首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In rat, injection of the specific cholinotoxin, 192 IgG-saporin, into the medial septum results not only in a selective cholinergic denervation of hippocampus, but in an ingrowth of peripheral sympathetic fibers, originating from the superior cervical ganglion, into the hippocampus. A similar process, in which peripheral noradrenergic axons invade hippocampus, may also occur in Alzheimer's disease. Since apoptotic cell death has been demonstrated in the selective neuronal loss found in Alzheimer's disease, the aim of this study was to measure apoptotic protein expression and DNA fragmentation in hippocampal sympathetic ingrowth and cholinergic denervation. Western blot, TdT-mediated dUTP nick end labeling, and oligo ligation techniques were used. Choline acetyltransferase activity and norepinephrine concentrations were also measured. As seen in our previous results, an increase in apoptotic markers was induced by cholinergic denervation alone (medial septum lesion + ganglionectomy), while hippocampal sympathetic ingrowth (medial septum + sham ganglionectomy) reduced or normalized apoptotic effects to control group levels. A decrease in choline acetyltransferase activity was also found in the dorsal hippocampus of hippocampal sympathetic ingrowth and cholinergic denervation groups. An increase in norepinephrine concentration was found in hippocampal sympathetic ingrowth but not in cholinergic denervation group. Results of this study suggest that cholinergic denervation is responsible for most of the proapoptotic responses, while hippocampal sympathetic ingrowth produces a protective effect in the process of programmed cell death in rat dorsal hippocampus. This effect may be a secondary to an altered relationship between norepinephrine-acetylcholine.  相似文献   

2.
Electrolytic lesions of the medial septal region leads to an unusual neuronal reorganization in which peripheral sympathetic fibers, originating from the superior cervical ganglia, grow into the cholinergically denervated areas of the hippocampus. Since these lesions disrupt cells and fibers of passage which are non-cholinergic, there has been a debate whether Hippocampal Sympathetic Ingrowth is due only to cholinergic denervation of the hippocampus. Using the intraseptal administration of 192-IgG-Saporin, a specific cholinergic neurotoxin, we have found that hippocampal sympathetic ingrowth occurs in the cholinergically denervated hippocampus at 4, 8 and 12 weeks post Saporin injection. These results clearly suggest that hippocampal sympathetic ingrowth is due to the specific loss of the cholinergic projection from the medial septum.  相似文献   

3.
Cholinergic denervation of the hippocampal formation, via medial septal lesions, induces peripheral noradrenergic fibers, originating from the superior cervical ganglion, to grow into the hippocampus. We have previously reported that cholinergic denervation and hippocampal sympathetic ingrowth differentially affect guanosine-5'-O-(3-thiotriphosphate)- as well as guanosine-5'-O-(3-thiotriphosphate) + carbachol-stimulated polyphosphoinositide hydrolysis, suggesting an alteration in G proteins and/or the entire receptor complex. To examine the type of G protein which may be involved in these effects, rat dorsal hippocampal membranes were preincubated with pertussis toxin in the presence of guanosine-5'-O-(3-thiotriphosphate) and guanosine-5'-O-(3-thiotriphosphate) + carbachol. Pertussis toxin reduced guanosine-5'-O-(3-thiotriphosphate) in all groups, while guanosine-5'-O-(3-thiotriphosphate) + carbachol-stimulated phosphoinositide hydrolysis was reduced in controls and animals without sympathetic ingrowth but not in animals with hippocampal sympathetic ingrowth. This suggests that pertussis toxin-sensitive G proteins may be involved in the mediation of phosphoinositide hydrolysis. To confirm this hypothesis, membranes were preincubated with antibodies to Galphao and Gq/11. The Go antibody significantly decreased guanosine-5'-O-(3-thiotriphosphate) in all groups, while guanosine-5'-O-(3-thiotriphosphate) +carbachol-stimulated phosphoinositide hydrolysis was reduced only in hippocampal sympathetic ingrowth. Impairment of guanosine-5'-O-(3-thiotriphosphate) and carbachol-stimulated phosphoinositide hydrolysis was also decreased in all groups when preincubated with Gq/11 antibody. To determine whether hippocampal sympathetic ingrowth or cholinergic denervation altered the concentration of various G proteins, immunoblotting methodology was utilized. Gq/11 concentrations were found to be equivalent among groups. The density of Go1, Go2, and Go3 isoforms was significantly increased in the cholinergic denervation, while in the hippocampal sympathetic ingrowth only group Go3 was significantly increased. When assessed as total Go protein, density was increased significantly only in the cholinergic denervation group. Overall, these results suggest that hippocampal sympathetic ingrowth and cholinergic denervation induce alterations in phosphoinositide hydrolysis through both the Gq/11 and the Go proteins and that the coupling between muscarinic receptor and G protein is the possible site which affects changes in phosphoinositide turnover. Our results also suggest that cholinergic denervation and hippocampal sympathetic ingrowth may mediate phosphoinositide hydrolysis through an effect on different isoforms of the same G protein.  相似文献   

