首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
The course of renal involvement and hearing loss is much milder in most female X-linked Alport syndromes than in male patients. We examined the molecular mechanism of development of the disease in a female patient with severe Alport syndrome. The patient showed heavy proteinuria, hematuria, neurosensory hearing loss and primary amenorrhea. Renal biopsy findings of electron microscopy and immunostaining of the α5 chain of type IV collagen indicated a female X-linked Alport syndrome. G-banding chromosomal analysis showed a t(X;1)(q22.3;p36.32) balanced translocation. Analysis of the collagen type IV (COL4A5) gene by genomic DNA sequencing, complementary DNA (cDNA) sequencing and multiplex ligation-dependent probe amplification assay showed no mutations or deletions/duplications of the gene. However, fluorescence in situ hybridization using the probes for exon 1 and exon 51 of the COL4A5 gene showed disruption of one copy of the gene. Replication R-banding chromosomal analysis indicated preferential inactivation of the normal X chromosome. This is the first report of severe Alport syndrome in a female patient carrying a balanced translocation between the chromosome X and 1 producing the disruption of one copy of COL4A5 gene and silencing of the other copy because of preferential inactivation of the normal X chromosome. Chromosomal abnormalities should be considered in female patients with severe forms of Alport syndrome.  相似文献   

3.
BACKGROUND: Inherited hematuria is common and is usually attributed to thin basement membrane disease (TBMD). The aim of this study was to determine how often hematuria in families with TBMD segregated with haplotypes at the chromosomal loci for autosomal recessive and X-linked Alport syndrome (COL4A3/COL4A4 and COL4A5, respectively). METHODS: The families of 22 individuals with TBMD on renal biopsy and with urinary glomerular red blood cell (RBC) counts of more than 50,000/mL were studied using phase-contrast microscopy of the urine and DNA microsatellite markers. Eighteen families had at least two members with hematuria. RESULTS: Hematuria segregated with or was consistent with segregation at the COL4A3/COL4A4 locus in eight (36%) families (P < 0.05 in 5 of these) and at the COL4A5 locus in four (18%) families (P < 0.05 in 2). The lack of segregation in the other 10 (45%) families may have occurred because of incomplete penetrance of the hematuria, de novo mutations, coincidental hematuria in other family members, or the presence of a novel gene locus. In four different families, three of which had hematuria that segregated with the COL4A3/COL4A4 locus, four family members with the hematuria haplotype had spouses with coincidental hematuria (4 of 29, 14%). However, none of their four offspring who had also inherited the hematuria haplotype had the clinical features of autosomal recessive Alport syndrome. CONCLUSIONS: Hematuria in families with TBMD commonly segregates with the COL4A3/COL4A4 locus and thus results from mutations in the same genes as autosomal recessive Alport syndrome. Sometimes TBMD may be confused with the carrier state for X-linked Alport syndrome. However, nearly half of the families in this study had hematuria that did not segregate with the loci for either autosomal recessive or X-linked Alport syndrome.  相似文献   

4.
5.
Gene mutations in COL4A5 located on Xq22 are believed to cause X-linked Alport syndrome, whereas mutations in COL4A3 and COL4A4 located on chromosome 2 are associated with autosomal inherited Alport syndrome or benign familial hematuria. A family with benign familial hematuria caused by COL4A5 mutation, implying X-linked transmission, is reported here for the first time. This result suggests that COL4A5 should be added to the list of causative genes for benign familial hematuria, although the mechanism(s) by which the same mutation leads to the distinct phenotypes, i.e. X-linked Alport syndrome or benign familial hematuria, remains unknown.  相似文献   

