首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Distribution of major histocompatibility complex class I antigens in the postpartum human placenta was studied by immunohistochemical method. Positive staining was observed in endotheliocyte cytoplasm in vessels of chorionic villi. The surface of trophoblast, cytotrophoblast, and connective tissue cells did not stain. These data indicate a peculiar «masking» of antigens essential for normal course of gestation.  相似文献   

2.
This report shows that lymphoid tissues of mice which have resolved a primary infection with Leishmania major contain parasite-specific major histocompatibility complex (MHC) class I-restricted cytolytic CD8+ T cell precusors that can be expanded after specific restimulation in vitro with syngeneic antigen-presenting cells pulsed with a cyanogen bromide digest of L. major. In H-2b mice, two distinct populations of CD8+ T cells were identified which both lysed target cells pulsed with L. major-derived peptides but were restricted by a different H-2b class I gene product. Interestingly, these two populations appear to recognize different parasite-derived peptides. It is noteworthy that one K°-restricted CD8+ T cell line was able to specifically lyse syngeneic macrophages infected with viable L. major, indicating that some L. major-derived peptides may reach the MHC class I pathway of presentation from the phagolysosomal compartment where the parasites are confined in infected macrophages. The importance of these parasite-specific MHC class I restricted cytolytic CD8+ T cells for the elimination of L. major by the infected host remains to be determined.  相似文献   

3.
4.
T-cell activation results from engagement of the T-cell receptor (TCR) by cognate peptide-major histocompatibility complex (pMHC) complexes on the surface of antigen-presenting cells (APC). Previous studies have provided evidence supporting the notion that the half-life of the TCR/pMHC interaction and the density of pMHC on the APC are two parameters that can influence T-cell activation. However, whether the half-life of the TCR/pMHC interaction can modulate T-cell activation in response to a pathogen challenge remains unknown. To approach this question, we generated strains of bacteria expressing variants of the ovalbumin (OVA) antigen, carrying point mutations in the SIINFEKL sequence. When bound to H-2K(b), this peptide is the cognate ligand for the OT-I TCR. Variants of the H-2K(b)/SIINFEKL bind to the OT-I TCR with distinct half-lives. Here we show that dendritic cells (DCs) infected with bacteria expressing OVA variants were incapable of activating OT-I T cells when the half-life of the TCR/H-2K(b)/OVA interaction was excessively short. Consistent with these data, T-cell activation was only observed in mice infected with bacteria expressing OVA variants that bound to OT-I with a half-life above a certain threshold. Considered together, our data suggest that the half-life of TCR/pMHC interaction can significantly modulate T-cell activation in vivo, as well as influence recognition of antigens expressed by bacteria. These observations underscore the importance of the TCR/pMHC half-life on the clearance of pathogens.  相似文献   

5.
Virulence and intracellular persistence of Listeria monocytogenes markedly depend on secretion of listeriolysin (Hly), which promotes invasion of the pathogen from the endosome into the cytosol. Recent studies have provided compelling evidence that Hly also facilitates recognition of listerial antigens, in association with major histocompatibility complex (MHC) class I molecules, by CD8 T lymphocytes. Data presented here confirm that the Hly-deficient strains, the prfA? mutant L. monocytogenes SLCC53 and the transposon mutants L. monocytogenes M3 and M20 are avirulent for mice, and unable to replicate inside bone marrow-derived macrophages (BMMΦ). Furthermore, BMMΦ infected with M3, M20 or SLCC53 were as efficiently lysed as BMMΦ infected with the Hly-positive wild-type strain EGD by MHC class I-dependent CD8 cytotoxic T lymphocytes. Using the highly sensitive polymerase chain reaction method, hly mRNA was detectable in BMMΦ infected with L. monocytogenes EGD or SLCC53, but totally absent in M3-infected BMMΦ. In the case of M20, an excision of the transposon occurred, but the excision was not precise and the hly gene was approximately 400 base pairs shorter. These findings argue against a unique role for Hly in MHC class I presentation of listerial antigens, although Hly appears central to virulence and intracellular replication. Thus, virulence of L. monocytogenes is dissociable from MHC class I presentation of listerial antigens.  相似文献   