4.
The medial septum/vertical limb of the diagonal band of Broca (MSDB) provides a major input to the hippocampus and is important for spatial memory. Both cholinergic and GABAergic MSDB neurons project to the hippocampus, and nonselective lesions of the MSDB or transections of the septohippocampal pathway impair spatial memory. However, selective lesions of cholinergic MSDB neurons using 192-IgG saporin (SAP) do not impair or only mildly impair spatial memory. Previously, intraseptal kainic acid was found to reduce levels of glutamic acid decarboxylase, a marker of GABAergic neurons, but not to alter the levels of choline acetyltransferase, a marker of cholinergic neurons. The present study further characterized the effects of kainic acid on GABAergic MSDB neurons and examined the effects of intraseptal kainic acid on spatial memory. Saline, kainic acid, SAP, or the combination of kainic acid and SAP was administered into the MSDB of rats. Spatial memory was assessed in an eight-arm radial maze and a water maze. Kainic acid destroyed GABAergic septohippocampal neurons, but spared cholinergic neurons. SAP eliminated MSDB cholinergic neurons, sparing noncholinergic neurons. Coadministration of kainic acid and SAP destroyed GABAergic and cholinergic MSDB neurons. Acquisition of the radial maze task and performance on this task with 4-h delays were unimpaired by intraseptal kainic acid or SAP, but were impaired by coadministration of kainic acid and SAP. Acquisition of the water maze task was unaffected by intraseptal kainic acid, delayed slightly by SAP, and impaired severely by coadministration of kainic acid and SAP. These results provide evidence that kainic acid at appropriate concentrations effectively destroys GABAergic septohippocampal neurons, while sparing cholinergic MSDB neurons. Furthermore, lesions of the GABAergic septohippocampal neurons do not impair spatial memory. While lesions of cholinergic MSDB neurons may mildly impair spatial memory, the combined lesion of GABAergic and cholinergic septohippocampal neurons resulted in a memory impairment that was greater than that observed after a selective lesion to either population. Thus, damage of GABAergic or cholinergic MSDB neurons, which together comprise the majority of the septohippocampal pathway, cannot totally account for the spatial memory impairment that is observed after nonselective lesions of the MSDB.  相似文献   

5.
Following cholinergic denervation of the hippocampus by medial septal lesions, an unusual neoronal reorganization occurs, in which peripheral sympathetic fibers, originating from the superior cervical ganglia, grow into the hippocampus. Previously, we have found that both hippocampal sympathetic ingrowth (HSI) and cholinergic denervation (CD), alone, altered the total number and affinity of muscarinic cholinergic receptors (mAChR). In this study, we utilized the muscarinic antagonist [3H]Pirenzepine, in combination with membrane radioligand binding techniques, to determine the effects of HSI and CD on hippocampal M1 and M1 + M3 mAChR subtypes, 4 weeks after MS lesions. In both the dorsal and ventral hippocampus, HSI was found to markedly diminish the number of M1 AChRs, while CD was found to increase the number of M1 AChRs. Neither treatment affected the affinity of the M1 AChR. However, when M1 + M3 binding was assessed, CD was found to decrease the affinity in both hippocampal regions, without altering the number of receptors. Neither affinity nor number of M1 + M3 receptors was altered by HSI. The results of this study suggest that both cholinergic denervation and hippocampal sympathetic ingrowth uniquely affect hippocampal muscarinic receptors.  相似文献   