6.
Alport syndrome in southern Sweden   总被引:1,自引:0,他引:1  
AIM: The aim of the present investigation is to study the epidemiology of Alport syndrome in southern Sweden, to search for mutations in the COL4A5 gene and to estimate the mutation frequency. PATIENTS AND METHODS: Patients with suspected Alport syndrome were identified in an area with a population of 1.45 million. Clinical criteria were used to establish the diagnosis and samples for mutation analysis were collected. Mutation analyses were performed with Single-Stranded Conformation Polymorphism analysis (SSCP) of PCR-amplified genomic DNA. RESULTS: Altogether 25 families with hereditary nephritis were identified. Alport syndrome with X-linked transmission was evident in 14 families, with juvenile (< 31 years) progression to end-stage renal failure (ESRF) in ten, and adult (> or = 31 years) in four families. CONCLUSION: The frequency of males with X-linked disease was calculated to one in 17,000 male births (95% confidence interval (CI) 1/10,500-1/28,600), and the prevalence to one in 40,000. A total of seven females with ESRF were identified, with a median age at ESRF of 45 years. The male to female ratio of cases with ESRF was 4.9 to 1. The risk of developing ESRF among females was from the expected incidence roughly estimated to 12%. Patients with X-linked disease constituted 1.8% of patients with ESRF in the examined area. A mutation was identified positive in 10 of 14 families with X-linked disease, but never in families not fulfilling the clinical criteria for Alport syndrome. In families with juvenile phenotype and positive mutation analysis, the mutation frequency was calculated to between 1/78,000 and 1/198,000 (95% CI 1/42,000-1/177,000) if the effective fertility was estimated to be between 0 and 0.2.  相似文献   

7.
BACKGROUND: Carriers of autosomal-recessive and X-linked Alport syndrome often have a thinned glomerular basement membrane (GBM) and have mutations in the COL4A3/COL4A4 and COL4A5 genes respectively. Recently, we have shown that many individuals with thin basement membrane disease (TBMD) are also from families where hematuria segregates with the COL4A3/COL4A4 locus. This study describes the first COL4A4 mutation in an individual with biopsy-proven TBMD who did not have a family member with autosomal-recessive or X-linked Alport syndrome, inherited renal failure, or deafness. METHODS: The index case and all available family members were examined for dysmorphic hematuria> 50,000/mL using phase contrast microscopy and for segregation of hematuria with the COL4A3/COL4A4 and COL4A5 loci using DNA satellite markers. COL4A4 exons from the index case were then studied using the enzyme mismatch cleavage method, and exons that demonstrated abnormal cleavage products were sequenced. RESULTS: Hematuria in this family segregated with a haplotype at the COL4A3/COL4A4 locus (P = 0.031) but not with haplotypes at the COL4A5 locus. A mutation in COL4A4 that changed C to T resulting in an arginine residue being replaced by a stop codon (R1377X) was demonstrated in exon 44, which encodes part of the alpha 4(IV) collagen sequence close to the junction with the noncollagenous domain. This mutation was present in all five family members with hematuria, but not in the four unaffected family members, 33 unrelated individuals with TBMD, or 22 nonhematuric normals. CONCLUSIONS: R1377X has been described previously in a compound heterozygous form of autosomal-recessive Alport syndrome. Our observation is evidence that TBMD can represent a carrier state for autosomal-recessive Alport syndrome in at least some individuals.  相似文献   

8.
Phenotypic and genotypic features of Alport syndrome in Chinese children   总被引:10,自引:0,他引:10  
Chinese Alport syndrome (AS) was analyzed in 44 unrelated patients who were screened for mutations in the COL4A5 gene by polymerase chain reaction (PCR)-single-strand conformation polymorphism analysis or PCR direct sequencing in 30 of the 44 patients. The clinical data showed that all patients had hematuria; 25 of 29 male patients (86%) and 9 of 15 female patients (60%) had proteinuria; 11 of 29 male patients (38%) and 1 of 15 female patients (7%) had nephrotic-level proteinuria; 10 of 21 male patients examined (48%) and 1 of 12 female patients examined (8%) had hearing abnormalities. Renal function remained normal despite hearing abnormalities, and ocular lesions occurred in 10%. Among 30 of 44 patients who had a family history of end-stage renal disease (ESRD), 80% (24/30) belonged to X-linked juvenile kindreds, and 20% (6/30) patients to adult kindreds. Of the 44 patients, 14 did not have a family history of ESRD, while 11 of 14 patients diagnosed with X-linked AS did. DNA analysis revealed four missense mutations, two silent mutations, one substitution, and one in-frame deletion. PCR along with Southern hybridization analysis revealed a large deletion of the paired COL4A5 and COL4A6 genes. Chinese AS patients were characterized clinically with hematuria, heavy proteinuria, and more juvenile forms. Mutations in these patients were usually small mutations, while a large deletion involving the 5' part of both COL4A5 and COL4A6 genes was identified.  相似文献   

