首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: FK506 ointment (tacrolimus ointment, protopic) is a new drug therapeutically effective for patients with atopic dermatitis (AD). However, the mechanism of action of FK506 ointment on AD is not fully understood. METHODS: We examined the effect of FK506 ointment on mite antigen-induced dermatitis in NC/Nga mice. Clinical symptoms and ear thickness were recorded, and histopathological studies and in vitro analyses were performed. RESULTS: Topical application of FK506 ointment (0.03-0.3%) suppressed the development of dermatitis. In the lesional skin, both interleukin (IL)-4 and interferon (IFN)-gamma were detected, even though the IL-4+/IFN-gamma- T helper 2 (Th2) population was predominant in the regional lymph nodes (LNs). Topical application of FK506 treatment reduced the elevated level of both IL-4 and IFN-gamma in the skin, but did not decrease the expansion of the Th2 population in the LNs. CONCLUSIONS: Topical application of FK506 ointment suppresses dermatitis by inhibiting the activation of inflammatory cells locally, without systemic immune suppression, in this AD model.  相似文献   

2.
In a number of sensory neuron preparations, Ruthenium red (RR) selectively attenuated the response to capsaicin. First, RR (100 nM) reversibly abolished capsaicin but not bradykinin induced increases in [Ca2+]i measured in single DRG neurons from neonatal rats, using the calcium sensitive dye Fura-2. Second, RR completely but reversibly abolished capsaicin-activated single ion channel currents measured in membrane patches from rat DRG neurons. This effect of RR differed from that produced by lanthanum. Finally, in a neonatal rat spinal cord-tail preparation maintained in vitro, RR selectively attenuated the activation of peripheral nociceptors produced by capsaicin but not by bradykinin or noxious heat. These data indicate that RR inhibits capsaicin mediated effects on sensory neurons by an action on the plasma membrane to prevent opening of capsaicin activated ion channels.  相似文献   

3.
Kim BM  Lee SH  Shim WS  Oh U 《Neuroscience letters》2004,361(1-3):159-162
Histamine is known to excite a subset of C-fibers and cause itch sensation. Despite its well-defined excitatory action on sensory neurons, intracellular signaling mechanisms are not understood. Previously, we demonstrated that bradykinin excited sensory neurons by activating TRPV1 via the phospholipase A(2) (PLA(2)) and lipoxygenase (LO) pathway. We, thus, hypothesized that histamine excited sensory neurons via the PLA(2)/LO/TRPV1 pathway. Application of histamine elicited a rapid increase in intracellular Ca(2+) ([Ca(2+)](i)) that desensitized slowly in cultured dorsal root ganglion neurons. Histamine-induced [Ca(2+)](i) was dependent on extracellular Ca(2+) and inhibited by capsazepine and by SC0030, competitive antagonists of TRPV1. Quinacrine and nordihydroguaiaretic acid, a PLA(2) and an LO inhibitor, respectively, blocked the histamine-induced Ca(2+) influx in sensory neurons, while indomethacin (a cyclooxygenase inhibitor) did not. We thus conclude that histamine activates TRPV1 after stimulating the PLA(2)/LO pathway, leading to the excitation of sensory neurons. These results further provide an idea for potential use of TRPV1 antagonists as anti-itch drugs.  相似文献   

4.
5.
6.
The Ca(2+)/calmodulin-dependent protein phosphatase, calcineurin, modulates a number of key Ca(2+) signaling pathways in neurons, and has been implicated in Ca(2+)-dependent negative feedback inactivation of N-methyl-D-aspartate receptors and voltage-sensitive Ca(2+) channels. In contrast, we report here that three mechanistically disparate calcineurin inhibitors, FK-506, cyclosporin A, and the calcineurin autoinhibitory peptide, inhibited high-voltage-activated Ca(2+) channel currents by up to 40% in cultured hippocampal neurons, suggesting that calcineurin acts to enhance Ca(2+) currents. This effect occurred with Ba(2+) or Ca(2+) as charge carrier, and with or without intracellular Ca(2+) buffered by EGTA. Ca(2+)-dependent inactivation of Ca(2+) channels was not affected by FK-506. The immunosuppressant, rapamycin, and the protein phosphatase 1/2A inhibitor, okadaic acid, did not decrease Ca(2+) channel current, showing specificity for effects on calcineurin. Blockade of L-type Ca(2+) channels with nimodipine fully negated the effect of FK-506 on Ca(2+) channel current, while blockade of N-, and P-/Q-type Ca(2+) channels enhanced FK-506-mediated inhibition of the remaining L-type-enriched current. FK-506 also inhibited substantially more Ca(2+) channel current in 4-week-old vs. 2-week-old cultures, an effect paralleled by an increase in calcineurin A mRNA levels. These studies provide the first evidence that calcineurin selectively enhances L-type Ca(2+) channel activity in neurons. Moreover, this action appears to be increased concomitantly with the well-characterized increase in L-type Ca(2+) channel availability in hippocampal neurons with age-in-culture.  相似文献   