6.
Cholinergic denervation of the hippocampus by medial septal (MS) lesions results in the ingrowth of peripheral sympathetic fibers, originating from the superior cervical ganglia, into the hippocampus. To determine the effect of hippocampal sympathetic ingrowth (HSI) [3H]-QNB (L-quinuclidinyl [benzilic-4, 4(n)] benzilate) binding was assessed in the dorsal and ventral hippocampus four weeks after MS lesions. In dorsal hippocampus, HSI was found to signignificantly increase the number (Bmax) of [3H]-QNB binding sites and to normalize the decrease in affinity found in animals with MS lesions plus ganglionectomy (i. e., no ingrowth). In ventral hippocampus, HSI was found to normalize the increased number of binding sites and decreased affinity found in animals with MS lesions without ingrowth. No effect on either Kd or Bmax was found in animals that had undergone ganglionectomy with sham MS lesions. These results suggest that HSI can induce changes in hippocampal muscarinic cholinergic receptors. © 1994 Wiley-Liss, Inc.  相似文献   

7.
Cholinergic denervation of the hippocampal formation, via medial septal lesions, induces peripheral noradrenergic fibers, originating from the superior cervical ganglion, to grow into the hippocampus. We have previously reported that cholinergic denervation and hippocampal sympathetic ingrowth differentially affect guanosine-5′-O-(3-thiotriphosphate)- as well as guanosine-5′-O-(3-thiotriphosphate) + carbachol-stimulated polyphosphoinositide hydrolysis, suggesting an alteration in G proteins and/or the entire receptor complex. To examine the type of G protein which may be involved in these effects, rat dorsal hippocampal membranes were preincubated with pertussis toxin in the presence of guanosine-5′-O-(3-thiotriphosphate) and guanosine-5′-O-(3-thiotriphosphate) + carbachol. Pertussis toxin reduced guanosine-5′-O-(3-thiotriphosphate) in all groups, while guanosine-5′-O-(3-thiotriphosphate) + carbachol-stimulated phosphoinositide hydrolysis was reduced in controls and animals without sympathetic ingrowth but not in animals with hippocampal sympathetic ingrowth. This suggests that pertussis toxin-sensitive G proteins may be involved in the mediation of phosphoinositide hydrolysis. To confirm this hypothesis, membranes were preincubated with antibodies to Gαo and Gq/11. The Go antibody significantly decreased guanosine-5′-O-(3-thiotriphosphate) in all groups, while guanosine-5′-O-(3-thiotriphosphate) +carbachol-stimulated phosphoinositide hydrolysis was reduced only in hippocampal sympathetic ingrowth. Impairment of guanosine-5′-O-(3-thiotriphosphate) and carbachol-stimulated phosphoinositide hydrolysis was also decreased in all groups when preincubated with Gq/11 antibody. To determine whether hippocampal sympathetic ingrowth or cholinergic denervation altered the concentration of various G proteins, immunoblotting methodology was utilized. Gq/11 concentrations were found to be equivalent among groups. The density of Go1, Go2, and Go3 isoforms was significantly increased in the cholinergic denervation, while in the hippocampal sympathetic ingrowth only group Go3 was significantly increased. When assessed as total Go protein, density was increased significantly only in the cholinergic denervation group. Overall, these results suggest that hippocampal sympathetic ingrowth and cholinergic denervation induce alterations in phosphoinositide hydrolysis through both the Gq/11 and the Go proteins and that the coupling between muscarinic receptor and G protein is the possible site which affects changes in phosphoinositide turnover. Our results also suggest that cholinergic denervation and hippocampal sympathetic ingrowth may mediate phosphoinositide hydrolysis through an effect on different isoforms of the same G protein.  相似文献   

