首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Introduction  

Secondary knee osteoarthritis (OA) is currently associated with meniscal injuries, but the pathogenesis is unclear. We analyzed the distribution of cells and cartilage oligomeric matrix protein (COMP) and its changes in the early stages of degeneration in meniscus.  相似文献   

2.
Cartilage oligomeric matrix protein has been implicated as an important component of endochondral ossification because of its direct effects on chondrocytes. The importance of this protein for skeletal development and growth has been recently illustrated by the identification of mutations in cartilage oligomeric protein genes in two types of inherited chondrodysplasias and osteoarthritic phenotypes: multiple epiphyseal dysplasia and pseudoachondroplasia. In the present study, we report the presence of cartilage oligomeric protein in embryonic and adult osteoblasts. A foot from a 21-week-old human fetus, subchondral bone obtained from knee replacement surgery in an adult patient, and a limb from a 19-day-postcoital mouse embryo were analyzed with immunostaining and in situ hybridization. In the human fetal foot, cartilage oligomeric protein was localized to osteoblasts of the bone collar and at the newly formed bone at the growth plate and bone diaphyses. Immunostaining was performed on the adult subchondral bone and showed positive intracellular staining for cartilage oligomeric protein of the osteoblasts lining the trabecular bone. There was no staining of the osteocytes. Immunostaining of the mouse limb showed the most intense staining for cartilage oligomeric protein in the hypertrophic chondrocytes and in the surrounding osteoblast cells of the developing bone. Cartilage oligomeric protein mRNA and protein were detected in an osteoblast cell line (MG-63), and cartilage oligomeric protein mRNA was detected from human cancellous bone RNA. These results suggest that the altered structure of cartilage oligomeric protein by the mutations seen in pseudoachondroplasia and multiple epiphyseal dysplasia may have direct effects on osteoblasts, contributing to the pathogenesis of these genetic disorders.  相似文献   

3.
OBJECTIVE: This study was designed to assay cartilage oligomeric matrix protein (COMP) in equine synovial fluids and to compare the concentration in synovial fluids from normal horses with joint diseased horses. The relationship between the COMP degradation and the matrix metalloproteinase activity in synovial fluids was also investigated. DESIGN: Using COMP antigen prepared from equine articular cartilage and murine monoclonal antibody (12C4) raised against human COMP, an inhibition ELISA was developed. COMP in equine synovial fluids from normal and diseased joints was quantified. Metalloproteinase activities were evaluated in the same synovial fluids by a gelatin degradation ELISA. COMP fragments were evaluated qualitatively by Western blotting. RESULTS: The COMP inhibition ELISA was reliable at concentrations of equine COMP between 62.5 and 2000 ng/ml. COMP values in joint fluids in both aseptic and septic joint disease (19.7+/-15.3 and 16.1+/-11.2 microg/ml, respectively) were significantly (P < 0.001) lower than normal (53.2+/-29.0 microg/ml). The molecular sizes of COMP on immunoblots were different between normal and diseased synovial fluids; more fragments were seen in diseased fluids. The aseptic (26.6 +/- 20.6%) and septic joint disease synovial fluids (36.1 +/- 37.5%) had significantly higher (P < 0.02 and 0.002, respectively) gelatinolytic activities than normal (13.6 +/- 13.7%). There was a negative correlation (R = -0.31, P < 0.002) between COMP level and gelatinase activity.Conclusions We conclude that the fragment pattern and the absolute COMP concentration maybe useful for monitoring joint disease, and that COMP degradation in synovial fluids from progressed joint disease may be due to MMP gelatinolytic activity.  相似文献   

