首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Francisella tularensis is the bacterial pathogen that causes tularemia in humans and a number of animals. To date, there is no approved vaccine for this widespread and life-threatening disease. The goal of this study was to identify F. tularensis mutants that can be used in the development of a live attenuated vaccine. We screened F. novicida transposon mutants to identify mutants that exhibited reduced growth in mouse macrophages, as these cells are the preferred host cells of Francisella and an essential component of the innate immune system. This approach yielded 16 F. novicida mutants that were 100-fold more attenuated for virulence in a mouse model than the wild-type parental strain. These mutants were then tested to determine their abilities to protect mice against challenge with high doses of wild-type bacteria. Five of the 16 attenuated mutants (with mutations corresponding to dsbB, FTT0742, pdpB, fumA, and carB in the F. tularensis SCHU S4 strain) provided mice with protection against challenge with high doses (>8 x 10(5) CFU) of wild-type F. novicida. We believe that these findings will be of use in the design of a vaccine against tularemia.  相似文献   

2.
Francisella tularensis is a gram-negative intracellular bacterium that is considered to be a potential category A biological weapon due to its extreme virulence. Although vaccination with the attenuated live vaccine strain (LVS) of F. tularensis can protect against lethal challenge, use of inactivated or subunit forms as vaccine candidates for induction of protective antibody responses has not been fully evaluated. In the present study, we examined whether immune protection in the lung could be stimulated by intranasal administration of inactivated LVS together with interleukin-12 (IL-12) as an adjuvant. LVS was inactivated by heat, paraformaldehyde treatment, or exposure to UV, and inactivation of the preparations was confirmed by assessing bacterial growth and the survival of mice after direct inoculation. We found that mucosal vaccination with inactivated LVS provided 90 to 100% protection in mice after lethal intranasal challenge with 10(4) CFU of LVS, and this protection was dependent on inclusion of exogenous IL-12 during vaccine administration. Survival of vaccinated mice after live bacterial challenge was correlated with reduced bacterial burden, decreased pulmonary inflammation, increased serum antibody titers, and lower levels of gamma interferon (IFN-gamma), tumor necrosis factor alpha, and IL-6 in the lungs, livers, and spleens. Whereas NK cells were primarily responsible for the production of IFN-gamma in unvaccinated, challenged animals, vaccinated mice had increased levels of lung IFN-gamma+ CD4+ T cells after challenge. Significantly, mice genetically deficient in immunoglobulin A (IgA) expression were unable to survive lethal challenge after vaccination. These results are the first results to demonstrate that IgA-mediated protection against lethal respiratory tularemia occurs after mucosal vaccination with inactivated F. tularensis LVS.  相似文献   

3.
A licensed vaccine against Francisella tularensis is currently not available. Two Francisella tularensis subsp. novicida (herein referred to by its earlier name, Francisella novicida) attenuated strains, the ΔiglB and ΔfopC strains, have previously been evaluated as potential vaccine candidates against pneumonic tularemia in experimental animals. F. novicida ΔiglB, a Francisella pathogenicity island (FPI) mutant, is deficient in phagosomal escape and intracellular growth, whereas F. novicida ΔfopC, lacking the outer membrane lipoprotein FopC, which is required for evasion of gamma interferon (IFN-γ)-mediated signaling, is able to escape and replicate in the cytosol. To dissect the difference in protective immune mechanisms conferred by these two vaccine strains, we examined the efficacy of the F. novicida ΔiglB and ΔfopC mutants against pulmonary live-vaccine-strain (LVS) challenge and found that both strains provided comparable protection in wild-type, major histocompatibility complex class I (MHC I) knockout, and MHC II knockout mice. However, F. novicida ΔfopC-vaccinated but not F. novicida ΔiglB-vaccinated perforin-deficient mice were more susceptible and exhibited greater bacterial burdens than similarly vaccinated wild-type mice. Moreover, perforin produced by natural killer (NK) cells and release of granzyme contributed to inhibition of LVS replication within macrophages. This NK cell-mediated LVS inhibition was enhanced with anti-F. novicida ΔfopC immune serum, suggesting antibody-dependent cell-mediated cytotoxicity (ADCC) in F. novicida ΔfopC-mediated protection. Overall, this study provides additional immunological insight into the basis for protection conferred by live attenuated F. novicida strains with different phenotypes and supports further investigation of this organism as a vaccine platform for tularemia.  相似文献   