8.
Colchicine has been shown to be neurotoxic to cholinergic neurons in the medial septum 1 week following intracerebroventricular injections. The experiments described here were designed to examine the selectivity of this effect over a longer time course, and to examine the role of axoplasmic transport in the neurotoxic effect. As previously reported, 1 week after intracerebroventricular injections of colchicine, the numbers of choline acetyltransferase (ChAT)-immunoreactive neurons in the medial septum-diagonal band complex (MSDB) were reduced to 38% of control; this reduction was stable 2 and 3 weeks post injection. Injections of colchicine placed into the body of the fornix produced similar results. GAD-immunoreactive somata, the other major population of neurons in the MSDB, were unaffected 3 weeks following colchicine, as previously reported 1 week following similar injections. The normal AChE staining pattern in the hippocampus, particularly the dentate gyrus, was depleted following either ICV or intrafornical injections of colchicine. This depletion was more severe with longer survival times. Injections of lumicolchicine, an isomer of colchicine which does not bind tubulin, had no effect on ChAT-immunoreactive neurons in the MSDB or on AChE staining in the hippocampus. Injections of colchicine, but not of lumicochicine, partially blocked the retrograde transport of the fluorescent dye Fluoro-Gold from the hippocampus to the MSDB. In addition, the content of NGF in the hippocampus rose 84% above control values 2 weeks following colchicine and remained elevated at three weeks. Together these results indicate that colchicine is selectively toxic for cholinergic neurons in the septohippocampal system, and suggest that the alkaloid's neurotoxic effects work via the blockade of axoplasmic transport.  相似文献   

9.
Septal lesions result in a measurable increase in sympathetic innervation of the hippocampus. The cell bodies of origin of these sympathetic fibers reside in the superior cervical ganglion (SCG), which also projects to the pineal gland and medial habenula. If the SCG neurons which project to the pineal are the same neurons which sprout into the hippocampus after septal lesions, a common cell body reaction might mediate changes in innervation of the pineal. If cholinergic denervation is the principal trigger of hippocampal sprouting, a similar response might be observed in habenula which is also innervated cholinergically from septal area neurons. Pineal and medial habenula innervation were quantified using a new microfluorometric method at 20 post-lesion intervals following septal lesions. Changes in intensity and density of innervation were correlated with time in days after the lesions. Pineal intensity, pineal density, and habenula intensity exhibited statistically significant correlations with time in days after septal lesions. These changes occurred during the growth of sympathohippocampal fibers. The data suggest that a common cell body reaction mediated the changes in pineal and the sympathetic sprouting in the hippocampus.  相似文献   

10.
Hippocampal sympathetic ingrowth (HSI), a form of neuronal plasticity, is induced by medial septal lesions and consists of the sprouting of peripheral sympathetic fibers, arising from the superior cervical ganglion, into the dentate gyrus and CA3 region of the hippocampus. HSI has been previously shown to alter learned and spontaneous behaviors, phosphatidyl inositide hydrolysis, and the antagonist binding kinetics of both muscarinic cholinergic receptors and phorbol ester receptors. We now report that sympathetic sprouting reverses decreases in membrane-associated activity of protein kinase C (PKC) following septohippocampal denervation of the rat hippocampus. Further, no changes were found in α, β or γ PKC isoenzymes among experimental groups, suggesting that the group A PKC isoforms do not mediate the observed changes in activity and phorbol ester binding.  相似文献   

11.
Following cholinergic denervation of the hippocampus by medial septal (MS) lesions, an unusual neuronal reorganization occurs in which peripheral sympathetic fibers, originating from the superior cervical ganglia, grow into the hippocampus (hippocampal sympathetic ingrowth; HSI). Previously, we have found that with MS lesions, animals with (the HSI(+) group) and without (HSI(−) group) ingrowth differed in carbachol stimulated PI hydrolysis, in PKC activity, and in muscarinic cholinergic receptors (mAChR). In this study, performed in hippocampal slices obtained four weeks after MS lesions, we utilized the hydrophilic muscarinic antagonist [3H] N-methylscopolamine ([3H]NMS) and hydrophobic muscarinic antagonist [3H]quinuclidinyl benzilate ([3H]QNB) in the presence of either 4-α-phorbol or phorbol 12,13-dibutyrate (PDBu) to determine the effect of MS lesions with and without ingrowth on PKC-mediated mAChR internalization. In the presence of PDBu, a group effect was observed in [3H]NMS binding, with control groups > HSI(+) group > HSI(−) group. However, [3H]QNB binding was similar across groups. These results suggest that the cholinergic denervation of the hippocampus enhances the internalization of mAChRs, which is modified in the presence of HSI.  相似文献   