7.
To gain an understanding of the cellular mechanisms of hyperalgesia and spontaneous pain in adjuvant-induced chronic inflammation, we investigated the effects of nerve growth factor (NGF), which is known to increase in inflamed tissues and to cause hyperalgesia, on the spontaneous activities and norepinephrine-induced excitation of dorsal root ganglion (DRG) neurons. Intracellular recordings were obtained from freshly dissociated and cultured DRG neurons (<30 microm) from intact and adjuvant inflamed (AI) rats. Of more than 100 freshly dissociated DRG neurons from the intact rats, none produced spontaneous action potentials, whereas 23% of the neurons from the AI rats did. Spontaneous activities were induced in 34% neurons from intact rats when cultivated for one day with NGF. No neurons from the intact rats responded to norepinephrine (NE), irrespective of whether they were freshly dissociated or cultured with NGF. In contrast, 11% of neurons from the AI rats, both freshly dissociated and cultured without NGF, had a small depolarization in response to NE. The present results suggest that, in AI rats NGF plays an important role in inducing spontaneous activities in DRG neurons, but not in inducing sensitivity to NE.  相似文献   

8.
Wu ZZ  Pan HL 《Neuroscience letters》2004,368(1):96-101
Voltage-gated Ca(2+) channels in the primary sensory neurons are important for neurotransmitter release and regulation of nociceptive transmission. Although multiple classes of Ca(2+) channels are expressed in the dorsal root ganglion (DRG) neurons, little is known about the difference in the specific channel subtypes among the different types of DRG neurons. In this study, we determined the possible difference in high voltage-activated Ca(2+) channel currents between isolectin B(4) (IB(4))-positive and IB(4)-negative small-sized (15-30 microm) DRG neurons. Rat DRG neurons were acutely isolated and labeled with IB(4) conjugated to a fluorescent dye. Whole-cell patch clamp recordings of barium currents flowing through calcium channels were performed on neurons with and without IB(4). The peak current density of voltage-gated Ca(2+) currents was not significantly different between IB(4)-positive and IB(4)-negative neurons. Also, both nimodipine and omega-agatoxin IVA produced similar inhibitory effects on Ca(2+) currents in these two types of neurons. However, block of N-type Ca(2+) channels with omega-conotoxin GVIA produced a significantly greater reduction of Ca(2+) currents in IB(4)-positive than IB(4)-negative neurons. Furthermore, the IB(4)-positive neurons had a significantly smaller residual Ca(2+) currents than IB(4)-negative neurons. These data suggest that a higher density of N-type Ca(2+) channels is present in IB(4)-positive than IB(4)-negative small-sized DRG neurons. This differential expression of the subtypes of high voltage-activated Ca(2+) channels may contribute to the different function of these two classes of nociceptive neurons.  相似文献   