4.
OBJECTIVE: Cartilage oligomeric matrix protein (COMP) is a large disulfide-linked pentameric protein. Each of its five subunits is approximately 100,000 Da in molecular weight. COMP was originally identified and characterized in cartilage and it has been considered a marker of cartilage metabolism because it is currently thought not to be present in other joint tissues, except for tendon. To confirm the tissue specificity of COMP expression we examined cultured human dermal fibroblasts, human foreskin fibroblasts, and normal human synovial cells for the synthesis of COMP in culture. METHOD: Normal synovial cells and normal human dermal foreskin fibroblasts were isolated from the corresponding tissues by sequential enzymatic digestions and cultured in media containing 10% fetal bovine serum until confluent. During the final 24 h of culture, the cells were labeled with 35S-methionine and 35S-cysteine in serum- and cysteine/methionine-free medium. The newly synthesized COMP molecules were immunoprecipitated from the culture media with a COMP-specific polyclonal antiserum, or with monoclonal antibodies or affinity-purified COMP antibodies. The immunoprecipitated COMP was analyzed by electrophoresis in 5.5% polyacrylamide gels. For other experiments, synovial cells cultured from the synovium of patients with rheumatoid arthritis (RA) and osteoarthritis (OA) were similarly examined. RESULTS: A comparison of the amounts of COMP produced by each cell type (corrected for the DNA content) revealed that synovial cells produced > or = 9 times more COMP than chondrocytes or dermal fibroblasts. COMP could be easily detected by immunoprecipitation in all cell types. Electrophoretic analysis revealed a distinct band with an apparent MW of 115-120 kDa in samples from each of the three cell types, regardless of the antibody used. COMP expression in cultures of synoviocytes derived from OA and RA patients showed that OA and RA synovial cells produced similar amounts of monomeric COMP of identical size to those COMP monomers produced by normal synovial cells. The addition of TGF-beta to these cultures resulted in an increase in COMP production in normal, OA and RA synovial cells (45, 116 and 115% respectively). CONCLUSION: These studies demonstrate that substantial amounts of COMP are produced by several mesenchymal cells including synoviocytes and dermal fibroblasts. These findings raise important concerns regarding the utility of measurements of COMP levels in serum or in synovial fluid as markers of articular cartilage degradation because of the likelihood that a substantial proportion of COMP or COMP fragments present in serum or synovial fluid may be produced by cells other than articular chondrocytes.  相似文献   

5.
OBJECTIVE: To quantify the urinary concentration of cartilage oligomeric matrix protein (COMP), and to evaluate the relationship between urinary COMP concentration and the catabolic activity of synovial fluid (SF) in diseased horses. METHODS: COMP in horse urine was detected by immunoblotting with a monoclonal antibody (mAb; 14G4) raised against equine COMP from articular cartilage. Urine and serum samples were obtained from 83 Thoroughbred horses with aseptic joint diseases (AJD, 79 horses) or septic joint diseases (SJD, four horses) at the time of anesthesia induction, and samples of SF were obtained during surgery. Control samples of urine (n=111) were collected from normal horses free of any orthopedic diseases after they had been racing. COMP concentration was determined in all samples using inhibition enzyme-linked immunosorbent assay (ELISA) with mAb 14G4. SF samples were also used for the quantification of gelatinase activity. RESULTS: Positive bands of COMP fragments were determined on the immunoblots with mAb 14G4. The urinary COMP concentrations in AJD and SJD horses (1.02+/-0.75 and 1.55+/-1.17 microg/100mg creatinine, respectively) were significantly higher than normal (0.57+/-0.29 microg/100mg creatinine). In 55 horses with fractures in the AJD group there was a logarithmic relationship (r=-0.45, P<0.001) between the urinary and SF COMP measurements, while the urinary COMP level was positively correlated with matrix metalloproteinase (MMP)-2 and -9 activities (r=0.30, P<0.05 and r=0.51, P<0.001, respectively) in SF. CONCLUSIONS: The urinary COMP assay with mAb 14G4 is useful for discriminating horses with osteoarthritis. The higher COMP levels in urine from such horses would be indicative of enhanced proteolytic activity, in addition to the increased COMP levels in the diseased joints.  相似文献   

6.
OBJECTIVE: To evaluate the prognostic utility of serum COMP level measured with a new sandwich ELISA, by correlating COMP level with outcome measures of osteoarthritis (OA) progression. DESIGN: Patients (N=48) had symptomatic primary knee OA of Kellgren-Lawrence (K-L) grade I-III and met ACR criteria. These patients were evaluated prospectively as part of a double-blind drug trial of 3 years' duration and represented the placebo arm of the study. Serum COMP levels were measured by sandwich ELISA with monoclonal antibodies 16-F12 and 17-C10 at baseline and at study end and levels were correlated with changes in (1) joint space width (JSW), (2) K-L grade, (3) Lequesne, and (4) WOMAC indices, over 3 years. RESULTS: The change in JSW over 3 years, summed for both knees, correlated positively with serum COMP level at baseline as well as at study end. Patients were sorted by level of progression based upon a change in K-L grade summed for both knees over 3 years; patients who progressed by two K-L grades were shown to have had significantly higher COMP levels at baseline as well as at study end. Baseline and study end COMP levels did not correlate with the change of Lequesne or WOMAC indices. Baseline COMP levels correlated strongly with end serum COMP levels. CONCLUSION: Serum COMP has the potential to be a prognostic marker of disease progression. High COMP levels, persisting over the 3-year study period in the patients with radiographic progression, indicated differences in disease activity detectable throughout the entire follow-up interval.  相似文献   

