首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantitative image quality results in the form of the modulation transfer function (MTF), normalized noise power spectrum (NNPS) and detective quantum efficiency (DQE) are presented for nine full field digital mammography (FFDM) systems. These parameters are routinely measured as part of the quality assurance (QA) programme for the seven FFDM units covered by our centre. Just one additional image is required compared to the standard FFDM protocol; this is the image of an edge, from which the MTF is calculated. A variance image is formed from one of the flood images used to measure the detector response and this provides useful information on the condition of the detector with respect to artefacts. Finally, the NNPS is calculated from the flood image acquired at a target detector air kerma (DAK) of 100 microGy. DQE is then estimated from these data; however, no correction is currently made for effects of detector cover transmission on DQE. The coefficient of variation (cov) of the 50% point of the MTF for five successive MTF results was 1%, while the cov for the 50% MTF point for an a-Se system over a period of 17 months was approximately 3%. For four a-Se based systems, the cov for the NNPS at 1 mm(-1) for a target DAK of 100 microGy was approximately 4%; the same result was found for four CsI based FFDM units. With regard to the stability of NNPS over time, the cov for four NNPS results acquired over a period of 12 months was also approximately 4%. The effect of acquisition geometry on NNPS was also assessed for a CsI based system. NNPS data acquired with the antiscatter grid in place showed increased noise at low spatial frequency; this effect was more severe as DAK increased. DQE results for the three detector types (a-Se, CsI and CR) are presented as a function of DAK. Some reduction in DQE was found for both the a-Se and CsI based systems at a target DAK of 12.5 microGy when compared to DQE data acquired at 100 microGy. For the CsI based systems, DQE at 1 mm(-1) fell from 0.49 at 100 microGy to 0.38 at 12.5 microGy. For the a-Se units, there was a slightly greater reduction in average DQE at 1 mm(-1), from 0.53 at 100 microGy to 0.31 at 12.5 microGy. Somewhat different behaviour was seen for the CR unit; DQE (at 1 mm(-1)) increased from 0.40 at 100 microGy to 0.49 at 12.5 microGy; however, DQE fell to 0.30 at 420 microGy. DQE stability over time was assessed using the cov of DQE at 1 mm(-1) and a target DAK of 100 microGy; the cov for data acquired over a period of 17 months for an a-Se system was approximately 7%. For comparison with conventional testing methods, the cov was calculated for contrast-detail (cd) data acquired over the same period of time for this unit. The cov for the threshold contrast results (averaged for disc diameters between 0.1 mm and 2 mm) was 6%, indicating similar stability.  相似文献   

2.
This paper presents pre-sampling modulation transfer function (MTF), normalized noise power spectrum (NNPS) and detective quantum efficiency (DQE) results for an amorphous selenium (a-Se) full field digital mammography system. MTF was calculated from the image of an angled 0.5 mm thick Cu edge, acquired without additional beam filtration. NNPS data were acquired at detector air-kerma levels ranging from 9.1 microGy to 331 microGy, using a standard mammography x-ray spectrum of 28 kV, Mo/Mo target/filter combination and 4 cm of PMMA additional filtration. Prior to NNPS estimation, the image statistics were assessed using a variance image. This method was able to easily identify a detector artefact and should prove useful in routine quality assurance (QA) measurements. Detector DQE, calculated from the NNPS and MTF data, dropped to 0.3 for low detector air-kerma settings but reached an approximately constant value of 0.6 above 50 microGy at the detector. Subjective image quality data were also obtained at these detector air-kerma settings using the CDMAM contrast-detail (c-d) test object. The c-d data reflected the trend seen in DQE, with threshold contrast increasing at low detector air-kerma values. The c-d data were then compared against predictions made using two established models, the Rose model and a standard signal detection theory model. Using DQE(0), the Rose model gave results within approximately 15% on average for all the detector air-kerma values studied and for detail diameters down to 0.2 mm. Similar agreement was also found between the measured c-d data and the signal detection theory results, which were calculated using an ideal human visual response function and a system magnification of unity. The use of full spatial frequency DQE improved the agreement between the calculated and observer results for detail sizes below 0.13 mm.  相似文献   

