首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intracellular signaling pathways controlling chondrocyte physiology are largely unknown. Here we show that the small GTPases, Rac1 and Cdc42, accelerate the rate of chondrocyte differentiation and apoptosis, thereby antagonizing the activity of RhoA. These results identify Rac1 and Cdc42 pathways as novel regulators of cartilage development. INTRODUCTION: Proliferation, hypertrophic differentiation, and ultimate apoptosis of chondrocytes regulate endochondral bone growth and development, but the intracellular signaling pathways controlling chondrocyte biology are incompletely understood. In this study, we investigated the role of the small GTPases Rac1 and Cdc42 in chondrocytes. MATERIALS AND METHODS: Rac1 and Cdc42 expression during chondrogenic differentiation was assessed by RT-PCR and Western blotting. Effects of Rac1 and Cdc42 on parameters of chondrocyte biology were studied using transient transfections into primary mouse chondrocytes and stable transfections of the chondrogenic cell line ATDC5. Luciferase assays, RT-PCR, cell proliferation, alkaline phosphatases assays, staining procedures, TUNEL assays, and caspase activity assays were performed to study the chondrocyte response to overexpression of Rac1 and Cdc42 proteins. Activation of the p38 pathway was analyzed using Western blotting with phospho-specific antibodies, and mitogen-activated protein (MAP) kinase pathways were inhibited using pharmacological approaches. RESULTS AND CONCLUSIONS: Rac1 and Cdc42 activities are required for maximal activity of the collagen X promoter, a hypertrophic marker, in primary chondrocytes, suggesting essential roles of these GTPases in chondrocyte hypertrophy. Overexpression of Rac1 or Cdc42 in chondrogenic ATDC5 cells results in reductions in cell numbers and marked acceleration of hypertrophic differentiation, thus opposing the effects of the related GTPase RhoA. Rac1 and Cdc42 also induce accelerated chondrocyte apoptosis, as shown by TUNEL and caspase activity assays and changes in cell morphology and actin organization. Rac1 and Cdc42 overexpression results in activation of the p38 MAP kinase pathway in ATDC5 cells, and pharmacological inhibition of p38 signaling blocks the effects of Rac1 and Cdc42 overexpression on hypertrophy and apoptosis. Our results therefore suggest that Rac1 and Cdc42 signaling accelerates progression through the chondrocyte life cycle in a p38-dependent fashion and antagonizes RhoA signaling pathways in chondrocyte proliferation, hypertrophy, and apoptosis.  相似文献   

2.
目的 观察成年大鼠急性脊髓损伤(SCI)后小G蛋白Rho GTPases Rac、Cdc42和Rho的表达变化及Rho-ROK下游底物MLC的过度磷酸化,探讨哺乳动物SCI后轴突再生过程中生长锥易于萎陷的可能机制.方法 成年SD大鼠36只随机分为SCI4、7、14、21d组,对照组和假手术组共6组,每组6只,SCI组制作Allen's脊髓打击模型并按时序取材,Western印迹检测Rac1、Cdc42和Rho A的表达变化以及MLC磷酸化程度变化,GST Pull down assay 检测RhoA活化程度变化.结果 在SCI后,大鼠脊髓挫伤部位Rac1和Cdc42的表达逐步升高并在第7天达到峰值,之后呈现下降趋势;与之形成对比的是RhoA的表达则无明显变化,但Rho的下游信号通道RhoA-ROK作用底物MLC磷酸化程度却逐步升高;RhoA活性测定则显示GTP-RhoA呈逐步增高趋势. 结论成年大鼠SCI后脊髓中枢轴突再生过程中存在Rho GTPases Rac、Cdc42和Rho的失衡性表达,这可能是外周微环境中吸引性和排斥性因素制约失衡的直接后果;Rho的活性持续异常升高可导致MLC磷酸化程度异常升高.这一变化可刺激肌动-肌球蛋白的收缩性,从而导致大鼠SCI后生长锥的萎陷和再生神经突起的回缩.  相似文献   

3.
Dendritic spines mediate most excitatory transmission in the mammalian CNS and have been traditionally considered stable structures. Following the suggestion that spines may 'twitch', it has been recently shown that spines are capable of rapid morphological rearrangements. Because of the role of the small GTPases from the Rho family in controlling neuronal morphogenesis, we investigated the effects of several members of this biochemical signaling pathway in the maintenance of the morphology of extant dendritic spines by combining biolistic transfection of pyramidal neurons in cultured cortical and hippocampal slices with two-photon microscopy. We find a variety of effects on the density and morphology of dendritic spines by expressing either constitutively active or dominant negative forms of several small GTPases of the Rho family, by blocking the entire pathway with Clostridium difficile toxin B or by blocking Rho with C3 transferase. We propose a model where Rac promotes spine formation, while Rho prevents it. We conclude that the small GTPases provide antagonistic control mechanisms of spine maintenance in pyramidal neurons.  相似文献   