7.
The aim of the present study was to correlate the levels of COMP and aggrecan as indicators of tissue damage, in synovial fluid (sf) from carpal joints of acutely lame racehorses, with macroscopical lesions of articular cartilage (OA), osteochondral fractures and ligament tears found at arthroscopy. Sixty-three lame horses [49 Standardbred trotters (STB) and 14 Thoroughbreds (TB)] in conventional training and racing that underwent arthroscopy of their middle carpal or radiocarpal joints were included in the study. Intact as well as fragmented COMP and aggrecan released into the synovial fluid were quantified by western blot analyses and ELISA. The expression of COMP in tissues was estimated by mRNA in situ hybridisation and protein immunolocalisation in cartilage and osteochondral fractures. The concentration of sf-COMP was higher in TB with an osteochondral fracture than in STB with osteochondral fractures and TB and STB with OA. The chondrocytes in middle and deep zones of the articular cartilage of the osteochondral fragments (from a TB) expressed COMP mRNA, in contrast to the cartilage on the opposite side of the fracture where no expression was detected. In the synovial fluid from a joint (TB) with osteochondral fractures only intact COMP was present, whereas, fragmented COMP was more prominent in synovial fluid from a joint with OA. The concentration of sf-aggrecan did not differ between the two breeds, or between different lesions. The increased concentration of sf-COMP in TB with osteochondral fractures, but not in synovial fluid from equine joints with OA, is a novel finding. The results from this study indicate that elevated sf-COMP concentration in the joints of Thoroughbreds may be a useful marker for carpal joint osteochondral fragments.  相似文献   

8.
A case–control study was conducted to estimate the association of cartilage oligomeric matrix protein (COMP) with knee osteoarthritis (OA) and to examine the potential utility of COMP as a diagnostic and prognostic biomarker in early knee OA. The COMP levels were estimated in the blood sera of 150 subjects belonging to study group (n = 100) and control one (n = 50). Patients with confirmed clinical isolated knee OA diagnosed through American College of Rheumatology criteria were included and were without any other cause of knee pain. ELISA was used to determine the levels of COMP, interleukin‐1β (IL‐1β) and tumor necrosis factor‐α (TNF‐α). The median (range) serum COMP levels were observed to be 1117.21 ng/ml (125.03–4209.75 ng/ml) in OA patients and 338.62 ng/ml (118–589 ng/ml) in control subjects with p < 0.001. The COMP levels of study group were negatively correlated (correlation factor ?0.88) with disease duration and positively correlated with age, BMI, pain score and IL‐1β with correlation factors 0.86, 0.63, 0.76, and 0.79, respectively with p < 0.001. Gender differentiation was found in study group with 52% higher COMP level in males as compared to that of females. There was no significant correlation of COMP levels with radiological grading, erythrocyte sedimentation rate (ESR), hemoglobin (Hb), and TNF‐α. The serum COMP levels may be used as a diagnostic OA marker along with prognostic value in determining the patients at risk of rapidly progressing this debilitating joint disease. The serum COMP level remains significantly high in first 3 years of disease duration. © 2013 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 31:999–1006, 2013
  相似文献   

9.
10.
11.
OBJECTIVE: To test the hypothesis that physiological cyclic loading during a 30-min walking exercise causes an increase in serum cartilage oligomeric matrix protein (COMP) concentration in a healthy population. METHODS: Blood samples (5 ml) were drawn from 10 physically active adults immediately before and after, and 0.5h, 1.5h, 3.5h and 5.5h after a 30-min walking exercise on a level outdoor walking track at self-selected normal speed. On a separate day, blood samples were drawn from the same 10 subjects during 6h while they were resting in a chair. Serum COMP concentrations were determined using a commercial enzyme-linked immunosorbent assay (COMP ELISA). An activity monitor was used to record basic time-distance measurements of gait. Serum COMP concentrations within the exercise protocol and within the resting protocol were compared using separate repeated measures analyses of variance (alpha=0.05). RESULTS: In the exercise protocol, a first increase (9.7%; P=0.003) occurred immediately after the walking exercise. A second increase in serum COMP concentration (7.0%; P=0.024) occurred 5.5h after the walking exercise. In the resting protocol, the concentration at baseline was significantly higher than at all subsequent time points (8.2%; P<0.050). Serum COMP concentration decreased from the 3.5-h to the 5.5-h sample (-4.8%; P=0.012). CONCLUSIONS: Even a moderate walking activity can significantly influence serum COMP concentration. The immediate response points to a diffusion time of COMP fragments from cartilage to the blood of 30 min or less. The response at 5.5h indicates a metabolic delay for COMP in the range of 5h to 6h.  相似文献   