3.
The imaging performance of an amorphous selenium (a-Se) flat-panel detector for digital fluoroscopy was experimentally evaluated using the spatial frequency dependent modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE). These parameters were investigated at beam qualities and exposures within the range typical of gastrointestinal fluoroscopic imaging (approximately 0.1 - 10 microR, 75 kV). The investigation does not take into consideration the detector cover, which in clinical use will lower the DQE measured here by its percent attenuation. The MTF was found to be less than the expected aperture response and the NPS was not white which together indicate presampling blurring. The cause of this blurring was attributed to charge trapping at the interface between two different layers of the a-Se. The effect on the DQE was also consistent with presampling blur, which reduces the aliasing in the NPS and thereby reduces the spatial frequency dependence of the DQE. (The DQE was independent of spatial frequency from 0.12 to 0.73 mm(-1) due to antialiasing of the NPS.) Moreover, the first zero of the measured MTF and the aperture response appeared at the same spatial frequency (6.66 mm(-1) for a pixel of 150 microm). Hence, the geometric fill factor (77%) was increased to an effective fill factor of 99 +/- 1%. A large scale ( approximately 32 pixels) correlation in the noise due to the configuration of the readout electronics caused increased noise power in the gate line NPS at low spatial frequency (< 0.1 mm(-1)). The DQE (f = 0) was exposure independent over a large range of exposures but became exposure dependent at low exposures due to the electronic noise.  相似文献   

4.
Our work is to investigate and understand the factors affecting the imaging performance of amorphous selenium (a-Se) flat-panel detectors for digital mammography. Both theoretical and experimental methods were developed to investigate the spatial frequency dependent detective quantum efficiency [DQE(f)] of a-Se flat-panel detectors for digital mammography. Since the K edge of a-Se is 12.66 keV and within the energy range of a mammographic spectrum, a theoretical model was developed based on cascaded linear system analysis with parallel processes to take into account the effect of K fluorescence on the modulation transfer function (MTF), noise power spectrum (NPS), and DQE(f) of the detector. This model was used to understand the performance of a small-area prototype detector with 85 microm pixel size. The presampling MTF, NPS, and DQE(f) of the prototype were measured, and compared to the theoretical calculation of the model. The calculation showed that K fluorescence accounted for a 15% reduction in the MTF at the Nyquist frequency (fNy) of the prototype detector, and the NPS at fNy was reduced to 89% of that at zero spatial frequency. The measurement of presampling MTF of the prototype detector revealed an additional source of blurring, which was attributed to charge trapping in the blocking layer at the interface between a-Se and the active matrix. This introduced a drop in both presampling MTF and NPS at high spatial frequency, and reduced aliasing in the NPS. As a result, the DQE(f) of the prototype detector at fNy approached 40% of that at zero spatial frequency. The measured and calculated DQE(f) using the linear system model have reasonable agreement, indicating that the factors controlling image quality in a-Se based mammographic detectors are fully understood, and the model can be used to further optimize detector imaging performance.  相似文献   

5.
This paper describes a digital radiography (DR) quality control protocol for DR detectors from the forthcoming report from the Institute of Physics and Engineering in Medicine (IPEM). The protocol was applied to a group of six identical caesium iodide (CsI) digital x-ray detectors to assess reproducibility of methods, while four further detectors were assessed to examine the wider applicability. Twelve images with minimal spatial frequency processing are required, from which the detector response, lag, modulation transfer function (MTF), normalized noise power spectrum (NNPS) and threshold contrast-detail (c-d) detectability are calculated. The x-ray spectrum used was 70 kV and 1 mm added copper filtration, with a target detector air kerma of 2.5 μGy for the NNPS and c-d results. In order to compare detector performance with previous imaging technology, c-d data from four screen/film systems were also acquired, at a target optical density of 1.5 and an average detector air kerma of 2.56 μGy. The DR detector images were typically acquired in 20 min, with a further 45 min required for image transfer and analysis. The average spatial frequency for the 50% point of the MTF for six identical detectors was 1.29 mm(-1) ± 0.05 (3.9% coefficient of variation (cov)). The air kerma set for the six systems was 2.57 μGy ± 0.13 (5.0% cov) and the NNPS at this air kerma was 1.42 × 10(-5) mm(2) (6.5% cov). The detective quantum efficiency (DQE) measured for the six identical detectors was 0.60 at 0.5 mm(-1), with a maximum cov of 10% at 2.9 mm(-1), while the average DQE was 0.56 at 0.5 mm(-1) for three CsI detectors from three different manufacturers. Comparable c-d performance was found for these detectors (5.9% cov) with an average threshold contrast of 0.46% for 11 mm circular discs. The average threshold contrast for the S/F systems was 0.70% at 11 mm, indicating superior imaging performance for the digital systems. The protocol was found to be quick, reproducible and gave an in-depth assessment of performance for a range of digital x-ray detectors.  相似文献   