12.
Oestrogen is known to influence pyramidal cell spine synapse plasticity in the CA1 subfield of the hippocampus. Apart from direct oestrogen action on the hippocampus, oestrogen effects mediated by subcortical structures are known to be important. The purpose of this study was to investigate whether the medial septum diagonal band of Broca (MSDB) takes part in mediating oestrogen effects to the hippocampus. Special attention was given to the role of cholinergic MSDB neurons that project to the hippocampus, as a rather large population of them contains oestrogen receptors and, consequently, may be sensitive to oestrogen signals. Adult female rats were ovariectomized. Oestradiol- and cholesterol-filled cannulae (control) were implanted into the MSDB. To selectively eliminate the cholinergic population of MSDB neurons of oestrogen-treated animals, a group of rats was injected with 192 IgG-saporin (SAP) into the lateral ventricle 1 week before the cannula implant. Immunostaining with anti-choline acetyltransferase and parvalbumin (PA) showed that cholinergic but not PA-containing GABAergic neurons were substantially reduced in the MSDB of SAP rats. Comparative electron microscopic unbiased stereological analysis on the spine synapse density of CA1 area pyramidal cells was performed between all animal groups. Rats that received oestradiol-filled cannulae showed a higher (30%) spine synapse density than control animals. Oestrogen-treated rats that had received SAP treatment showed no significant difference to controls. Thus, this observation indicates that septo-hippocampal cholinergic neurons are involved in mediating oestrogen effects to the hippocampus. The relevance of this observation to mnemonic functions and Alzheimer's disease is discussed.  相似文献   

13.
Hippocampal learning and memory tasks are tightly coupled to the hippocampal theta rhythm, which is critically dependent on the medial septum/diagonal band of Broca (MSDB) although the underlying mechanisms remain unclear. The MSDB sends both cholinergic and GABAergic projections to the hippocampus. Here we show that: (i) septo-hippocampal GABAergic but not cholinergic neurons have a pacemaking current, the H-current, and that its selective blockade by ZD7288 reduces their spontaneous firing in rat brain slices; and (ii), local infusions of ZD7288 into the MSDB reduce exploration and sensory evoked hippocampal theta bursts in behaving rats. Thus, the H-current in septohippocampal GABAergic neurons modulates the hippocampal theta rhythm.  相似文献   

14.
This study deals with two characteristic cell types in the rat septal complex i.e., cholinergic and GABAergic neurons, and their synaptic connections. Cholinergic elements were labeled with a monoclonal antibody against choline acetyltransferase (ChAT), the acetylcholine synthesizing enzyme. Antiserum against glutamate decarboxylase (GAD), the GABA synthesizing enzyme, was employed to identify GABAergic perikarya and terminals, by using either the peroxidase-antiperoxidase (PAP) technique or a biotinylated second antiserum and avidinated gold or ferritin. With these contrasting immunolabels we have studied the cholinergic-GABAergic interconnections in double-labeled sections of intact septal regions and the GABAergic innervation of medial septal area cholinergic neurons in sections taken from animals 1 week following lateral septal area lesion. In other electron microscopic experiments we have studied cholinergic and GABAergic neurons in the septal complex for synaptic contacts with hippocamposeptal fibers, which were identified by anterograde degeneration following fimbria-fornix transection. Our results are summarized as follows: (1) GAD-positive terminals form synaptic contacts on ChAT-immunoreactive dendrites in the medial septum/diagonal band complex (MSDB), (2) surgical lesion of the lateral septal area resulted in a dramatic decrease of the number of GABAergic boutons on MSDB cholinergic neurons, (3) cholinergic terminals establish synaptic contacts with GAD immunoreactive cell bodies and proximal dendrites in the MSDB as well as in the lateral septum (LS), (4) degenerated terminals of hippocampo-septal fibers were mainly observed in the LS, where they formed asymmetric synaptic contacts on dendrites of GABAergic neurons and on nonimmunoreactive spines. We did not observe degenerated boutons in contact with ChAT-positive dendrites or cell bodies in the MSDB. From these results and from data in the literature we conclude that excitatory hippocampo-septal fibers activate GABAergic cells, and as yet unidentified spiny neurons in the LS, which may control the discharge of medial septal cholinergic neurons known to project back to the hippocampal formation.  相似文献   