12.
The purpose of the study was to investigate the effect of an increase in mechanical knee joint loading during running on the serum COMP level. On two different test days, 20 healthy men ran with knee orthoses for 30 min on a treadmill (v = 2.2 m/s). On day 1, the orthoses were passive, whereas on day 2 they were pneumatically driven (active) and thus increased the external knee flexion moments (+30.9 Nm) during stance phase. Lower‐limb mechanics and serum COMP levels (baseline; 0, 0.5, 1, 2 h post running) were analyzed. COMP levels increased immediately after running with passive (+35%; pre: 7.5 U/l, 95%CI: 6.4, 8.7, post: 9.8 U/l, 95%CI: 8.8, 10.8, p < 0.001) and active orthoses (+45%; pre: 7.6 U/l; 95%CI: 6.4, 8.8, post: 10.3 U/l, 95%CI: 9.2, 11.5, p < 0.001), but they did not differ between interventions. While running with active orthoses, greater ankle dorsiflexion angles, knee flexion angles, and moments occurred (p < 0.05). Comparing both interventions, the Δ COMP pre–post, meaning the difference (Δ) between running with active and passive orthoses in pre to post COMP level change (=level after (post) running minus level before (pre) running), correlated negatively with Δ COMP baseline (difference between the baseline COMP level before running with active and passive orthoses, r = ?0.616; p = 0.004), and with a positive tendence with the Δ maximum knee flexion (r = 0.388; p = 0.091). Therefore, changes in COMP concentration after physical activity seem to be highly influenced by the COMP baseline level. In addition, correlation analysis indicates that modifications in knee joint kinematics have a greater effect on cartilage metabolism than an increase in joint moments. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1937–1946, 2018.
  相似文献   

13.
14.
15.
16.
OBJECTIVE: Cartilage oligomeric matrix protein (COMP) mutations have been identified as responsible for two arthritic disorders, multiple epiphyseal dysplasia (MED) and pseudoachondroplasia (PSACH). However, the function of COMP in chondrogenic differentiation is largely unknown. Our investigation focuses on analyzing the function of normal COMP protein in cartilage biology. METHODS AND RESULTS: To explore the function of COMP we make use of an in vitro model system for chondrogenesis, consisting of murine C3H10T1/2 mesenchymal cells maintained as a high-density micromass culture and stimulated with bone morphogenetic protein 2 (BMP-2). Under these culture conditions, C3H10T1/2 cells undergo active chondrogenesis in a manner analogous to that of embryonic limb mesenchymal cells, and have been shown to serve as a valid model system to investigate the mechanisms regulating mesenchymal chondrogenesis. Our results indicate that ectopic COMP expression enhances several early aspects of chondrogenesis induced by BMP-2 in this system, indicating that COMP functions in part to positively regulate chondrogenesis. Additionally, COMP has inhibitory effects on proliferation of cells in monolayer. However, at later times in micromass culture, ectopic COMP expression in the presence of BMP-2 causes an increase in apoptosis, with an accompanying reduction in cell numbers in the micromass culture. However, the remaining cells retain their chondrogenic phenotype. CONCLUSIONS: These data suggest that COMP and BMP-2 signaling converge to regulate the fate of these cells in vitro by affecting both early and late stages of chondrogenesis.  相似文献   