6.
There is significant interest in using computed tomography (CT) for in vivo imaging applications in mouse models of disease. Most commercially available mouse x-ray CT scanners utilize a charge-coupled device (CCD) detector coupled via fibre optic taper to a phosphor screen. However, there has been little research to determine if this is the optimum detector for the specific task of in vivo mouse imaging. To investigate this issue, we have evaluated four detectors, including an amorphous selenium (a-Se) detector, an amorphous silicon (a-Si) detector with a gadolinium oxysulphide (GOS) screen, a CCD with a 3:1 fibre taper and a GOS screen, and a CCD with a 2:1 fibre taper and both GOS and thallium-doped caesium iodide (CsI:Tl) screens. The detectors were evaluated by measuring the modulation transfer function (MTF), noise power spectrum (NPS), detective quantum efficiency (DQE), stability over multiple exposures, and noise in reconstructed CT images. The a-Se detector had the best MTF and the highest DQE (0.6 at 0 lp mm(-1)) but had the worst stability (45% reduction after 2000 exposure frames). The a-Si detector and the CCD with the 3:1 fibre, both of which used the GOS screen, had very similar performance with a DQE of approximately 0.30 at 0 lp mm(-1). For the CCD with the 2:1 fibre, the CsI:Tl screen resulted in a nearly two-fold improvement in DQE over the GOS screen (0.4 versus 0.24 at 0 lp mm(-1)). The CCDs both had the best stability, with less than a 1% change in pixel values over multiple exposures. The pixel values of the a-Si detector increased 5% over multiple exposures due to the effects of image lag. Despite the higher DQE of the a-Se detector, the reconstructed CT images acquired with the a-Si detector had lower noise levels, likely due to the blurring effects from the phosphor screen.  相似文献   

7.
The purpose of this study was to investigate physical characteristics of two full field digital mammography (FFDM) systems (GE Senographe Essential and DS). Both are indirect conversion (x ray to light) alpha-Si flat panels coupled with a CsI(Tl) scintillator. The examined systems have the same pixel size (100 microm) but a different field of view: a conventional size 23 x 19.2 cm2 and a large field 24 X 30.7 cm2, specifically designed to image large breasts. In the GE Senographe Essential model relevant improvements in flat panel design were implemented and new deposition tools for metal, alpha-Si, and CsI(Tl) were introduced by GE. These changes in detector design are expected to be beneficial for advanced applications such as breast tomosynthesis. The presampling modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were measured for a wide range of exposure (25-240 microGy) with a RQA-M2 technique (28 kVp with a Mo/Mo target/filter combination and 2 mm of additional aluminum filtration). At 1, 2, and at 4 lp/mm MTF is equal to 0.9, 0.76, and 0.46 for the conventional field detector and to 0.85, 0.59, and 0.24 for the large field detector. The latter detector exhibits an improved NNPS due to a lower electronic noise and a better DQE that reaches 60%. In addition a contrast-detail analysis was performed with CDMAM 3.4 phantom and CDCOM software: GE Senographe DS showed statistically significant poorer detection ability in comparison with the GE Senographe Essential. These results could have been expected, at least qualitatively, considering the relative DQE of the two systems.  相似文献   