15.
In this study, the effect of intraseptal injection of specific cholinotoxin 192-IgG saporin (SAP) +/- intraperitoneal injection of N-[chloroethyl]-N-ethyl-2-bromobenzylamine (DSP-4) (noradrenergic fiber neurotoxin) was examined in rat hippocampus. Medial septal lesions resulted not only in selective cholinergic denervation of hippocampus (Medial septal lesion + ganglionectomy; SAP + Gx) but also in hippocampal sympathetic ingrowth (IG) of adrenergic fibers (Medial septal lesion + sham ganglionectomy; SAP + IG). Saporin-induced septal lesions produced a significant reduction in hippocampal choline acetyltransferase activity in all tested groups (SAP + IG +/- DSP-4 and SAP + Gx +/- DSP-4), and an increase in noradrenaline concentration in the SAP + IG group. Visualization of noradrenergic fibers by histofluorescence revealed a mixture of fine and thick varicosities in the SAP + IG but only fine fibers in control and SAP + Gx animals. SAP + IG + DSP-4 lesions produced significant reduction in noradrenaline concentration in all groups with a concomitant decrease in visualization of central noradrenergic fibers in dorsal and ventral hippocampus. Treatment of SAP + IG animals with DSP-4 left mostly thick fibers, probably derived from peripheral sympathetic ingrowth. No fluorescence was seen in either the control + DSP-4 or SAP + Gx + DSP-4 animals. Apoptotic-like changes, using in situ oligonucleotide ligation techniques, were also assessed. Proapoptotic changes were seen in the SAP + Gx +/- DSP-4 group as compared to CON +/- DSP-4 groups. SAP + IG regardless of DSP-4 treatment protected hippocampal cells from apoptotic cell death when compared to positive control and SAP + Gx +/- DSP-4 groups. In summary, elevated noradrenaline concentration following specific cholinergic denervation probably reflects compensatory hippocampal ingrowth originating from the peripheral sympathetic system which may be responsible for neuroprotective effects, i.e., antiapoptosis-like effect. Since cholinergic and noradrenergic systems are known to be involved in Alzheimer's disease and related cognitive function, knowing how these neurotransmitters work after specific lesions may be of importance as an animal model of Alzheimer's disease and as a potential target for Alzheimer's disease drug therapies.  相似文献   

16.
After cholinergic denervation of the hippocampal formation, peripheral sympathetic fibers arising from the superior cervical ganglia grow into the dentate gyrus and CA3 region; the functional significance of sympathetic ingrowth into the hippocampal formation is unknown. Utilizing electrical stimulation of the preganglionic trunk in combination with 2-deoxy-D-[3H]-glucose fine-grained autoradiograms, we demonstrated an alteration of hippocampal glucose metabolism, suggesting that this neuronal rearrangement makes functional connections within the hippocampus.  相似文献   

17.
Neurons of the medial septum/diagonal band of Broca (MSDB) project to the hippocampus. Muscarinic cholinergic mechanisms within the MSDB are potent modulators of hippocampal functions; intraseptal scopolamine disrupts and intraseptal carbachol facilitates hippocampus-dependent learning and memory tasks, and the associated hippocampal theta rhythm. In earlier work, we demonstrated that, within the MSDB, the septohippocampal GABAergic but not cholinergic neurons are the primary target of muscarinic manipulations and that muscarinic activation of septohippocampal GABAergic neurons is mediated directly via M(3) receptors. In the present study, we examined the ionic mechanism(s) underlying the excitatory actions of muscarine in these neurons. Using whole-cell patch-clamp recording techniques in rat brain slices, we demonstrated that M(3) receptor-mediated muscarinic activation of MSDB neurons is dependent on external Na(+) and is also reduced by bath-applied Ni(2+) and KB-R7943 as well as by replacing external Na(+) with Li(+), suggesting a primary involvement of the Na(+)-Ca(2+) exchanger. We conclude that the M(3) receptor-mediated muscarinic activation of MSDB septohippocampal GABA-type neurons, that is important for cognitive functioning, is mediated via activation of the Na(+)-Ca(2+) exchanger.  相似文献   