4.
We have determined the sequence of the gene cluster encoding the O antigen in Francisella novicida and compared it to the previously reported O-antigen cluster in Francisella tularensis subsp. tularensis. Immunization with purified lipopolysaccharide (LPS) from F. tularensis subsp. tularensis or F. novicida protected against challenge with Francisella tularensis subsp. holarctica and F. novicida, respectively. The LPS from F. tularensis subsp. tularensis did not confer protection against challenge with F. novicida, and the LPS from F. novicida did not confer protection against challenge with F. tularensis subsp. holarctica. Allelic replacement mutants of F. tularensis subsp. tularensis or F. novicida which failed to produce O antigen were attenuated, but exposure to these mutants did not induce a protective immune response. The O antigen of F. tularensis subsp. tularensis appeared to be important for intracellular survival whereas the O antigen of F. novicida appeared to be critical for serum resistance and less important for intracellular survival.  相似文献   

5.
Previous work in our laboratory revealed that mice parenterally vaccinated with recombinantly attenuated staphylococcal enterotoxin (SE) or toxic shock syndrome toxin 1 develop protective antibodies against a lethal intraperitoneal (i.p.) toxin challenge. This study investigated the efficacy of nasal and oral immunizations with an SEB vaccine (SEBv) toward an i.p. or mucosal (via an aerosol) toxin challenge. Both vaccination routes, with the immunoadjuvant cholera toxin (CT), elicited comparable SEB-specific immunoglobulin A (IgA) and IgG levels in saliva. Nasal or oral inoculations also generated SEB-specific IgA, IgG, and IgM in the serum, but the nasal route yielded higher specific IgG titers. SEBv alone, when given nasally or orally, did not induce any detectable SEB-specific antibody. Mice vaccinated mucosally were protected against a 50% lethal dose of wild-type SEB given i.p. or mucosally, thus demonstrating that nasal or oral administration of this SEBv, with CT, elicits systemic and mucosal antibodies to SEB that protect against SEB-induced lethal shock.  相似文献   

6.
Lipopolysaccharide (LPS) structural modifications have been shown to specifically affect the pathogenesis of many gram-negative pathogens. In Francisella, modification of the lipid A component of LPS resulted in a molecule with no to low endotoxic activity. The role of the terminal lipid A phosphates in host recognition and pathogenesis was determined using a Francisella novicida mutant that lacked the 4' phosphatase enzyme (LpxF). The lipid A of this strain retained the phosphate moiety at the 4' position and the N-linked fatty acid at the 3' position on the diglucosamine backbone. Studies were undertaken to determine the pathogenesis of this mutant strain via the pulmonary and subcutaneous routes of infection. Mice infected with the lpxF-null F. novicida mutant by either route survived primary infection and subsequently developed protective immunity against a lethal wild-type (WT) F. novicida challenge. To determine the mechanism(s) by which the host controlled primary infection by the lpxF-null mutant, the role of innate immune components, including Toll-like receptor 2 (TLR2), TLR4, caspase-1, MyD88, alpha interferon (IFN-α), and gamma interferon(IFN-γ), was examined using knockout mice. Interestingly, only the IFN-γ knockout mice succumbed to a primary lpxF-null F. novicida mutant infection, highlighting the importance of IFN-γ production. To determine the role of components of the host adaptive immune system that elicit the long-term protective immune response, T- and B-cell deficient RAG1(-/-) mice were examined. All mice survived primary infection; however, RAG1(-/-) mice did not survive WT challenge, highlighting a role for T and B cells in the protective immune response.  相似文献   

7.
Cells of an attenuated live vaccine strain (LVS) of F. tularensis grown under iron-restricted conditions were found to contain increased quantities of several proteins relative to cells of this same strain grown under iron-replete conditions. Mass spectrometric analysis identified two of these proteins as IglC and PdpB, both of which are encoded by genes located in a previously identified pathogenicity island in F. tularensis LVS. Regions with homology to the consensus Fur box sequence were located immediately in front of the iglC and pdpB open reading frames (ORFs), and in silico analysis of the F. tularensis Schu4 genome detected a number of predicted 5' untranslated regions that contained putative Fur boxes. The putative Fur box preceding Francisella iron-regulated gene A (figA) had the highest degree of identity with the consensus Fur box sequence. DNA microarray analysis showed that nearly 80 of the genes in the F. tularensis LVS genome were up- or down-regulated at least twofold under iron-restricted growth conditions. When tested for possible siderophore production by means of the Chrome Azurol S assay, a wild-type F. novicida strain produced a large reaction zone whereas its figA mutant produced very little reactivity in this assay. In addition, a cross-feeding experiment demonstrated that this siderophore-like activity produced by the wild-type F. novicida strain could enhance the ability of the F. novicida figA mutant to grow under iron-restricted conditions. This study provides the first identification of iron-regulated genes in F. tularensis LVS and evidence for the production of a siderophore-like molecule by F. novicida.  相似文献   