8.
In many European countries, image quality for digital x-ray systems used in screening mammography is currently specified using a threshold-detail detectability method. This is a two-part study that proposes an alternative method based on calculated detectability for a model observer: the first part of the work presents a characterization of the systems. Eleven digital mammography systems were included in the study; four computed radiography (CR) systems, and a group of seven digital radiography (DR) detectors, composed of three amorphous selenium-based detectors, three caesium iodide scintillator systems and a silicon wafer-based photon counting system. The technical parameters assessed included the system response curve, detector uniformity error, pre-sampling modulation transfer function (MTF), normalized noise power spectrum (NNPS) and detective quantum efficiency (DQE). Approximate quantum noise limited exposure range was examined using a separation of noise sources based upon standard deviation. Noise separation showed that electronic noise was the dominant noise at low detector air kerma for three systems; the remaining systems showed quantum noise limited behaviour between 12.5 and 380 μGy. Greater variation in detector MTF was found for the DR group compared to the CR systems; MTF at 5 mm(-1) varied from 0.08 to 0.23 for the CR detectors against a range of 0.16-0.64 for the DR units. The needle CR detector had a higher MTF, lower NNPS and higher DQE at 5 mm(-1) than the powder CR phosphors. DQE at 5 mm(-1) ranged from 0.02 to 0.20 for the CR systems, while DQE at 5 mm(-1) for the DR group ranged from 0.04 to 0.41, indicating higher DQE for the DR detectors and needle CR system than for the powder CR phosphor systems. The technical evaluation section of the study showed that the digital mammography systems were well set up and exhibiting typical performance for the detector technology employed in the respective systems.  相似文献   

9.
The purpose of this study was to perform a complete evaluation of three pieces of clinical digital mammography equipment. Image quality was assessed by performing physical characterization and contrast-detail (CD) analysis. We considered three different FFDM systems: a computed radiography unit (Fuji "FCR 5000 MA") and two flat-panel units, the indirect conversion a-Si based GE "Senographe 2000D" and the direct conversion a-Si based IMS "Giotto Image MD." The physical characterization was estimated by measuring the MTF, NNPS, and DQE of the detectors with no antiscatter grid and over the clinical range of exposures. The CD analysis was performed using a CDMAM 3.4 phantom and custom software designed for automatic computation of the contrast-detail curves. The physical characterization of the three digital systems confirms the excellent MTF properties of the direct conversion flat-panel detector (FPD). We performed a relative standard deviation (RSD) analysis, for investigating the different components of the noise presented by the three systems. It turned out that the two FPDs show a significant additive component, whereas for the CR system the statistical noise is dominant. The multiplicative factor is a minor constituent for all the systems. The two FPDs demonstrate better DQE, with respect to the CR system, for exposures higher than 70 microGy. The CD analysis indicated that the three systems are not statistically different for detail objects with a diameter greater than 0.3 mm. However, the IMS system showed a statistically significant different response for details smaller than 0.3 mm. In this case, the poor response of the a-Se detector could be attributed to its high-frequency noise characteristics, since its MTF, NEQ, and DQE are not inferior to those of the other systems. The CD results were independent of exposure level, within the investigated clinical range. We observed slight variations in the CD results, due to the changes in the visualization parameters (window/level and magnification factor). This suggests that radiologists would benefit from viewing images using varied window/level and magnification.  相似文献   