17.
OBJECTIVE: Marathon runners have an increased risk of developing joint disease. During and after a 42-km run, elevation of multiple cytokines occurs in the blood, reflecting inflammatory processes. We compared this cytokine response with serum levels of cartilage oligomeric matrix protein (COMP) and melanoma inhibitory activity (MIA), two markers for joint metabolism and/or damage. METHODS: Serum from eight endurance-trained runners was collected shortly before the start of a marathon run, after 31 km, 42 km, 2 h after the end, on the first and on the second morning after the run. For comparison, serum was obtained from 35 healthy controls and 80 patients with knee joint injury, rheumatoid arthritis or osteoarthritis. Serum levels of C-reactive protein (CRP), interleukin-1beta (IL-1beta), interleukin-1 receptor antagonist (IL-1RA), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), soluble interleukin-6 receptor (sIL-6R, gp80), soluble tumor necrosis factor receptor II (sTNFRII, p75), COMP and MIA were measured by ELISA. RESULTS: Compared with healthy controls, the runner's baseline serum levels of TNF-alpha, sIL-6R, COMP and MIA were significantly increased. COMP and MIA levels, higher than the upper normal limits of 5 microg/ml and 6 ng/ml respectively, were found in seven and five of eight runners. The elevated levels of COMP were similar to those found in joint injury or osteoarthritis, and the elevated levels of MIA were comparable to those reported in rheumatoid arthritis. During the run, the serum levels of IL-1RA, IL-6, TNF-alpha and COMP rose significantly, and gradually returned to baseline within 24 h. Only modest changes of CRP, sIL-6R, sTNFRII and MIA occurred during the run. Late elevations of CRP and MIA were observed after 24 and 48 h. The correlation analysis suggests associations between COMP, sIL-6R, TNF-alpha, IL-1RA on one hand and sTNFRII, and MIA and CRP on the other hand. CONCLUSIONS: Elevated baseline levels of COMP and MIA might reflect increased joint matrix turnover and/or damage due to prior extreme physical training. During the run, COMP was increasing possibly due to the severe physical strain on joint structures, associated with the early inflammation. After the run, MIA and CRP increased within 24 h, suggesting a correlation with later inflammatory processes. Thus, our data suggest that COMP and MIA are markers for distinct aspects of joint metabolism and/or damage in both disease and sport.  相似文献   

18.
Cartilage oligomeric matrix protein was purified in a native form from normal adult human articular cartilage. The key steps in the purification scheme were selective extraction with buffer containing EDTA, wheat germ agglutinin affinity chromatography, and removal of the related protein thrombospondin by heparin affinity chromatography. Particles of cartilage oligomeric matrix protein viewed by electron microscopy after rotary shadowing revealed structures similar to the prototype molecule purified from Swarm rat chondrosarcoma. The protein demonstrated a bouquet-like five-armed structure, with peripheral globular domains connected by thin flexible strands to a central assembly domain. Immunohistochemistry revealed age-dependent differences in the protein's distribution in cartilage. In normal human adult articular cartilage, there was a relatively uniform distribution throughout the interterritorial extracellular matrix, whereas in fetal articular cartilage, immunostaining was localized to the extracellular matrix directly adjacent to the chondrocytes. The isolation and characterization of human cartilage oligomeric matrix protein will facilitate its study in pathological conditions of human cartilage.  相似文献   

19.
20.

Objective

To be used in diagnostic studies, it must be demonstrated that biomarkers can differentiate between diseased and non-diseased patients. Therefore, the purpose of this study was to answer the following questions: (1) Is serum cartilage oligomeric matrix protein (sCOMP) elevated in patients with radiographically diagnosed knee osteoarthritis (OA) compared to controls? (2) Are there differences in sCOMP levels when comparing differing radiographic OA severities to controls?

Methods

Systematic review and meta-analysis. Data Sources: A systematic search of CINAHL, PEDro, Medline, and SportsDiscus was completed in March 2010. Keywords: knee, osteoarthritis, sCOMP, radiography. Study inclusion criteria: Studies were written in English, compared healthy adults with knee OA patients, used the Kellgren Lawrence (K/L) classification, measured sCOMP, and reported means and standard deviations for sCOMP.

Results

For question 1, seven studies were included resulting in seven comparisons. A moderate overall effect size (ES) indicated sCOMP was consistently elevated in those with radiographically diagnosed knee OA when compared to controls (ES = 0.60, P < 0.001). For question 2, four studies were included resulting in 13 comparisons between radiographic OA severity levels and controls. Strong ESs were calculated for K/L-1 (ES = 1.43, P = 0.28), K/L-3 (ES = 1.05, P = 0.04), and K/L-4 (ES = 1.40, P = 0.003). A moderate ES was calculated for K/L-2 (ES = 0.60, P = 0.01).

Conclusions

These results indicate sCOMP is elevated in patients with knee OA and is sensitive to OA disease progression. Future research studies with a higher level of evidence should be conducted to investigate the use of this biomarker as an indicator for OA development and progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号