6.
A direct and sensitive biochemical assay to measure the interaction in solution between peptides and affinity-purified major histocompatibility complex (MHC) class I molecules has been generated. Specific binding reflecting the known class I restriction of cytotoxic T cell responses was obtained. Adding an excess of β2-microglobulin (β2m) significantly increased the rate of peptide association, but it did not affect the rate of dissociation. Binding was complicated by a rapid and apparently irreversible loss of functional MHC class I at 37°C which might limit the life span of empty MHC class I thereby preventing the inadvertent exchange of peptides at the target cell surface. All class I molecules tested bound peptides of the canonical octa- to nona-meric length. However, one class I molecule, Kk, also bound peptides, which were much longer suggesting that the preference of class I molecules for short epitopes is not absolute and may be caused by factors other than the peptide-MHC class I binding event itself.  相似文献   

7.
T lymphocytes from immune lymph nodes, specific to the molecule of the class I major histocompatibility complex, were found to contain cytotoxic T lymphocyte precursors which mature to become effector cytotoxic T lymphocytes only in the presence of helper cells and L3T4+, but not Lyt2+ T helpers. The findings indicate that a subcutaneous injection of alloantigen of the class I major histocompatibility complex for immunization in the pads leads to the creaction of the type of microenvironment of the lymph nodes which prevents activation of Lyt2+ T helpers or leads to the activation of their functionally negligible part. Translated fromByulleten' Eksperimental'noi Biologii i Meditsiny, Vol. 119, N o 2, pp. 190–193, February, 1995 Presented by N. N. Trapeznikov, Member of the Russian Academy of Medical Sciences  相似文献   

8.
Over the last decade, in silico models of the major histocompatibility complex (MHC) class I pathway have developed significantly. Before, peptide binding could only be reliably modelled for a few major human or mouse histocompatibility molecules; now, high‐accuracy predictions are available for any human leucocyte antigen (HLA) ‐A or ‐B molecule with known protein sequence. Furthermore, peptide binding to MHC molecules from several non‐human primates, mouse strains and other mammals can now be predicted. In this review, a number of different prediction methods are briefly explained, highlighting the most useful and historically important. Selected case stories, where these ‘reverse immunology’ systems have been used in actual epitope discovery, are briefly reviewed. We conclude that this new generation of epitope discovery systems has become a highly efficient tool for epitope discovery, and recommend that the less accurate prediction systems of the past be abandoned, as these are obsolete.  相似文献   

9.
We have been investigating the immunogenicity of two class I major histocompatibility complex-specific peptides with a sequence derived from influenza virus nucleoprotein specific for Kd and one for Db. Peptide-modified splenocytes are unable to immunize for a primary cytotoxic T (Tc) cell response in vivo, or secondary response in vitro. Peptide-modified stimulator cells can boost virus-primed splenocytes for a strong secondary response in vitro. Animals primed with syngeneic peptide-modified splenocytes upon challenge with virus in vivo do not generate strong secondary Tc cell responses on day 3 after challenge in contrast to virus primed animals. Day 6 responses of virus-challenged, peptide-primed animals are reduced as compared to unprimed mice. This hyporesponsiveness is independent of CD8+ T cells in the priming population and can be elicited with tumor cell lines. The data are discussed in the framework of the two-signal model of immune induction.  相似文献   

10.
《Immunology》2017,150(2):127-138
The MHC is a highly polymorphic genomic region that encodes the transplantation and immune regulatory molecules. It receives special attention for genetic investigation because of its important role in the regulation of innate and adaptive immune responses and its strong association with numerous infectious and/or autoimmune diseases. The MHC locus was first discovered in the mouse and for the past 50 years it has been studied most intensively in both mice and humans. However, in recent years the macaque species have emerged as some of the more important and advanced experimental animal models for biomedical research into MHC with important human immunodeficiency virus/simian immunodeficiency virus and transplantation studies undertaken in association with precise MHC genotyping and haplotyping methods using Sanger sequencing and next‐generation sequencing. Here, in this special issue on ‘Macaque Immunology’ we provide a short review of the genomic similarities and differences among the human, macaque and mouse MHC class I and class II regions, with an emphasis on the association of the macaque class I region with MHC polymorphism, haplotype structure and function.  相似文献   