9.
Alport syndrome is an inherited nephropathy associated with mutations in genes encoding type IV collagen chains present in the glomerular basement membrane. COL4A5 mutations are associated with the major X-linked form of the disease, and COL4A3 and COL4A4 mutations are associated with autosomal recessive and dominant forms (thought to be involved in 15% and 1%–5% of the families, respectively) and benign familial hematuria. Mutation screening of these three large genes is time-consuming and expensive. Here, we carried out a combination of multiplex PCR, amplicon quantification, and next generation sequencing (NGS) analysis of three genes in 101 unrelated patients. We identified 88 mutations and 6 variations of unknown significance on 116 alleles in 83 patients. Two additional indel mutations were found only by secondary Sanger sequencing, but they were easily identified retrospectively with the web-based sequence visualization tool Integrative Genomics Viewer. Altogether, 75 mutations were novel. Sequencing the three genes simultaneously was particularly advantageous as the mode of inheritance could not be determined with certainty in many instances. The proportion of mutations in COL4A3 and COL4A4 was notably high, and the autosomal dominant forms of Alport syndrome appear more frequently than reported previously. Finally, this approach allowed the identification of large COL4A3 and COL4A4 rearrangements not described previously. We conclude that NGS is efficient, reduces screening time and cost, and facilitates the provision of appropriate genetic counseling in Alport syndrome.  相似文献   

10.
BACKGROUND: Alport syndrome is a clinically and genetically heterogeneous nephropathy. The majority of cases are transmitted as an X-linked semidominant condition due to COL4A5 mutations. In this form males are more severely affected than females. Less than 10% of cases are autosomal recessive due to mutation in either COL4A3 or COL4A4. In this rarer form, both males and females are severely affected. Only two cases of autosomal-dominant Alport syndrome have been reported, one due to a COL4A3 mutation and the other due to a COL4A4 mutation. Because of the paucity of the reported families, the natural history of autosomal-dominant Alport syndrome is mostly unknown. METHODS: Four families with likely autosomal-dominant Alport syndrome were investigated. COL4A3 and COL4A4 genes were analyzed by denaturing high-performance liquid chromatography (HPLC). Automated sequencing was performed to identify the underlying mutation. RESULTS: Two families had a mutation in the COL4A4 gene and two in the COL4A3. Accurate clinical evaluation of family members showed interesting results. Affected individuals (22 persons) had a wide range of phenotypes from end-stage renal disease (ESRD) in the fifth decade to a nonprogressive isolated microhematuria. Finally, three heterozygous individuals (90, 22 and 11 years old, respectively) were completely asymptomatic. CONCLUSION: This paper demonstrated that patients affected by autosomal-dominant Alport syndrome have a high clinical variability. Moreover, a reduced penetrance of about 90% (3 of 25) may be considered for the assessment of recurrence risk during genetic counseling of these families.  相似文献   