10.
On site evaluation of three flat panel detectors for digital radiography   总被引:2,自引:0,他引:2  
During a tender we evaluated the image performance of three commercially available active matrix flat panel imagers (AMFPI) for general radiography, one based on direct detection method (Se photoconductor) the other two on indirect detection method (CsI phosphor). Basic image quality parameters (MTF, NNPS, DQE) were evaluated with particular attention to dose and energy dependence. As it is known, presampling modulation transfer function (MTF) of selenium based detector is very high (at 70 kV, 2 cycles/mm, 2.5 microGy, about 0.80). Indirect detection panels exhibit a comparable (lower) resolution (at 70 kV, 2 cycles/mm, 2.5 microGy, MTF is about 0.34 for both the systems analyzed) and a more pronounced energy and dose dependence could also be noted in one of them. As a consequence of the very high resolution, the normalized noise power spectrum (NNPS) of the direct system is substantially flat, very similar to a white noise. Considering that the sensitive layer of all detectors is the same (0.5 mm), the relatively higher NNPS values are related to selenium absorption properties (lower Z respect to CsI:Tl) and detector inherent noise. NNPSs of the other systems, at low frequencies, are comparable but the frequency dependence is significantly different. At 70 kV, 2.5 microGy, 0.5 cycles/mm detective quantum efficiency (DQE) is about 0.35 for the direct detection system, and about the same (0.6) for the indirect ones. The combined effect of additive and multiplicative noise components makes DQE dependence on dose not monotonic. DQE present a maximum for an intermediate exposure. This complex behavior may be useful to characterize the systems in terms of the monodimensional integral over the frequency of DQE (IDQE). Both visual contrast-detail experiment and the direct evaluation of the signal-to-noise ratio confirmed, at least in a qualitative way, the system performances predicted by IDQE.  相似文献   

11.
Mackenzie A  Honey ID 《Medical physics》2007,34(8):3345-3357
The performances of two generations of computed radiography (CR) were tested and compared in terms of resolution and noise characteristics. The main aim was to characterize and quantify the noise sources in the images. The systems tested were (1) Agfa CR 25.0, a flying spot reader with powder phosphor image plates (MD 40.0); and (2) the Agfa DX-S, a line-scanning CR reader with needle crystal phosphor image plates (HD 5.0). For both systems, the standard metrics of presampled modulation transfer function (MTF), normalized noise power spectra (NNPS) and detective quantum efficiency (DQE) were measured using standard radiation quality RQA5 as defined by the International Electrotechnical Commission. The various noise sources contributing to the NNPS were separated by using knowledge of their relationship with air kerma, MTF, absorption efficiency and antialiasing filters. The DX-S MTF was superior compared with the CR 25.0. The maximum difference in MTF between the DX-S scan and CR 25.0 subscan directions was 0.13 at 1.3 mm(-1). For a nominal detector air kerma of 4 microGy, the peak DQE of the DX-S was 43 (+/-3)%, which was over double that of the CR 25.0 of 18 (+/-2)%. The additive electronic noise was negligible on the CR 25.0 but calculated to be constant 3.4 x 10(-7) (+/-0.4 x 10(-7)) mm2 at 3.9 microGy on the DX-S. The DX-S has improved image quality compared with a traditional flying spot reader. The separation of the noise sources indicates that the improvements in DQE of the DX-S are due not only to the higher quantum, efficiency and MTF, but also the lower structure, secondary quantum, and excess noise.  相似文献   

12.
The aim of this study was to characterize the effect of an image processing algorithm (FineView) on both quantitative image quality parameters and the threshold contrast detail response of the GE Senographe DS full-field digital mammography system. The system was characterized using signal transfer property, pre-sampling modulation transfer function (MTF), normalized noise power spectrum (NNPS) and detective quantum efficiency (DQE) of the system. An algorithmic modulation transfer function (MTF(a)) was calculated from images acquired at a reduced detector air kerma (DAK) and with the FineView algorithm enabled. Two sets of beam conditions were used: Mo/Mo/28 kV and Rh/Rh/29 kV, both with 2 mm added Al filtration at the x-ray tube. Images were acquired with and without FineView at four DAK levels from 14 to 378 μGy. The threshold contrast detail response was assessed using the CDMAM contrast-detail test object which was imaged under standard clinical conditions with and without FineView at three DAK levels from 24 to 243 μGy. The images were scored by both human observers and by automated scoring software. Results indicated an improvement of up to 125% at 5 mm?1 in MTF(a) when FineView was activated, particularly at high DAK levels. A corresponding increase of up to 425% at 5 mm?1 was also seen in the NNPS, again with the same DAK dependence. FineView did not influence DQE, an indication that the signal to noise ratio transfer of the system remained unchanged. FineView did not affect the threshold contrast detectability of the system, a result that is consistent with the DQE results.  相似文献   