18.
NGF-induced remodeling of mature uninjured axon collaterals   总被引:3,自引:0,他引:3  
Accumulation of nerve growth factor (NGF) within the rat hippocampus following septal denervation is thought to contribute to sympathetic axon ingrowth. However, intraventricular NGF infusion, which results in elevated hippocampal NGF, fails to elicit such sprouting, although it increases innervation of the extracerebral vasculature. To determine whether or not NGF would stimulate sympathohippocampal sprouting, we infused NGF after sprouting was initiated. Surprisingly, NGF reduced the amount of hippocampal sprouting and, when infused at the time of lesion, delayed its onset while, at the same time, stimulating perivascular sprouting. Since NGF did not prevent ingrowth into the hippocampus from transplanted sympathetic ganglia, the reduction in sympathetic hippocampal fibers from intact ganglia appears to result from the proliferation of vascular fibers. Thus, changes in trophic support (NGF levels) appear to be sufficient to produce remodeling of mature, uninjured sympathetic arbors. Such trophomorphism may underlie collateral elimination during normal development and injury-induced neuronal rearrangements.  相似文献   

19.
Activation of median raphe serotonergic neurons results in the desynchronization of hippocampal electroencephalographic (EEG) activity. This could be a direct effect, because serotonin (5-HT) fibers terminate on a specific population of hippocampal interneurons. On the other hand, it could be an indirect action through the medial septum/diagonal band of Broca (MSDB) pacemaker cells, because, in addition to previously described inhibitory effects, excitatory actions of 5-HT have been demonstrated on MSDB gamma-aminobutyric acid (GABA)-containing neurons through 5-HT2A receptors. Electron microscopic double immunostaining for Phaseolus vulgaris-leucoagglutinin (PHA-L) injected into the median raphe (MR) and parvalbumin, choline acetyltransferase, or calretinin as well as double immunostaining for 5-HT and parvalbumin, and colocalization for parvalbumin and 5-HT2A receptors were done in rats. The results demonstrated that: 1) MR axons form perisomatic and peridendritic baskets and asymmetric synaptic contacts on MSDB parvalbumin neurons; 2) these fibers do not terminate on septal cholinergic and calretinin neurons; 3) 5-HT fibers form synapses identical to those formed by PHA-L-immunolabeled axons with parvalbumin neurons; and 4) MSDB parvalbumin cells contain 5-HT2A receptors. These observations indicate that 5-HT has a dual action on the activity of hippocampal principal cells: 1) an inhibition of the input sector by activation of hippocampal GABA neurons that terminate exclusively on apical dendrites of pyramidal cells, and 2) a disinhibition of the output sector of principal neurons. MSDB parvalbumin-containing GABAergic neurons specifically innervate hippocampal basket and chandelier cells. Thus, 5-HT-elicited activation of MSDB GABAergic neurons will result in a powerful inhibition of these GABA neurons.  相似文献   

20.
Yoder RM  Pang KC 《Hippocampus》2005,15(3):381-392
Hippocampal theta rhythm (HPCtheta) may be important for various phenomena, including attention and acquisition of sensory information. Two types of HPCtheta (types I and II) exist based on pharmacological, behavioral, and electrophysiological characteristics. Both types occur during locomotion, whereas only type II (atropine-sensitive) is present under urethane anesthesia. The circuit of HPCtheta synchronization includes the medial septum-diagonal band of Broca (MSDB), with cholinergic and gamma-aminobutyric acid (GABA)ergic neurons comprising the two main projections from MSDB to HPC. The primary aim of the present study was to assess the effects of GABAergic MSDB lesions on urethane- and locomotion-related HPCtheta, and compare these effects to those of cholinergic MSDB lesions. Saline, kainic acid (KA), or 192 IgG-saporin (SAP) was injected into MSDB before recording. KA preferentially destroys GABAergic MSDB neurons, whereas SAP selectively eliminates cholinergic MSDB neurons. A fixed recording electrode was placed in the dentate mid-molecular layer, and stimulating electrodes were placed in the posterior hypothalamus (PH), and medial perforant path (PP). Under urethane anesthesia, HPCtheta was induced by tail pinch, PH stimulation, and systemic physostigmine; none of the rats with KA or SAP showed HPCtheta in any of these conditions. During locomotion, HPCtheta was attenuated, but not eliminated, in rats with KA or SAP lesions. Intraseptal KA in combination with either intraseptal SAP or PP lesions reduced locomotion-related HPCtheta beyond that observed with each lesion alone, virtually eliminating HPCtheta. In contrast, intraseptal SAP combined with PP lesions did not reduce HPCtheta beyond the effect of each lesion alone. We conclude that both GABAergic and cholinergic MSDB neurons are necessary for HPCtheta under urethane, and that each of these septohippocampal projections contributes to HPCtheta during locomotion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号