11.
BACKGROUND/AIM: Alport syndrome is a hereditary glomerulonephritis, X-linked in 85% of the cases. This form is associated with mutations in the COL4A5 gene which encodes the alpha5 chain of type IV collagen. We have performed the mutational analysis of the COL4A5 gene in a Spanish family with X-linked Alport syndrome. METHODS: We have analyzed three polymorphic markers close to the gene to confirm the X chromosome linkage. By means of the PCR technique, we have screened the 51 exons of the gene. RESULTS: The segregation of the alleles from the analyzed markers was in agreement with the X linkage. Direct sequencing of PCR-amplified products has shown a CCT-to-CTT change in exon 25, resulting in substitution of a proline for a leucine at position 619 of the polypeptide chain (nucleotide 2058). CONCLUSIONS: Although proline is considered a nonconserved amino acid, it is essential, upon hydroxylation, in the maintenance of a stable alpha chain triple-helix collagen. Furthermore, the change cosegregates with the disease in all affected members of the family, not being present in 80 control chromosomes. This represents a new mutation in the COL4A5 gene found in the Spanish population.  相似文献   

12.
A large tandem duplication within the COL4A5 gene is responsible for the high prevalence of Alport syndrome in French Polynesia. Background. The prevalence of X-linked Alport syndrome, a progressive inherited nephropathy associated with mutations in the type IV collagen gene COL4A5, is remarkably high in French Polynesia. Methods. A vast clinical, genealogic, and molecular study was undertaken in Polynesia, based on public records, patients' interviews, linkage analysis, and mutation screening. Results and Conclusions. We show that the high frequency of Alport syndrome in this region is due to a founder mutation that occurred onto a common haplotype shared by affected and unaffected individuals, the presence of which precludes indirect molecular diagnosis. We have characterized the mutation as a tandem duplication of 35 COL4A5 exons, resulting in a approximately 65% increase in the length of the collagenous domain of the alpha 5(IV) chain, which is still able to assemble into type IV collagen network as shown by immunofluorescence analysis. That mutation is associated with severe and highly penetrant ocular symptoms and with uniformly thin glomerular basement membrane (GBM) in male adult patients. However, the rate of progression of the renal disease is very variable from one male patient to another, demonstrating the importance of strong modifier factors. Our results suggest that the 20% to 50% of "missing"COL4A5 mutations in X-linked Alport syndrome may be rearrangements similar to that reported here, which was not detectable by sequencing of either individual COL4A5 exons or overlapping cDNA fragments. Finally, we provide the basis for a polymerase chain reaction (PCR) assay that accurately identifies female carriers and allows adequate genetic counseling in this population.  相似文献   

13.
BACKGROUND: Alport syndrome is an inherited disease resulting in kidney failure, hearing loss and ocular abnormalities. Alport syndrome is however often unrecognized, and the aim of this study was to characterize the associated but rarely described peripheral retinopathy and determine whether its demonstration was diagnostically helpful. METHODS: Index cases were diagnosed with Alport syndrome on renal biopsy in themselves or a family member. Inheritance and affected status were determined using microsatellite markers at the COL4A5 and COL4A3/COL4A4 loci, respectively. Participants' eyes were dilated, and examined with direct and indirect ophthalmoscopy, and slit lamp biomicroscopy by an expert ophthalmologist who was unaware of the patients' disease status. RESULTS: Ten males and nine females with X-linked Alport syndrome and seven with autosomal recessive disease were studied. Of the 26 patients, 16 had central retinopathy (62%), and 19 patients had peripheral retinopathy (74%). The peripheral changes occurred in both males and females with X-linked and autosomal recessive Alport syndrome, and were more common when renal failure, hearing loss, lenticonus and the central changes were present, but were also noted in 3 X-linked carriers with normal renal function. CONCLUSIONS: The peripheral retinopathy occurs in X-linked and autosomal recessive Alport syndrome even when the central retinopathy is absent. Careful retinal examination and photography that includes the periphery is a safe and inexpensive method that may help in the diagnosis of Alport syndrome especially in carriers of X-linked disease.  相似文献   