11.
12.
Although there are numerous minor histocompatibility antigens (MiHA), T cell responses leading to graft-versus-host (GVH) and graft-versus-tumor effects involve only a small number of immunodominant MiHA. The goal of the present study was to analyze at the cellular and molecular levels the mechanisms responsible for MiHA immunodominance. Cytotoxic T lymphocytes (CTL) generated in eight combinations of H2b strains of mice were tested against syngeneic targets sensitized with HPLC-fractionated peptides eluted from immunizing cells. The number of dominant MiHA was found to range from as little as two up to ten depending on the strain combination used. The nature of dominant MiHA was influenced by both the antigen profile of the antigen-presenting cells (APC) and the repertoire of responding CTL. When C57BL/6 dominant MiHA (B6dom) and H-Y were presented on separate APC, they showed similar immunogenicity. In contrast, when they were presented on the same APC, B6dom MiHA totally dominated H-Y. B6dom MiHA did not suppress anti-H-Y responses by acting as T cell receptor antagonists for anti-H-Y CTL, nor were anti-B6dom CTL precursors more abundant than anti-H-Y CTL precursors. Dominance resulted from competition for the APC surface between anti-B6dom and anti-H-Y CTL; the crucial difference between the dominant and the dominated MiHA appears to depend on the differential avidity of their respective CTL for APC. The only B6dom epitope thus far identified is the nonapeptide AAPDNRETF presented by H2-Db. We found that compared with other known Db-binding peptides, AAPDNRETF is expressed at very high levels on the cell surface, binds to the Db molecule with very high affinity, and dissociates very slowly from its presenting class I molecule. These data indicate that one cannot predict which MiHA will be dominant or dominated based simply on their respective immunogenicity when presented on separate APC. Indeed, the avidity of T cell/APC interactions appears to determine which antigen(s) will trigger T cell responses when numerous epitopes are presented by the same APC.  相似文献   

13.
The major histocompatibility complex (MHC) molecule plays an important role in the vertebrate immune system. However, we have a limited understanding of the MHC genomic structure in teleosts. Using gene cloning and family analysis, we isolate the MHC class II genes in the tongue sole (Cynoglossus semilaevis) and find that both class II A and class II B genes are duplicated (named Cyse‐DAA and Cyse‐DBA, Cyse‐DAB and Cyse‐DBB, respectively). The class II A genes consist of four exons with a highly conserved genomic structure, but each gene has unique and defining exon 2 and intron 2 sequences. The class II B genes have a conserved six‐exon genomic structure, with intron 3 splitting the β2 encoding region into two exons. Each class II B gene has unique variations in exon 2 and intron 1 sequences. The two class II A genes have similar expression patterns among tissues, with high levels in spleen and gill. Both class II B genes have similar patterns, with high expression in spleen, gill and intestine. The alleles of MHC class II have wide distribution and reliable inheritance in the families analysed. This indicates that the duplicated MHC genes are all classical class II genes. The class II gene duplication with divergent exon and intron sequences, but similar expression patterns in tongue sole provides new insights into MHC evolution.  相似文献   

14.
It has been widely reported that the major histocompatibility complex (MHC) class II region provides the main genetic contribution to multiple sclerosis (MS) susceptibility. However, recent studies have suggested that the MHC class I region may also contribute to the development of MS. In this study, we investigated the possible association of the human leukocyte antigen (HLA)-B, MHC class I chain-related gene B (MICB) and MHC class I chain-related gene A (MICA) genes, located in the MHC class I region, with MS susceptibility. For this purpose, we analyzed the distribution of HLA-DR, HLA-B, MICB and MICA alleles in 121 MS patients and 156 healthy controls. Neither HLA-B nor MICA alleles were found to be associated with MS susceptibility, and only the frequency of HLA-DRB1*01 allele was found to be increased in controls (31% vs 14%, P(c) = 0.011). However, MICB*004 allele frequency was significantly increased in MS patients (46.3% vs 23.3%, P(c) < 0.001, odds ratio = 2.82, 95% confidence interval = 1.68-4.73). Although, MICB*004 and HLA-DRB1*15 belong to the AH 7.1 ancestral haplotype, the association of MICB*004 to MS susceptibility was found to be independent of HLA-DRB1*15 in our population. This and previous studies clearly suggest that the MHC class I, in addition to class II, could be involved in MS susceptibility.  相似文献   

