals. GluR4-immunoreactivity is present on Müller cells in the inner retina and on dendrites of bipolar cells in the OPL, whereas GluR5-7-immunoreactivity was prominently present on horizontal cell axon terminals. Finally, NR1-immunoreactivity was confined to amacrine cells, the inner plexiform layer and ganglion cells. This study shows that there is a strong heterogeneity of glutamate receptor subunit expression in the various layers of the retina. Of the AMPA receptor subunits GluR3 seems to be expressed the most widely in all layers with strong glutamatergic synaptic interactions whereas all the other subunits seem to have a more restricted expressed pattern.  相似文献   

12.
Although the excitatory amino acids, aspartate and glutamate are present in large quantities in the layers of the mammalian retina where the bipolar and amacrine cells make contact with the retinal ganglion cells, it was not known whether these amino acids are the actual neurotransmitters which excite the retinal ganglion cells. To answer this L-aspartate, L-glutamate and the recently discovered powerful and selective antagonist for the N-methyl-D-aspartate receptor, 2-amino-5-phosphonovalerate, were applied iontophoretically to the "sustained" and the "transient" classes of retinal ganglion cells in the optically intact eye of anaesthetised cats. The visually-driven excitation of all "sustained" cells was significantly suppressed by 2-amino-5-phosphonovalerate, whereas that of "transient" cells was not. L-aspartate enhanced the visually-driven excitation and increased the spontaneous firing rare of all "sustained" cells but not of "transient" cells and these effects were blocked by 2-amino-5-phosphonovalerate. The results with L-glutamate were inconclusive. It is suggested that L-aspartate may be an excitatory transmitter mediating the visual response at the receptor field centre of "sustained" retinal ganglion cells, but that excitation of "transient" retinal ganglion cells is mediated by a different transmitter.  相似文献   

13.
Previous studies have revealed that the expression pattern of the neurokinin 1 receptor (the preferred receptor for substance P, SP) varies in different mammalian retinas. We investigated NK1 receptor expression in the mouse retina to provide background information for future studies in transgenic mice on SP functional roles in the retina. Mouse retinal sections were treated for single and double-label immunofluorescence. NK1 receptor immunoreactivity was in bipolar cells and in numerous amacrine cells. Double-label studies showed that NK1 receptor-expressing bipolar cells constituted a population of ON-type cone bipolar cells, since they were distinct from rod bipolar cells and contained glycine. They were nonrandomly distributed with highest density in central retina. These cells were similar and may correspond to the population of NK1 receptor-expressing bipolar cells of the rabbit retina. Different subsets of NK1 receptor-expressing amacrine cells were identified on the basis of the expression of selected neurotransmitter substances: i) about 23% of NK1 receptor-expressing amacrine cells also contained glycine; ii) the remaining 77% were likely to be GABAergic, although some inconsistency was observed in the GABA immunostaining obtained with two different GABA antibodies; iii) all dopaminergic amacrine cells also expressed NK1 receptors; iv) about one third of SP-containing amacrine cells also expressed NK1 receptors. These findings confirm and expand previous observations in rat and rabbit retinas. In particular, common to all three species is the expression of NK1 receptors in dopaminergic amacrine cells, indicating that SP neurotransmission may be a universal feature of the circuitry of the dopaminergic amacrine cell. Peculiar to the mouse retina is the presence of putative NK1 autoreceptors expressed by SP-containing amacrine cells.  相似文献   