14.
Background: Alport syndrome is a hereditary nephritis that may lead to end-stage renal disease (ERSD) in young adult life and is often associated with sensorineural deafness and/or ocular abnormalities. The majority of families are X-linked due to mutations in the COL4A5 gene at X122. Autosomal forms of the disease are also recognized with recessive disease, having been shown to be due to mutations in the COL4A3 and COL4A4 genes on chromosome 2. Familial benign haematuria has also been mapped to this region in some families.Subjects and methods: We describe a large family with autosomal dominant Alport syndrome in which males and females are equally severely affected and one member with a mild sensorineural deafness reached ESRD aged 35 years. Renal biopsy in four affected patients demonstrated characteristic thickened and split glomerular basement membranes on electron-microscopy. Results: Genetic linkage analysis using markers on chromosome 2q demonstrated co-segregation of the disease with the markers D2S351 and D2S401 with a maximum lod score of 3.4 at zero recombination. Linkage to the COL4A4 gene was confirmed using an intragenic COL4A4 polymorphism. Mutation analysis has revealed a missense Leu36Pro mutation in exon 5 of the adjacent COL4A3 gene in the unaffected mother, which may lead to a more severe phenotype in affected family members carrying this mutation. Conclusion: Mutations in the COL4A3 and COL4A4 cause a spectrum of glomerular basement membrane disease ranging from autosomal recessive Alport syndrome to autosomal dominant Alport syndrome and familial benign haematuria.  相似文献   

15.
Type-IV collagen related diseases   总被引:3,自引:0,他引:3  
Alport syndrome (ATS) is a progressive inherited glomerulonephritis accounting for 1-2% of all patients who start renal replacement therapy, with an estimated gene frequency of approximately 1 in 5000. ATS is a genetically heterogeneous disease, commonly inherited as an X-linked semi-dominant trait, caused by mutations in COL4A5, on the X-chromosome, and only rarely (less than 10% of cases) caused by the COL4A3 or the COL4A4 gene on chromosome 2q. In the X-linked form females are generally less affected than males, microhematuria being the only sign present throughout life, although approximately 30% can progress to end-stage renal disease. It became evident in recent years that mutations in the COL4A3 or the COL4A4 gene can give rise not only to autosomal recessive ATS syndrome, in which males and females are severely affected, but also to an autosomal dominant form, where the clinical progression towards impaired renal function can be very slow and also to benign familial hematuria (BFH) in which renal function is preserved.  相似文献   

16.
Thin basement membrane nephropathy   总被引:17,自引:0,他引:17  
Thin basement membrane nephropathy. Thin basement membrane nephropathy (TBMN) is the most common cause of persistent glomerular bleeding in children and adults, and occurs in at least 1% of the population. Most affected individuals have, in addition to the hematuria, minimal proteinuria, normal renal function, a uniformly thinned glomerular basement membrane (GBM) and a family history of hematuria. Their clinical course is usually benign. However, some adults with TBMN have proteinuria >500 mg/day or renal impairment. This is more likely in hospital-based series of biopsied patients than in the uninvestigated, but affected, family members. The cause of renal impairment in TBMN is usually not known, but may be due to secondary focal segmental glomerulosclerosis (FSGS) or immunoglobulin A (IgA) glomerulonephritis, to misdiagnosed IgA disease or X-linked Alport syndrome, or because of coincidental disease. About 40% families with TBMN have hematuria that segregates with the COL4A3/COL4A4 locus, and many COL4A3 and COL4A4 mutations have now been described. These genes are also affected in autosomal-recessive Alport syndrome, and at least some cases of TBMN represent the carrier state for this condition. Families with TBMN in whom hematuria does not segregate with the COL4A3/COL4A4 locus can be explained by de novo mutations, incomplete penetrance of hematuria, coincidental hematuria in family members without COL4A3 or COL4A4 mutations, and by a novel gene locus for TBMN. A renal biopsy is warranted in TBMN only if there are atypical features, or if IgA disease or X-linked Alport syndrome cannot be excluded clinically. In IgA disease, there is usually no family history of hematuria. X-linked Alport syndrome is much less common than TBMN and can often be identified in family members by its typical clinical features (including retinopathy), a lamellated GBM without the collagen alpha3(IV), alpha4(IV), and alpha5(IV) chains, and by gene linkage studies or the demonstration of a COL4A5 mutation. Technical difficulties in the demonstration and interpretation of COL4A3 and COL4A4 mutations mean that mutation detection is not used routinely in the diagnosis of TBMN.  相似文献   