13.
The use of an amorphous selenium (a-Se) based direct-detection active matrix flat-panel imager (AMFPI) is studied for megavoltage imaging. The detector consists of a 1.2 mm copper front plate and 200 microm a-Se layer, and has a 85 microm pixel pitch. The Modulation Transfer Function (MTF), Noise Power Spectrum (NPS), and Detective Quantum Efficiency (DQE) are measured for 6 and 15 MV photon beams. A theoretical expression for the DQE is derived using a recently developed formalism for nonelementary cascade stages. A comparison of theory with experiment is good for the 6 and 15 MV beams. The model is used to explore the DQE for more typical pixel sizes. The results indicate that with proper modifications, such as a larger a-Se thickness, a direct flat-panel AMFPI is a very promising detector for megavoltage imaging.  相似文献   

14.
The spatial frequency dependent detective quantum efficiency (DQE(f)) of a high-resolution selenium-based imaging system has been measured at megavoltage energies. These results have been compared with theoretical calculations. The imaging system was a video tube with a 5 microm amorphous selenium (a-Se) target which was irradiated by 1.25 MeV gamma-rays. The modulation transfer function (MTF) decreased rapidly with spatial frequency (determined by spread of electrons in the build-up material) while the noise power spectrum was constant as a function of spatial frequency. The DQE obtained from these MTF and noise power measurements was compared with a Monte Carlo model of the pulse height spectrum of the detector. The DQE(0) model accounted for the interaction of x rays with the detector as well as the energy-dependent gain (charge generated/energy deposition). Good agreement between the calculated and measured DQE(0) was found. The model was also used to estimate the DQE(f) of a metal plate + a-Se detector which was compared with a metal plate + phosphor system of the same mass thickness. The DQE(f) s of both detectors are very similar, indicating that the choice of which detector is better will be based upon criteria other than DQE(f), such as read-out approach, ease of manufacture or sensitivity.  相似文献   

15.
We report the performance of a 41 X 41-cm2 amorphous silicon-based flat panel detector designed for radiographic imaging applications. The detector consists of an array of photodiodes and thin film transistor switches on a 0.2-mm pitch with an overlying thallium-doped cesium iodide scintillator. The performance of the detector was evaluated through measurement of the frequency-dependent detective quantum efficiency [DQE(f)]. Measurements of the characteristic curve and modulation transfer function (MTF) are also reported. All measurements were made in a radiographic imaging mode with a readout time of 125 ms. We evaluated a total of 15 detectors. One detector was characterized at a range of exposures and at three different electronic gain settings. Measurements of DQE(f) and MTF were also performed as a function of position on one detector. The measured DQE at an exposure of about 1 mR was 0.66 at zero spatial frequency and fell smoothly with frequency to a value of 0.24 at the Nyquist frequency, 2.5 cycles/mm. The DQE is independent of exposure for exposures in the upper 80% of each gain range, but is reduced somewhat at lower exposures because of the influence of additive system noise. The reduction can be controlled by adjusting the electronic gain. For a gain that allows a maximum exposure of 5 mR, the DQE at 0.056 mR was 0.64 at zero frequency and 0.19 at 2.5 cycles/mm. The standard deviation in DQE among measurements on different detectors was less than 0.02 at any frequency. The presampling MTF was 0.26 at 2.5 cycles/mm. The standard deviation in MTF among measurements on different detectors was less than 0.01 at any frequency. Both MTF and DQE were substantially independent of position on the detector.  相似文献   

16.
An objective analysis of image quality parameters was performed for six digital mammography systems. The presampled modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) for the systems were determined at different doses, for 28 kVp with a Mo/Mo or W/Al target/filter combination and 2 mm of additional aluminium filtration. The flat-panel units have higher MTF and DQE in the mid to high frequency range than standard CR systems. The highest DQE, over the whole dose range, is for the slit-scanning direct photon counting system. Dual-side read CR can overcome the inherent x-ray absorption and signal collection limitations of standard CR mammography, improving the low-frequency DQE by 40%, to the same level as full-field systems, but it does not improve the poor spatial resolution of phosphor.  相似文献   