15.
Acute enteritic or respiratory disease is a consequence of coronavirus infection in man and rodents. Mouse hepatitis virus, stain A59 (MHV-A59) causes acute hepatitis in mice and rats and induces a response of major histocompatibility complex (MHC) class II-restricted CD4+ cytotoxic T cells, protecting mice against acute infection. In the present study we show that MHV-A59 infection of mice that lack a functional CD4 gene activates effector cells of the CD8+ phenotype. These cytotoxic T cells lyse virus-infected target cells in a MHC class II-restricted fashion. The results indicate that CD8+ T cells have the potential to utilize MHC class II as restriction element, illustrating that the immune system can effectively deal with evading microorganisms, such as viruses which down-regulate MHC class I.  相似文献   

16.
The full extent of the polymorphism of ELA-DRA in Equidae is not yet known. Given the apparent differences in DRA polymorphisms between Equidae and other species, the aims of this study were to more fully characterize ELA-DRA, determine the extent of gene polymorphism and establish the allele-frequency distribution. An allele reference panel for the second exon of ELA-DRA was established by sequence-based typing of 69 equine DNA samples consisting of various breeds of domestic horse (Equus caballus), together with donkeys (Equus asinus), Grant's zebras (Equus boehmi) and one onager (Equus hemionus). Five of the six previously reported alleles detected using single-strand conformation polymorphism were found: ELA-DRA*0101, ELA-DRA*0201, ELA-DRA*0301, ELA-DRA*0501 (Albright-Fraser DG et al. Polymorphism of DRA among equids. Immunogenetics 1996: 43: 315-7) and ELA-DRA*0601 (GenBank accession number AF5419361). In addition to the previously reported alleles, five novel ELA-DRA alleles were detected within the ELA-DRA allele reference panel. One of these was identified in E. caballus (ELA-DRA*JBH11), one in E. boehmi and E. hemionus (ELA-DRA*JBZ185) and three in E. asinus (ELA-DRA*JBD3, ELA-DRA*JBD17 and ELA-DRA*JBH45). A total of 565 equine DNA samples were screened using reference-strand-mediated conformation analysis, a double-stranded conformation-based mutation detection system that can be used to type existing ELA-DRA alleles and identify new variants. Based on our findings, at least 11 ELA-DRA alleles are now known to exist, and this level of polymorphism at the DRA locus appears to be unique to the genus Equus. Both the previously reported alleles and the new alleles displayed a species-specific distribution.  相似文献   

17.
Cohn M 《Immunology》2007,120(1):140-142
The proposition that single Valpha or Vbeta gene segments specify the recognition of the allele-specific determinants expressed on the major histocompatibility complex-encoded restricting elements of the species has as its consequence a totally different picture of the functioning of the T-cell receptor. This commentary justifies this assumption and outlines some of its most important consequences.  相似文献   

18.
Major histocompatibility complex (MHC) class I molecules present antigenic peptides to CD8-expressing cytotoxic T lymphocytes (CTLs). This antigen recognition system is critically important for immune surveillance against viruses and tumors. Most class I-binding peptides are generated in the cytosol, as side products from the degradation of misfolded proteins by proteasomes. A subset of the resulting peptides are translocated across the endoplasmic reticulum (ER) membrane by a dedicated peptide transporter, and these peptides are then loaded onto peptide-receptive class I molecules in the ER. The stable assembly of class I molecules with peptides is controlled by a variety of accessory proteins, including chaperones with general housekeeping functions and factors with dedicated roles in class I assembly. Peptide-filled class I molecules are then delivered to the cell surface for recognition by CTLs. This highly regulated process permits the host to rapidly counter invading pathogens with strong and sustained CTL responses and, at the same time, avoid misguided attacks. Here, how the class I antigen processing machinery accomplishes this daunting task is reviewed.  相似文献   