8.
Francisella tularensis is a category A agent of biowarfare/biodefense. Little is known about the regulation of virulence gene expression in Francisella spp. Comparatively few regulatory factors exist in Francisella, including those belonging to two-component systems (TCS). However, orphan members of typical TCS can be identified. To determine if orphan TCS members affect Francisella gene expression, a gene encoding a product with high similarity to the Salmonella PmrA response regulator (FTT1557c/FNU0663.2) was deleted in Francisella novicida (a model organism for F. tularensis). The F. novicida pmrA mutant was defective in survival/growth within human and murine macrophage cell lines and was 100% defective in virulence in mice at a dose of up to 10(8) CFU. In addition, the mutant strain demonstrated increased susceptibility to antimicrobial peptide killing, but no differences were observed between the lipid A of the mutant and the parental strain, as has been observed with pmrA mutants of other microbes. The F. novicida pmrA mutant was 100% protective as a single-dose vaccine when challenge was with 10(6) CFU of F. novicida but did not protect against type A Schu S4 wild-type challenge. DNA microarray analysis identified 65 genes regulated by PmrA. The majority of these genes were located in the region surrounding pmrA or within the Francisella pathogenicity island (FPI). These FPI genes are also regulated by MglA, but MglA does not regulate pmrA, nor does PmrA regulate MglA. Thus, the orphan response regulator PmrA is an important factor in controlling virulence in F. novicida, and a pmrA mutant strain is an effective vaccine against homologous challenge.  相似文献   

9.
The current study determined the ability of Francisella novicida to act as a live vaccine against the much more virulent, but closely related pathogen, Francisella tularensis. Live attenuated strains of the latter are effective vaccines against human tularemia. However, the molecular cause of their attenuation remains unknown, and this is a regulatory barrier for licensing such vaccines. Moreover, F. tularensis is exceptionally difficult to manipulate genetically. This is hampering the development of rationally attenuated vaccine strains. F. novicida shares a lot of genetic homology with F. tularensis and is more amenable to genetic manipulation. If the former naturally expresses the protective antigens of the latter, it could be used to develop a defined tularemia vaccine. However, the results presented herein show that wild-type F. novicida elicits almost no protection in mice against challenge with virulent F. tularensis.  相似文献   

10.
Previous results have demonstrated that nonspecific protective immunity against lethal Francisella tularensis live vaccine strain (LVS) or Listeria monocytogenes infection can be stimulated either by sublethal infection with bacteria or by treatment with bacterial DNA given 3 days before lethal challenge. Here we characterize the ability of purified lipopolysaccharide (LPS) from F. tularensis LVS to stimulate similar early protective immunity. Treatment of mice with surprisingly small amounts of LVS LPS resulted in very strong and long-lived protection against lethal LVS challenge within 2 to 3 days. Despite this strong protective response, LPS purified from F. tularensis LVS did not activate murine B cells for proliferation or polyclonal immunoglobulin secretion, nor did it activate murine splenocytes for secretion of interleukin-4 (IL-4), IL-6, IL-12, or gamma interferon (IFN-gamma). Immunization of mice with purified LVS LPS induced a weak specific anti-LPS immunoglobulin M (IgM) response and very little IgG; however, infection of mice with LVS bacteria resulted in vigorous IgM and IgG, particularly IgG2a, anti-LPS antibody responses. Studies using various immunodeficient mouse strains, including LPS-hyporesponsive C3H/HeJ mice, muMT(-) (B-cell-deficient) knockout mice, and IFN-gamma-deficient mice, demonstrated that the mechanism of protection does not involve recognition through the Lps(n) gene product; nonetheless, protection was dependent on B cells as well as IFN-gamma.  相似文献   