9.
In inflamed tissue, nociceptors show increased sensitivity to noxious heat, which may account for heat hyperalgesia. In unmyelinated nociceptive afferents in rat skin in vitro, a drop of heat threshold and an increase in heat responses were induced by experimental elevation of intracellular calcium ([Ca2+]i) levels with the calcium ionophore ionomycin (10 microM). Similar results were obtained in experiments employing [Ca2+]i release from preloaded "caged calcium" (NITR-5/AM) via UV photolysis. In both cases, sensitization was prevented by preventing rises in [Ca2+]i with the membrane-permeant calcium chelator BAPTA-AM (1 mM). No pronounced change of mechanical sensitivity was observed. Heat-induced membrane currents (Iheat) were investigated with patch-clamp recordings, and simultaneous calcium measurements were performed in small sensory neurons isolated from adult rat dorsal root ganglia (DRG). Ionomycin-induced rises in [Ca2+]i resulted in reversible sensitization of Iheat. In the same subset of DRG neurons, the endogenous algogen ATP (100 microM) was used to elevate [Ca2+]i, which again resulted in significant sensitization of Iheat. In correlative recordings from the skin-nerve preparation, ATP induced heat sensitization of nociceptors, which again could be blocked by preincubation with BAPTA-AM. Rises in [Ca2+]i in response to inflammatory mediators, e.g., ATP, thus appear to play a central role in plastic changes of nociceptors, which may account for hypersensitivity of inflamed tissue.  相似文献   

10.
We investigated whether there are any differences between the Lewis and Sprague-Dawley (SD) rats in chronic inflammation-induced norepinephrine (NE) sensitivity of nociceptors. Activities of C-fiber nociceptors innervating rat hairy hindpaw skin were recorded in an in vitro skin-nerve preparation. Sixty-five percent of C-fibers from inflamed Lewis rats were excited by NE (10 microM), against only 38% of C-fibers from inflamed SD rats. The average of the total impulses evoked in response to NE was also significantly higher in Lewis rats. The alpha2-adrenoceptor antagonist CH 38083 (10 microM) and yohimbine (10 microM) consistently blocked the NE-excitation of both strains. These results show that after chronic inflammation, C-fiber nociceptors of Lewis strain rats have a stronger sensitivity to NE, and that alpha2-adrenoceptors are predominately involved in the NE-sensitivity of inflamed rats in both strains.  相似文献   

11.
Capsaicin, a pungent ingredient of hot chilli peppers, triggered Ca(2+) influx in dorsal root ganglion (DRG) neurons, which express specific vanilloid receptors of type 1, with ED(50)<100 nM. An increase in capsaicin concentration to 10 microM inhibited Ca(2+) clearance from the cytosol, but did not affect the amplitude of intracellular Ca(2+) elevation. In DRG neurons, 10 microM capsaicin also produced a significant drop in mitochondrial membrane potential (Deltapsi), as measured with the mitochondria-specific potentiometric fluorescent dye JC-1. Similar loss of mitochondrial potential upon application of capsaicin was observed in non-neuronal primary (human lymphocytes) and transformed (human myeloid leukaemia cell line, HL-60) cells. The EC(50) values for capsaicin-induced mitochondrial depolarisation were 6.9 microM (DRG neurons), 200 microM (human lymphocytes) and 150 microM (HL-60 cells). Removal of extracellular Ca(2+) or an application of the antioxidant trolox attenuated capsaicin-induced dissipation of Deltapsi in DRG neurons, but not in human lymphocytes and HL-60 cells. Rotenone, an inhibitor of complex I of the mitochondrial respiratory chain, and oligomycin, an inhibitor of F(0)F(1)-ATPase, significantly enhanced the mitochondrial depolarisation produced by capsaicin in DRG neurons. In human lymphocytes and HL-60 cells, only oligomycin potentiated the effect of capsaicin. From our results, we suggest that, in DRG neurons and non-neuronal cells, capsaicin dissipates Deltapsi, possibly due to a direct inhibition of complex I of the mitochondrial respiratory chain. The presence of vanilloid receptor-1 in DRG neurons makes their mitochondria 20-30-fold more sensitive to the depolarising effect of capsaicin compared with non-neuronal cells lacking vanilloid receptor-1. The higher sensitivity of DRG neurons to capsaicin may underlie a selective neurotoxicity of capsaicin towards sensory neurons.  相似文献   