14.
Signal transmission in the catfish retina. V. Sensitivity and circuit   总被引:10,自引:0,他引:10  
1. We analyzed the light-evoked responses of retinal neurons by means of a white-noise technique. Horizontal and bipolar cells produced a modulation response that was linearly related to a modulation of the mean luminance of a large field of light. The first-order kernels were capable of reproducing the cells' modulation response with a fair degree of accuracy. The amplitude as well as the waveform of the kernels changed with the change in the mean luminance. This is a parametric change and is a form of field adaptation. As the time constant of the parametric change was much longer than that of the modulation response (memory), neurons were assumed to be at a dynamic steady state at a given mean luminance. 2. With the presence of a steady annular illumination, the first-order kernel derived from stimulation with a small spot of light became faster in peak response time and larger in amplitude. For horizontal-cell somas and bipolar cells, the surround also linearized their modulation response. This surround enhancement has been seen in all the cone-driven retinal cells except the receptor and horizontal cell axon, in which a steady surround decreased the amplitude of the spot-evoked kernel but shortened the peak response time. 3. A change in the modulation depth did not affect either the amplitude or the wave-form of the first-order kernels from the horizontal and bipolar cells. In the amacrine and ganglion cells, on the other hand, the amplitude of kernels was related inversely to the depth of modulation. These cells were more sensitive to the modulation of a small modulation depth. 4. A static nonlinearity appeared when signals were transmitted to the amacrine cells. The nonlinearity was first produced in the type-C amacrine cells by a process, which could be modeled by squaring the bipolar cell response. A gamut of more complex second-order nonlinearities found in type-N amacrine cells could be modeled by a band-pass filtering of the type-C cell response. Linear components in the bipolar cells and nonlinear components in the amacrine cells are encoded into spike trains in the ganglion cells. Thus, under our simple stimulus regimen, the ganglion cells transformed the results of the preganglionic signal processing into a spike train without much modification. 5. We propose a tentative diagram of the signal flow in the cone-driven catfish retinal neurons based on this and previous studies.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The dendritic morphology and retinal distribution of substance P(SP)-immunoreactive neurons was determined in two Australian lizard species Pogona vitticeps and Varanus gouldii, by using immunohistochemistry on retinal wholemounts and sectioned materials. In both species, two classes of SP-immunoreactive neurons were described in the inner nuclear layer (INL) and classified as amacrine cells (types A and B). Type A amacrine cells had large somata and wide-field, bistratified dendrites branching in sublaminas 1 and 5 of the inner plexiform layer (IPL). Their morphology and retinal distribution differed between the two species. Type B amacrine cells in both species had small somata and small-field dendritic branching. A population of SP-immunoreactive neurons with classical ganglion cell morphology were identified in the ganglion cell layer (GCL). Immunostained ganglion cells occurred in larger numbers of Varanus gouldii than in Pogona vitticeps. In both species type B SP cells were the most numerous and were estimated to be about 60,000-70,000. They were distributed non-uniformly with a high density band across the horizontal meridian of the retina, from where the density decreased towards the dorsal and ventral retinal margins. In both species type A amacrine cells occurred in small numbers distributed sparsely in the peripheral retina. The faint immunostaining of SP-immunoreactive neurons in the GCL, did not allow us to reliably determine their numbers and retinal distribution. The functional significance of SP-immunoreactive amacrine and ganglion cells in the lizard retina remains to be determined.  相似文献   

16.
Illumination of the receptive-field surround reduces the sensitivity of a retinal ganglion cell to centre illumination. The steady, antagonistic receptive-field surround of retinal ganglion cells is classically attributed to the signalling of horizontal cells in the outer plexiform layer (OPL). However, amacrine cell signalling in the inner plexiform layer (IPL) also contributes to the steady receptive-field surround of the ganglion cell. We examined the contributions of these two forms of presynaptic lateral inhibition to ganglion cell light sensitivity by measuring the effects of surround illumination on EPSCs evoked by centre illumination. GABAC receptor antagonists reduced inhibition attributed to dim surround illumination, suggesting that this inhibition was mediated by signalling to bipolar cell axon terminals. Brighter surround illumination further reduced the light sensitivity of the ganglion cell. The bright surround effects on the EPSCs were insensitive to GABA receptor blockers. Perturbing outer retinal signalling with either carbenoxolone or cobalt blocked the effects of the bright surround illumination, but not the effects of dim surround illumination. We found that the light sensitivities of presynaptic, inhibitory pathways in the IPL and OPL were different. GABAC receptor blockers reduced dim surround inhibition, suggesting it was mediated in the IPL. By contrast, carbenoxolone and cobalt reduced bright surround, suggesting it was mediated by horizontal cells in the OPL. Direct amacrine cell input to ganglion cells, mediated by GABAA receptors, comprised another surround pathway that was most effectively activated by bright illumination. Our results suggest that surround activation of lateral pathways in the IPL and OPL differently modulate the sensitivity of the ganglion cell to centre illumination.  相似文献   

17.
Recent evidence suggests that extracellular ATP modulates retinal processing and could play a role in modulating glial cells during retinal diseases. Here, we evaluated the localization of P2Y1 receptors in the rat retina using indirect immunofluorescence immunocytochemistry. We observed labeling within defined populations of inner retinal neurons and Müller cell processes and end feet. Double labeling of P2Y1 receptor with choline acetyltransferase revealed extensive colocalization indicating the expression of this receptor by cholinergic amacrine cells. Ganglion cell labeling for P2Y1 receptors was also observed. Having established the normal pattern of immunolabeling within the retina, we next examined whether immunolabeling was altered by retinal disease. P2Y1 receptor immunolabeling of Müller cells was of greater intensity following light-induced retinal degeneration, suggesting that Müller cell gliosis is accompanied by changes in P2Y1 receptor expression. Overall, these data provide further evidence for a role of extracellular ATP in retinal signaling within subsets of retinal neurons as well as glia.  相似文献   