11.
Francisella tularensis is a gram-negative intracellular bacterium that can induce lethal respiratory infection in humans and rodents. However, little is known about the role of innate or adaptive immunity in protection from respiratory tularemia. In the present study, the role of interleukin-12 (IL-12) in inducing protective immunity in the lungs against intranasal infection of mice with the live vaccine strain (LVS) of F. tularensis was investigated. It was found that gamma interferon (IFN-gamma) and IL-12 were strictly required for protection, since mice deficient in IFN-gamma, IL-12 p35, or IL-12 p40 all succumbed to LVS doses that were sublethal for wild-type mice. Furthermore, exogenous IL-12 treatment 24 h before intranasal infection with a lethal dose of LVS (10,000 CFU) significantly decreased bacterial loads in the lungs, livers, and spleens of wild-type BALB/c and C57BL/6 mice and allowed the animals to survive infection; such protection was not observed in IFN-gamma-deficient mice. The resistance induced by IL-12 to LVS infection was still observed in NK cell-deficient beige mice but not in CD8-/- mice. These results demonstrate that exogenous IL-12 delivered intranasally can prevent respiratory tularemia through a mechanism that is at least partially dependent upon the expression of IFN-gamma and CD8 T cells.  相似文献   

12.
DNA vaccines have the capacity to induce strong Th1-biased immune responses that are of major importance to providing protection against intracellular pathogens. In the present study we have focused on the role played by type I IFN in immune responses induced after DNA vaccination. Mice lacking the IFNAR1 chain of the type I IFN receptor (IFNAR K/O mice) were immunized with a plasmid encoding glycoprotein C of pseudorabies virus (PRV-gC). After DNA vaccination, wild-type (WT) mice showed features characteristic of Th1 immune responses, such as high IgG2a:IgG1 anti-PRV Ab ratio and antigen-specific IFN-gamma production by spleen cells. In contrast, IFNAR K/O mice showed a significantly lower IgG2a:IgG1 Ab ratio and IFN-gamma production. In addition, the percentage of CD8(+) and B lymph-node cells expressing CD69 after PRV-gC DNA vaccination was lower in IFNAR K/O than in WT mice. These results support a major role played by type I IFN in shaping Th1 immune responses after DNA vaccination. Codelivery of plasmids encoding IL-12 and IL-18 along with the plasmid encoding PRV-gC restored Th1 responses in IFNAR K/O mice.  相似文献   

13.
The stimulation of gamma interferon (IFN-gamma) has been shown to be essential in resolving infections by intracellular pathogens. As such, several different cytokines including, interleukin-12 (IL-12) and IL-18, can induce IFN-gamma. To resolve Salmonella infections, the stimulation of IL-12 and IFN-gamma are important for mediating its clearance. In this present study, the relevance of IL-18 in protection against oral challenge with Salmonella typhimurium was investigated to determine the role of this IFN-gamma-promoting cytokine. Rabbit anti-murine IL-18 antisera was generated and administered prior to the oral challenge of BALB/c and IL-12p40-deficient knockout (IL-12KO) mice with a wild-type S. typhimurium strain. The median survival time was reduced by 2 days for the anti-IL-18-treated BALB/c mice, while no significant reduction in survival rate for the anti-IL-18-treated IL-12KO mice was observed compared to vehicle-treated mice. To investigate the contribution of IL-18 to resolving Salmonella infections, an attenuated aro-negative mutant (H647) was orally administered to BALB/c mice. This Salmonella infection induced both IL-12 and IFN-gamma in both the Peyer's patches and the spleens. In vehicle-treated mice, Peyer's patch IL-12 peaked by 24 h, while IL-18 levels peaked at 3 days, suggesting sequential support by these cytokines for IFN-gamma. Anti-IL-18 treatment exerted its greatest effect upon the mucosal compartment, limiting early IFN-gamma production. However, anti-IL-18 treatment had little effect upon splenic IFN-gamma levels until late in the response. Infection of IL-12KO mice with H647 strain induced IFN-gamma, but it was not supported by IL-18, although IL-18 levels were reduced by this treatment. These results suggest that IL-18 does contribute to the clearance of S. typhimurium and that endogenously induced IL-18 could not substitute for IL-12.  相似文献   

14.
Live attenuated salmonella vaccines generally confer better protection than killed vaccines. The immune responses in BALB/c mice elicited by immunization with a live attenuated Aro Salmonella typhimurium vaccine given orally, intravenously or subcutaneously were compared with those elicited by killed whole-cell vaccines (acetone or heat-treated) given subcutaneously. Live vaccines given by all routes elicited higher interleukin-2 (IL-2) and interferon-gamma (IFN-gamma) responses in spleen cells against an alkali-treated whole-cell salmonella lysate than did killed vaccines. Live and killed vaccines elicited high total antibody levels to smooth lipopolysaccharide (LPS) (enzyme-linked immunosorbent assay), but all live vaccine regimes elicited higher IgG2a, suggesting a Th1 response. Oral and intravenous vaccination with live organisms elicited IgA against smooth LPS which subcutaneous vaccination with live or killed salmonellae failed to evoke. Western blots using rough whole-cell lysates showed that all vaccines elicited a varied anti-protein response; however, all groups immunized with live organisms recognized three unidentified bands of MW 52,000, 46,000 and 18,000 which were consistently absent in groups immunized with killed organisms. The results indicate that immunization with live aroA salmonellae elicited a Th1 type of response, including bystander T-cell help to LPS, and a response to proteins not seen in mice that received killed vaccines.  相似文献   