17.
The purpose of this study was to measure experimentally the physical performance of a prototype mammographic imager based on a direct detection, flat-panel array design employing an amorphous selenium converter with 70 microm pixels. The system was characterized for two different anode types, a molybdenum target with molybdenum filtration (Mo/Mo) and a tungsten target with rhodium filtration (W/Rh), at two different energies, 28 and 35 kVp, with approximately 2 mm added aluminum filtration. To measure the resolution, the presampled modulation transfer function (MTF) was measured using an edge method. The normalized noise power spectrum (NNPS) was measured by two-dimensional Fourier analysis of uniformly exposed mammograms. The detective quantum efficiencies (DQEs) were computed from the MTFs, the NNPSs, and theoretical ideal signal to noise ratios. The MTF was found to be close to its ideal limit and reached 0.2 at 11.8 mm(-1) and 0.1 at 14.1 mm(-1) for images acquired at an RQA-M2 technique (Mo/Mo anode, 28 kVp, 2 mm Al). Using a tungsten technique (MW2; W/Rh anode, 28 kVp, 2 mm Al), the MTF went to 0.2 at 11.2 mm(-1) and to 0.1 at 13.3 mm(-1). The DQE reached a maximum value of 54% at 1.35 mm(-1) for the RQA-M2 technique at 1.6 microC/kg and achieved a peak value of 64% at 1.75 mm(-1) for the tungsten technique (MW2) at 1.9 microC/kg. Nevertheless, the DQE showed strong exposure and frequency dependencies. The results indicated that the detector offered high MTFs and DQEs, but structured noise effects may require improved calibration before clinical implementation.  相似文献   

18.
We have developed a novel direct conversion detector for use in a slot-scanning digital mammography system. The slot-scan concept allows for dose efficient scatter rejection and the ability to use small detectors to produce a large-area image. The detector is a hybrid design with a 1.0 mm thick silicon PIN photodiode array (the x-ray absorber) indium-bump bonded to a CCD readout that is operated in time-delay integration (TDI) mode. Because the charge capacity requirement for good image quality exceeds the capabilities of standard CCDs, a novel CCD was developed. This CCD consists of 24 independent sections, each acting as a miniature CCD with eight rows for TDI. The signal from each section is combined off-chip to produce a full signal image. The MTF and DQE for the device was measured at several exposures and compared to a linear systems model of signal and noise propagation. Because of the scanning nature of TDI imaging, both the MTF(f) and DQE(f) are reduced along the direction of the scanning motion. For a 26 kVp spectrum, the DQE(0) was measured to be 0.75+/-0.02 for an exposure of 1.29 x 10(-5) C/kg (50 mR).  相似文献   

19.
We measured the physical imaging performance of a 41 x 41 cm2 amorphous silicon flat panel detector designed for angiographic and R&F imaging applications using methods from the emerging IEC standard for the measurement of detective quantum efficiency (DQE) in digital radiographic detectors. Measurements on 12 production detectors demonstrate consistent performance. The mean DQE at the detector center is about 0.77 at zero frequency and 0.27 at the Nyquist frequency (2.5 cycles/mm) when measured with a 7 mm of Al HVL spectrum at about 3.6 microGy. The mean MTF at the center of the detector for this spectrum is 0.24 at the Nyquist frequency. For radiographic operation all 2048 x 2048 detector elements are read out individually. For fluoroscopy, the detector operates in two 30 frame per second modes: either the center 1024 x 1024 detector elements are read out or the entire detector is read out with 2 x 2 pixel binning. A model was developed to predict differences in performance between the modes, and measurements demonstrate agreement with the model. Lag was measured using a quasi-equilibrium exposure method and was found to be 0.044 in the first frame and less than 0.007 after 1 s. We demonstrated that it is possible to use the lag data to correct for temporal correlation in images when measuring DQE with a fluoroscopic imaging technique. Measurements as a function of position on the detector demonstrate a high degree of uniformity. We also characterized dependences on spectrum, exposure level, and direction. Finally, we measured the DQE of a current state of the art image intensifier/CCD system using the same method as for the flat panel. We found the image intensifier system to have lower DQE than the flat panel at high exposure levels and approximately equivalent DQE at fluoroscopic levels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号