12.
13.
We used immunohistochemical methods to examine the distribution of the calcium channel alpha2 (CCalpha2) subunit in the chicken spinal cord and dorsal root ganglion (DRG) neurons and determine its relationship with calbindin-D28k (CB) in the DRG neurons. In the spinal cord, CCalpha2 subunit was detected in nerve terminals, which were observed as dot-like structures, and in laminae I, II, III and Lissauer's tract in the dorsal horn. In the DRG neurons, approximately 65% of the total neurons were CCalpha2 subunit positive, and most (86%) of these neurons were small to medium sized, suggesting that the CCalpha2 subunit and/or a complex of the CCalpha2 and delta subunits is possibly localized in a number of nociceptive neurons. A majority (77%) of the positive neurons showed CB immunoreactivity and most (88%) of these neurons were small to medium sized. This may indicate a close correlation between the CCalpha2 subunit and CB in the nociceptive neurons. Thus, it is postulated that the mode of nociceptive transmission may involve a cellular Ca(2+)-regulating system that consists of both Ca(2+) entry via calcium channels with the alpha2delta subunit and intracellular Ca(2+)-binding activity of CB in the nociceptive neurons of the DRG.  相似文献   

14.
Dephosphorylation by the Ca2+/calmodulin-dependent phosphatase calcineurin has been suggested as an important mechanism of Ca2+-dependent inactivation of voltage-gated Ca2+ channels. We have tested whether calcineurin plays a role in the inactivation process of two types of high-voltage-activated Ca2+ channels (L and N type) widely expressed in the central nervous system, using the immunosuppressive drug FK506 (tacrolimus), which inhibits calcineurin after binding to intracellular FK506 binding proteins. Inactivation of L- and N-type Ca2+ channels was studied in a rat pituitary tumor cell line (GH3) and chicken dorsal root ganglion neurons, respectively. With the use of antisera directed against the calcineurin subunit B and the 12,000 mol. wt binding protein, we show that both proteins are present in the cytoplasm of GH3 cells and chicken dorsal root ganglion neurons. Ionic currents through voltage-gated Ca2+ channels were investigated in the perforated-patch and whole-cell configurations of the patch-clamp technique. The inactivation of L- as well as N-type Ca2+ currents could be well fitted with a bi-exponential function. Inactivation was largely reduced when Ba2+ substituted for extracellular Ca2+ or when the Ca2+ chelator EGTA was present intracellularly, indicating that both types of Ca2+ currents exhibited Ca2+-dependent inactivation. Extracellular (perforated-patch configuration) or intracellular (whole-cell configuration) application of FK506 to inactivate calcineurin had no effect on the amplitude and time-course of Ca2+ channel current inactivation of either L- or N-type Ca2+ channels. In addition, we found that recovery from inactivation and rundown of N-type Ca2+ channel currents were not affected by FK506. Our results provide direct evidence that the calcium-dependent enzyme calcineurin is not involved in the inactivation process of the two Ca2+ channel types which are important for neuronal functioning, such as gene expression and transmitter release.  相似文献   

15.
The effect of the immunosuppressant drug FK506 on microsomal Ca2+ release was investigated in rat pancreatic acinar cells. When FK506 (0.1-200 microM) was added to the microsomal vesicles at a steady state of ATP-dependent 45Ca2+ uptake, FK506 caused a dose-dependent and a biphasic release of 45Ca2+. Almost 10% of total 45Ca2+ uptake was released at FK506 concentrations up to 10 microM (Km=0.47 microM), and 60% of total 45Ca2+ uptake was released at FK506 concentrations over 10 microM (Km=55 microM). Preincubation of the vesicles with cyclic ADP-ribose (cADPR, 0.5 microM) increased the FK506 (< or =10 microM)-induced 45Ca2+ release (Ozawa T, Biochim Biophys Acta 1693: 159-166, 2004). Preincubation with heparin (200 microg/ml) resulted in significant inhibition of the FK506 (30 microM)-induced 45Ca2+ release. Subsequent addition of inositol 1,4,5-trisphosphate (IP3, 5 microM) after FK506 (100 microM)-induced 45Ca2+ release did not cause any release of 45Ca2+. These results indicate that two types of FK506-induced Ca2+ release mechanism operate in the endoplasmic reticulum of rat pancreatic acinar cells: a high-affinity mechanism of Ca2+ release, which involves activation of the ryanodine receptor, and a low-affinity mechanism of Ca2+ release, which involves activation of the IP3 receptor.  相似文献   