15.
Host defenses against Streptococcus pneumoniae depend largely on phagocytosis following opsonization by polysaccharide-specific immunoglobulin G (IgG) antibodies and complement. Since colonization of the respiratory mucosa is the first step in pneumococcal pathogenesis, mucosal immune responses may play a significant role. In addition to inducing systemic immune responses, mucosal vaccination with an effective adjuvant has the advantage of inducing mucosal IgA antibodies. The heat-labile enterotoxin (LT) of Escherichia coli is a well-studied mucosal adjuvant, and adjuvant activity of nontoxic LT mutants has been demonstrated for several protein antigens. We investigated the immunogenicity of pneumococcal polysaccharide conjugate vaccines (PNC) of serotypes 1 and 3 in mice after intranasal (i.n.) immunization by using as an adjuvant the nontoxic LT mutant LT-K63 or LT-R72, which has minimal residual toxicity. Pneumococcal serotype-specific antibodies were measured in serum (IgM, IgG, and IgA) and saliva (IgA), and vaccine-induced protection was evaluated by i.n. challenge with virulent pneumococci of the homologous serotype. When administered with LT mutants, i.n. immunization with both conjugates induced systemic and mucosal immune responses, and serum IgG antibody levels were significantly higher than after subcutaneous immunization. All mice immunized i.n. with PNC-1 and LT mutants were protected against bacteremia and cleared the pneumococci from the lung 24 h after i.n. challenge; pneumococcal density correlated significantly with serum IgG antibody levels. Similarly, the survival of mice immunized i.n. with PNC-3 and LT mutants was significantly prolonged. These results demonstrate that i.n. vaccination with PNC and potent adjuvants can protect mice against invasive and lethal pneumococcal infections, indicating that mucosal vaccination with PNC may be an alternative vaccination strategy for humans.  相似文献   

16.
Strain ts-S34 of Bordetella bronchiseptica was treated jointly with two mutagens, nitrosoguanidine and UV irradiation, and a urease-negative (u-), temperature-sensitive (ts) mutant strain indistinguishable from Alcaligenes faecalis in its biochemical characteristics was isolated. However, the mutant isolated was a phase III organism. By repeating selection of smaller, hemolytic colonies observed among phase III colonies after prolonged incubation, a phase I organism, strain ts-S34.u-, was isolated. The u- and ts properties of the mutant strain were hereditarily stable, and heat-labile toxin production was very low. Growth in KCN broth and on Simmons citrate agar was reduced. Agglutinability of the strain against anti-S1 and anti-ts-S34.u- hyperimmune sera was as high (X20,480) as that of wild-type strain S1. The live ts-S34.u- strain vaccination protected guinea pigs from challenge exposure with 15,000 X the 50% lethal dose of virulent strain S1 of B. bronchiseptica. In these studies, it appeared that the ts-S34.u- strain has favorable properties, including a useful hereditary marker and low heat-labile toxin production, for use as a live attenuated vaccine.  相似文献   

17.
We examined the role of cytokines in the development of gamma interferon (IFN-gamma)-secreting protective T cells following immunization with a culture filtrate subunit vaccine against Mycobacterium tuberculosis containing the adjuvant dimethyldioctadecylammonium bromide (DDA). Depletion of either interleukin-6 (IL-6) or IL-12 with specific neutralizing antibodies during vaccination reduced the priming of T cells for antigen-specific proliferation and IFN-gamma secretion. Such reduction was also observed in IL-6 gene-disrupted mice as compared to wild-type animals. IL-6 was found to play a role in the initial differentiation of Th1 cells but not in their expansion. The defect found after IL-6 depletion or in IL-6-knockout mice was compensated by the inclusion of recombinant mouse IL-12 in the vaccine. The induction of protective immunity against an intravenous or an aerosol challenge with live, virulent M. tuberculosis was markedly reduced by neutralizing either IL-6 or IL-12 during immunization with the vaccine. Likewise, the effects of IL-6 neutralization were partially reversed by including IL-12 in the vaccine. Our data point to an important role of IL-6 and IL-12 in the generation of cell-mediated immunity to tuberculosis.  相似文献   