19.
This paper describes part of a mutagenic dissection of the human D-region. Twenty-six human lymphoblastoid cell mutants that had lost expressions of HLA-DR were created with a two-step procedure: (i) A mutant from which one entire haplotype had been physically deleted by gamma-rays was isolated by means of immunoselection against cells expressing a specific HLA-B antigen. (ii) This heterozygous deletion mutant was irradiated with gamma-rays or treated with ICR 191, a frameshift mutagen, and mutants that no longer expressed the remaining DR1 antigen were selected with a monoclonal antibody directed against a monomorphic DR determinant. Monoclonal antibody GENOX 3.53 was used to show that four of the gamma-ray induced DR-null mutants did not express the cis-linked MB1/MT1 locus. Since MB1/MT1 was still expressed in the other 16 gamm-ray induced and 6 ICR 191-induced DR-null mutants, the separate loss of expression of MB1/MT1 and DR1 is strong evidence that the DR1 and MB1/MT1 alloantigens are under separate genetic control in the cells we used. Since DR-null mutants bound SB2-specific monoclonal antibody ILR1, whether or not they expressed MB1/MT1, the results mean that gamma-rays resolved the genetic determinants for DR1, MB1/MT1, and SB2. Additional complexity of determinants encoded by D-region genes is indicated by the following results. The amount of MB1/MT1 antigen that was detected with ELISA tests for binding of GENOX 3.53 antibody to cells varied inversely with the number of expressed copies of DR or of a locus near DR. This could result from an increased amount of MB1/MT1 antigen or from increased binding accessibility of GENOZ 3.53-reactive antigen in DR-null mutants. Monoclonal antibodies CC 11.23 and CC 6.4 displayed patterns of binding to parental and diverse mutant cells that differed from that of GENOX 3.53, suggesting the existence of at least one additional D-region antigen that is neither SB, DR, nor MB/MT.  相似文献   

20.
BACKGROUND: The involvement of CD4+ T cells in the pathophysiology of atopic disease is well established. OBJECTIVE: To gain further insight into the activation requirements for allergen-specific T cells, we characterized epitope specificity, HLA restriction and T-cell receptor (TCR) usage for T cells specific to Phl p 5, the group 5 major allergen of the grass Phleum pratense. METHODS: To identify the T-cell epitopes of Phl p 5, three Phl p 5-specific T-cell lines (TCLs) and 15 T-cell clones (TCCs) generated from the peripheral blood of three grass-allergic patients were tested with recombinant truncated Phl p 5a fragments and synthetic Phl p 5b peptides representing these two different recombinant Phl p 5 isoallergens. Additional activation experiments with HLA-subtyped antigen-presenting cells and flow cytometry analysis with TCR V-specific mAb were performed to further characterize the activation requirements for Phl p 5-specific TCCs. RESULTS: At least nine distinct T-cell specificities were identified and the T-cell epitopes recognized differed considerably among the three patients. Most of the epitopes found were isoform-specific, whereas three epitopes were shared between Phl p 5a and 5b. Several human leucocyte antigen (HLA) class II molecules were involved in the recognition of Phl p 5. Different HLA restriction specificities were even found among TCCs specific to the same epitope region. All TCCs were TCR-alpha/beta positive, and an overrepresentation of TCR Vbeta 3.1+ clones among TCCs specific to Phl p 5 appear to exists as 31% (4/13) of the TCCs expressed TCR Vbeta 3.1 (compared with 5% TCR Vbeta 3.1+ T cells in human peripheral blood) with no correlation with epitope specificity or HLA restriction. CONCLUSION: The T-cell reactivity of the three grass-allergic patients investigated shows that isoallergen-specific T-cell epitopes are found throughout the peptide backbone of Phl p 5a and Phl p 5b, and dominant T-cell epitopes of Phl p 5 were not identified. This indicates that a mixture of at least full-length rPhl p 5a and rPhl p 5b may be required to target the total Phl p 5-specific T-cell response of atopic patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号