16.
Immunosuppressive effect of FK506 on collagen-induced arthritis in rats   总被引:5,自引:0,他引:5  
FK506, a new immunosuppressive agent, was given intramuscularly to rats for 12 days, starting on the day of type II collagen immunization. FK506 in doses of 0.32 mg/kg or more suppressed arthritis and also suppressed humoral and skin test response to type II collagen. FK506 suppressed arthritis only when given during the afferent limbs of immune response (0-4 days), whereas the drug was only marginally effective when treatment was started during the efferent limbs of immune response (7-11 days). FK506-induced immunosuppression continued and/or was maintained throughout the experiments (50 days). These rats immunized with type II collagen and treated with FK506 failed to develop arthritis even following a secondary immunization 50 days later but were fully capable of developing experimental allergic encephalomyelitis. This result suggest that FK506-treated rats develop specific unresponsiveness toward the type II collagen. It is concluded that FK506 is a strong immunosuppressive drug on collagen-induced arthritis.  相似文献   

17.
The effect of a nitric oxide (NO) donor on high-voltage-activated Ca(2+) channel currents (I(Ca)) was examined using the whole cell patch-clamp technique in L(6)-S(1) dorsal root ganglion (DRG) neurons innervating the urinary bladder. The neurons were labeled by axonal transport of a fluorescent dye, Fast Blue, injected into the bladder wall. Approximately 70% of bladder afferent neurons exhibited tetrodotoxin (TTX)-resistant action potentials (APs), and 93% of these neurons were sensitive to capsaicin, while the remaining neurons had TTX-sensitive spikes and were insensitive to capsaicin. The peak current density of nimodipine-sensitive L-type Ca(2+) channels activated by depolarizing pulses (0 mV) from a holding potential of -60 mV was greater in bladder afferent neurons with TTX-resistant APs (39.2 pA/pF) than in bladder afferent neurons with TTX-sensitive APs (28.9 pA/pF), while the current density of omega-conotoxin GVIA-sensitive N-type Ca(2+) channels was similar (43-45 pA/pF) in both types of neurons. In both types of neurons, the NO donor, S-nitroso-N-acetylpenicillamine (SNAP) (500 microM), reversibly reduced (23.4-26.6%) the amplitude of I(Ca) elicited by depolarizing pulses to 0 mV from a holding potential of -60 mV. SNAP-induced inhibition of I(Ca) was reduced by 90% in the presence of omega-conotoxin GVIA but was unaffected in the presence of nimodipine, indicating that NO-induced inhibition of I(Ca) is mainly confined to N-type Ca(2+) channels. Exposure of the neurons for 30 min to 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 microM), an inhibitor of NO-stimulated guanylyl cyclase, prevented the SNAP-induced reduction in I(Ca). Extracellular application of 8-bromo-cGMP (1 mM) mimicked the effects of NO donors by reducing the peak amplitude of I(Ca) (28.6% of reduction). Action potential configuration and firing frequency during depolarizing current pulses were not altered by the application of SNAP (500 microM) in bladder afferent neurons with TTX-resistant and -sensitive APs. These results indicate that NO acting via a cGMP signaling pathway can modulate N-type Ca(2+) channels in DRG neurons innervating the urinary bladder.  相似文献   