18.
Francisella tularensis is a highly virulent bacterium that causes tularemia, a disease that is often fatal if untreated. A live vaccine strain (LVS) of this bacterium is attenuated for virulence in humans but produces lethal disease in mice. F. tularensis has been classified as a Category A agent of bioterrorism. Despite this categorization, little is known about the components of the organism that are responsible for causing disease in its hosts. Here, we report the deletion of a well-characterized lipoprotein of F. tularensis, designated LpnA (also known as Tul4), in the LVS. An LpnA deletion mutant was comparable to the wild-type strain in its ability to grow intracellularly and cause lethal disease in mice. Additionally, mice inoculated with a sublethal dose of the mutant strain were afforded the same protection against a subsequent lethal challenge with the LVS as were mice initially administered a sublethal dose of the wild-type bacterium. The LpnA-deficient strain showed an equivalent ability to promote secretion of chemokines by human monocyte-derived macrophages as its wild-type counterpart. However, recombinant LpnA potently stimulated primary cultures of human macrophages in a Toll-like receptor 2-dependent manner. Although human endothelial cells were also activated by recombinant LpnA, their response was relatively modest. LpnA is clearly unnecessary for multiple functions of the LVS, but its inflammatory capacity implicates it and other Francisella lipoproteins as potentially important to the pathogenesis of tularemia.  相似文献   

19.
We previously reported that Salmonella typhimurium SR-11 mutants with deletion mutations in the genes encoding adenylate cyclase (cya) and the cAMP receptor protein (crp) are avirulent and protective in mice. Salmonella typhimurium UK-1 is highly virulent for chicks (oral LD50 of 3x10(3) CFU) and mice (oral LD50 of 8.5x10(3) CFU) and is capable of lethal infections in pigs, calves and horses. We postulated that attenuated derivatives of this lethal strain would probably induce a higher level of protective immunity than achieved with attenuated derivatives of less virulent S. typhimurium strains such as SR11. To test this hypothesis, we have constructed S. typhimurium UK-1 Deltacya-12Deltacrp-11 mutant strain chi3985 and its virulence plasmid cured derivative chi4095 to investigate their avirulence and immunogenicity in mice. We found that the mutants are avirulent and able to induce protective immune responses in BALB/c mice. These mutant strains retained wild-type ability to colonize the gut associated lymphoid tissue but reach and persist in spleen and liver at a significantly lower level than the wild-type parent strain. Mice survived oral infection with >1x10(9) CFU of chi3985 (the equivalent to 10(5) 50% lethal doses of wild-type S. typhimurium UK-1) and were fully protected against challenge with 10(5)times the LD50 of the wild-type parent. Immunized mice developed a high level of serum IgG titre to Salmonella LPS and delayed-type hypersensitivity (DTH) response to S. typhimurium outer membrane proteins. Compared to the virulence plasmid-containing strain chi3985, the virulence plasmid cured DeltacyaDeltacrp mutant strain chi4095 was more attenuated and less protective, as some mice immunized with chi4095 died when challenged with the wild-type UK-1 strain. This work demonstrates that S. typhimurium UK-1 Deltacrp Deltacya mutant strain may be a potential live vaccine to induce protective immunity against Salmonella infection or to deliver foreign antigens to the immune system.  相似文献   

20.
In designing subunit vaccination strategies for respiratory syncytial virus (RSV), immunization by mucosal routes may present a realistic alternative to parenteral administration for inducing protective immune responses. To this end, we have utilized the BALB/c mouse model and an adjuvant formulation containing caprylic/capric glycerides (CCG) and polyoxyethylene-20-sorbitan monolaurate (PS). The intranasal (i.n.) delivery of purified natural F protein (3 microg per vaccine) formulated with CCG-PS resulted in the generation of statistically heightened serum anti-F protein immunoglobulin G (IgG), IgG1, IgG2b, and IgA antibodies. In addition, the presence of locally produced anti-F protein IgA was demonstrated in both vaginal and nasal washes of vaccinated mice. That production of specific serum and mucosal immunoglobulins resulted in functional immune responses was shown in neutralizing antibody assays and protection of mouse lungs against subsequent live virus challenge. Consequently, we propose a novel vaccine formulation composed of purified natural RSV F protein in CCG-PS as a viable intranasal immunogen to stimulate anti-RSV immune responses in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号