17.
Mutations in either the COL4A3 or the COL4A4 genes, encoding the alpha3 and alpha4 chains of type IV collagen, are responsible for the autosomal-recessive form of Alport syndrome, a progressive hematuric nephropathy characterized by glomerular basement membrane abnormalities. Reported here are the complete COL4A3 exon-intron structure and a comprehensive screen for mutations of the 52 COL4A3 exons in 41 unrelated patients diagnosed as having autosomal Alport syndrome. This resulted in the identification of 21 mutations that are expected to be causative. Furthermore, it is shown that heterozygous COL4A3 missense mutations, when symptomatic, can be associated with a broad range of phenotypes, from familial benign hematuria to the complete features of Alport syndrome nephropathy.  相似文献   

18.
COL4A3/COL4A4 mutations: From familial hematuria to autosomal-dominant or recessive Alport syndrome. BACKGROUND: Mutations of the type IV collagen COL4A5 gene cause X-linked Alport syndrome (ATS). Mutations of COL4A3 and COL4A4 have been reported both in autosomal-recessive and autosomal-dominant ATS, as well as in benign familial hematuria (BFH). In the latter conditions, however, clinical features are less defined, few mutations have been reported, and other genes and non-genetic factors may be involved. METHODS: We analyzed 36 ATS patients for COL4A3 and COL4A4 mutations by polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) and direct sequencing. Sporadic patients who had tested negative for COL4A5 mutations were included with typical cases of autosomal recessive ATS to secure a better definition of the phenotype spectrum. RESULTS: We identified seven previously undescribed COL4A3 mutations: in two genetic compounds and three heterozygotes, and one in COL4A4. In agreement with the literature, some of the mutations of compound heterozygotes were associated with microhematuria in healthy heterozygous relatives. The mutations of heterozygous patients are likely dominant, since no change was identified in the second allele even by sequencing, and they are predicted to result in shortened or abnormal chains with a possible dominant-negative effect. In addition, both genes showed rare variants of unclear pathogenicity, and common polymorphisms that are shared in part with other populations. CONCLUSIONS: This study extends the mutation spectrum of COL4A3 and COL4A4 genes, and suggests a possible relationship between production of abnormal COL IV chains and dominant expression of a continuous spectrum of phenotypes, from ATS to BFH.  相似文献   

19.
20.
A novel type of hereditary transmission of COL4A5 in a Japanese family with X-linked Alport syndrome was detected through analysis of cDNA sequences and an X-chromosome inactivation assay. A female patient with moderately altered renal function, who was diagnosed with Alport syndrome by renal biopsy, and her mother, who was undergoing maintenance haemodialysis, showed similar tissue-specific expression of a truncated isoform of COL4A5, which was generated by alternative splicing without a splice-site mutation. Expression of the truncated isoform occurred in the renal specimen derived from the patient, but not in specimens from controls. Genomic analysis revealed two point mutations (c.4821 + 121, T>C; c.4822-151_150, ins T) in intron 49 of COL4A5 from the patient. The peripheral blood mononuclear cells of the patient and her mother showed non-random lyonization. While the females showed only renal impairment, an affected male in the same family suffered from severe renal insufficiency, visual defect and hearing disturbances. Hence, we suggest that this type of heredity COL4A5 presents with phenotypic variation in female heterozygous X-linked Alport syndrome patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号