18.
The aim of this study was to test the hypothesis that temporomandibular joint (TMJ) inflammation alters the excitability of trigeminal root ganglion (TRG) neurons innervating the facial skin, by using behavioral, electrophysiological, molecular, and immunohistochemical approaches. Complete Freund's adjuvant (CFA) was injected into the rat TMJ to produce inflammation. The threshold for escape from mechanical stimulation applied to the orofacial area in TMJ-inflamed rats was significantly lower than that in na?ve rats. The TRG neurons innervating the inflamed TMJ were labeled by 2% Fluorogold (FG) injection into the TMJ. The number of FG-labeled substance P (SP)-immunoreactive neurons in the inflamed rats was significantly increased compared with that in the na?ve rats. On the other hand, medium- and large-diameter TRG neurons (>30 microm) innervating the facial skin were labeled by FG injection into the facial skin. In the FG-labeled cutaneous TRG neurons, the occurrence of SP (100 nM) induced membrane depolarization in inflamed rats (medium: 73.3%, large : 85.7%) was larger than that in the na?ve rats (medium: 29.4%, large : 0%). In addition, SP application significantly increased the firing rate evoked by depolarizing pulses in the neurons of inflamed rats compared with those of na?ve rats. Quantitative single-cell RT-PCR analysis showed the increased expression of mRNA for the NK1 receptor in FG-labeled TRG neurons in inflamed rats compared with that in naive rats. The numbers of SP and NK1 receptors/neurofilament 200 positive immunoreactive TRG neurons innervating the facial skin (FG-labeled) in the inflamed rats were significantly increased compared with those seen in na?ve rats. These results suggest that TMJ inflammation can alter the excitability of medium- and large-diameter TRG neurons innervating the facial skin and that an increase in SP/NK1 receptors in their soma may contribute to the mechanism underlying the trigeminal inflammatory allodynia in the TMJ disorder.  相似文献   

19.
Wu ZZ  Chen SR  Pan HL 《Neuroscience》2008,153(4):1256-1267
Both mu- and delta-opioid agonists selectively inhibit nociception but have little effect on other sensory modalities. Voltage-activated Ca(2+) channels in the primary sensory neurons are important for the regulation of nociceptive transmission. In this study, we determined the effect of delta-opioid agonists on voltage-activated Ca(2+) channel currents (I(Ca)) in small-diameter rat dorsal root ganglion (DRG) neurons that do and do not bind isolectin B(4) (IB(4)). The delta-opioid agonists [d-Pen(2),d-Pen(5)]-enkephalin (DPDPE) and deltorphin II produced a greater inhibition of high voltage-activated I(Ca) in IB(4)-negative than IB(4)-positive neurons. Furthermore, DPDPE produced a greater inhibition of N-, P/Q-, and L-type I(Ca) in IB(4)-negative than IB(4)-positive neurons. However, DPDPE had no significant effect on the R-type I(Ca) in either type of cells. We were surprised to find that DPDPE failed to inhibit either the T-type or high voltage-activated I(Ca) in all the DRG neurons with T-type I(Ca). Double immunofluorescence labeling showed that the majority of the delta-opioid receptor-immunoreactive DRG neurons had IB(4) labeling, while all DRG neurons immunoreactive to delta-opioid receptors exhibited Cav(3.2) immunoreactivity. Additionally, DPDPE significantly inhibited high voltage-activated I(Ca) in Tyrode's or N-methyl-d-glucamine solution but not in tetraethylammonium solution. This study provides new information that delta-opioid agonists have a distinct effect on voltage-activated Ca(2+) channels in different phenotypes of primary sensory neurons. High voltage-activated Ca(2+) channels are more sensitive to inhibition by delta-opioid agonists in IB(4)-negative than IB(4)-positive neurons, and this opioid effect is restricted to DRG neurons devoid of functional T-type Ca(2+) currents.  相似文献   

20.
We aimed to investigate the protective effects of melatonin and 2.45 GHz electromagnetic radiation (EMR) on brain and dorsal root ganglion (DRG) neuron antioxidant redox system, Ca(2+) influx, cell viability and electroencephalography (EEG) records in the rat. Thirty two rats were equally divided into four different groups namely group A1: Cage control, group A2: Sham control, group B: 2.45 GHz EMR, group C: 2.45 GHz EMR+melatonin. Groups B and C were exposed to 2.45 GHz EMR during 60 min/day for 30 days. End of the experiments, EEG records and the brain cortex and DRG samples were taken. Lipid peroxidation (LP), cell viability and cytosolic Ca(2+) values in DRG neurons were higher in group B than in groups A1 and A2 although their concentrations were increased by melatonin, 2-aminoethyldiphenyl borinate (2-APB), diltiazem and verapamil supplementation. Spike numbers of EEG records in group C were lower than in group B. Brain cortex vitamin E concentration was higher in group C than in group B. In conclusion, Melatonin supplementation in DRG neurons and brain seems to have protective effects on the 2.45 GHz-induced increase Ca(2+) influx, EEG records and cell viability of the hormone through TRPM2 and voltage gated Ca(2+) channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号