18.
Summary The proportion and size distribution of ganglion and non-ganglion cells in the ganglion cell layer of different areas of the pigeon retina was examined in whole-mounts of the retina by retrograde axonal transport of horseradish peroxidase (HRP) from large brain injections. A maximum of 98% of cells were labelled in the red field and a maximum of 77% in the peripheral yellow field. Unlabelled cell bodies were 30% smaller than labelled ganglion cells and had a mean diameter of 6.2 m and a size range of 4 to 9 m. The morphology of cells in the ganglion cell layer was examined by Golgi staining of retinal whole-mounts. Small glia, displaced amacrine and ganglion cells were found. Displaced amacrine cell bodies were about 30% smaller than ganglion cells and their size distribution was similar to the unlabelled cells in HRP preparations. Displaced amacrine cells had small rounded cell bodies (mean diameter 6.2 m) increasing in size with eccentricity, and a unistratified dendritic tree of fine, nearly radial, varicose dendrites in sublamina 4 of the inner plexiform layer. They had elliptical dendritic fields (mean diameter 66 m) aligned parallel to the retina's horizontal meridian. A population of amacrine cells was found with somas at the inner margin of the inner nuclear layer and soma and dendritic morphology matching those of displaced amacrines. These amacrine cells had unistratified dendritic trees at the junction of sublaminae 1 and 2 of the inner plexiform layer. Pigeon displaced amacrine cells and their matching amacrines are similar to starburst cells of the rabbit retina. They may participate in on and off pathways to ganglion cells and their lamination suggests that they are cholinergic.  相似文献   

19.
Characterization of receptors for glutamate and GABA in retinal neurons   总被引:11,自引:0,他引:11  
Glutamate and gamma-aminobutyric acid (GABA) are major excitatory and inhibitory neurotransmitters in the vertebrate retina, "a genuine neural center" (Ramón y Cajal, 1964, Recollections of My Life, C.E. Horne (Translater) MIT Press, Cambridge, MA). Photoreceptors, generating visual signals, and bipolar cells, mediating signal transfer from photoreceptors to ganglion cells, both release glutamate, which induces and/or changes the activity of the post-synaptic neurons (horizontal and bipolar cells for photoreceptors; amacrine and ganglion cells for bipolar cells). Horizontal and amacrine cells, which mediate lateral interaction in the outer and inner retina respectively, use GABA as a principal neurotransmitter. In recent years, glutamate receptors and GABA receptors in the retina have been extensively studied, using multi-disciplinary approaches. In this article some important advances in this field are reviewed, with special reference to retinal information processing. Photoreceptors possess metabotropic glutamate receptors and several subtypes of GABA receptors. Most horizontal cells express AMPA receptors, which may be predominantly assembled from flop slice variants. In addition, these cells also express GABAA and GABAC receptors. Signal transfer from photoreceptors to bipolar cells is rather complicated. Whereas AMPA/KA receptors mediate transmission for OFF type bipolar cells, several subtypes of glutamate receptors, both ionotropic and metabotropic, are involved in the generation of light responses of ON type bipolar cells. GABAA and GABAC receptors with distinct kinetics are differentially expressed on dendrites and axon terminals of both ON and OFF bipolar cells, mediating inhibition from horizontal cells and amacrine cells. Amacrine cells possess ionotropic glutamate receptors, whereas ganglion cells express both ionotropic and metabotropic glutamate receptors. GABAA receptors exist in amacrine and ganglion cells. Physiological data further suggest that GABAC receptors may be involved in the activity of these neurons. Moreover, responses of these retinal third order neurons are modulated by GABAB receptors, and in ganglion cells there exist several subtypes of GABAB receptors. A variety of glutamate receptor and GABA receptor subtypes found in the retina perform distinct functions, thus providing a wide range of neural integration and versatility of synaptic transmission. Perspectives in this research field are presented.  相似文献   

20.
N Brecha  S C Sharma  H J Karten 《Neuroscience》1981,6(12):2737-2746
Substance P-like immunoreactivity was localized to amacrine cells in both adult and developing goldfish retina using immunohistochemical techniques. These studies utilized a well-characterized monoclonal antiserum directed to substance P. Specificity was established by absorption of the anti-serum with 10 μm synthetic substance P. Specific substance P-like immunoreactivity was localized within a seemingly distinct population of unistratified amacrine cells which were distributed in both central and peripheral retinal regions. The immunoreactive somata were located at the border of the inner nuclear layer and inner plexiform layer and were characterized by a round or ovoid somata which measured about 9μm in diameter. These immunoreactive amacrine cells typically had a single process which descended to and ramified within lamina 3 of the inner plexiform layer.Specific substance P-like immunoreactivity first appeared 60 h after hatching (stage 27) within both somata and processes located in differentiated retinal regions. No substance P-like immunoreactive somata or processes were observed in undifferentiated retinal regions. In retinas from stage 27 to 14 days after hatching, the immunoreactive somata were characterized by an ellipsoidal soma and a large nucleus devoid of immunoreactivity. These immunoreactive cells were also characterized by a single process that descended to and ramified within lamina 3 of the differentiated inner plexiform layer. At 30 days after hatching, the substance P-containing cells were identical in appearance to these same cell types observed within the adult retina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号