4.
Summary Bisphosphonates are nonbiodegradable pyrophosphate analogues that are being used increasingly to inhibit bone resorption in disorders characterized by excessive bone loss. We have previously found that dichloromethylene bisphosphonate (Cl2MBP) inhibits bone resorption through injury to the cells that resorb Cl2MBP-contaminated surfaces. 3-amino-1-hydroxypropylidene-1,1-bisphosphonate (AHPrBP) is a more potent inhibitor of bone resorptionin vivo, and we have attempted to identify a step in the resorptive pathway that accounts for this increased potency. We found that when osteoclasts, isolated from neonatal rat long bones, were incubated on bone slices in the presence of bisphosphonates, AHPrBP was less, rather than more potent as a resorption-inhibitor than Cl2MBP. The greater sensitivity of resorption to AHPrBPin vivo could neither be attributed to an effect of AHPrBP on the ability of osteoblastic cells to stimulate resorption in response to calcium-regulating hormonesin vitro nor to an effect on osteoclast generation: osteoclast formation was unaffected by concentrations of AHPrBP 10-fold higher than those of Cl2MBP which inhibit bone resorption in the bone slice assay. We also found no evidence for impaired osteoclast generationin vivo in AHPrBP-treated rats. These results suggest that the comparisons of potencyin vitro do not include all the factors responsible for determining bisphosphonate potencyin vivo. Because bisphosphonates owe the specificity of their actions to their ability to bind to bone surfaces, we performed experiments using bone slices that had been immersed in bisphosphonates before use. Bone resorption was virtually abolished on bone slices preincubated in 10−3 M AHPrBP. Inhibition was associated with degenerative changes in osteoclasts and a more rapid decrease in the number remaining on the bone surface than occurred with Cl2MBP. The effect was specific for osteoclasts, could be prevented if bone resorption was suppressed by calcitonin, and was not seen in osteoclasts incubated in AHPrBP on plastic coverslips. These observations suggest that AHPrBP inhibits bone resorption through injury to osteoclasts when they solubilize bisphosphonate-contaminated bone. We found that the concentration of AHPrBP used in the preincubation phase could be reduced by an order of magnitude if the volume of the AHPrBP solution was correspondingly increased. This implies that the concentration of bisphosphonate is less relevant to potency comparisons than the density of bisphosphonate on the bone surface. The latter will be strongly influencedin vivo not only by affinity for bone but by the pharmacokinetic and other properties of the compound.  相似文献   

5.
Insulin-like growth factor-I (IGF-I) is an important anabolic growth factor in the maintenance of articular cartilage phenotypic expression. Chondrocyte morphology is also tightly linked to phenotype. The small G-protein Cdc42 plays a key role in regulation of cell morphology and phenotypic expression in several cell types and, we show here, in articular chondrocytes. The purpose of these studies was to investigate possible links between the intracellular signaling pathways of IGF-I and Cdc42 in articular chondrocytes. Treatment of chondrocytes with IGF-I resulted in a rapid and sustained decrease in the activation state (decreased GTP-bound) of Cdc42. Nucleotide exchange and hydrolysis experiments suggest that the decreased activation occurs through increased hydrolysis. Transient expression of dominant-negative Cdc42(T17N) allowed for enhanced expression of normal chondrocyte phenotype as determined by increased mRNA expression of collagen type II (Coll II) with decreased matrix metalloproteinase-3 (MMP-3) expression. The results of these studies suggest a novel link between IGF-I and Cdc42 signaling pathways. Further, an additional mechanism for the regulation of chondrocyte phenotype is defined through the IGF-I induced down-regulation of Cdc42 activation.  相似文献   

6.
Cell migration requires spatiotemporal integration of signals that regulate cytoskeletal dynamics. In response to a migration‐promoting agent, cells begin to polarise and extend protrusions in the direction of migration. These cytoskeletal rearrangements are orchestrated by a variety of proteins, including focal adhesion kinase (FAK) and the Rho family of GTPases. CCN2, also known as connective tissue growth factor, has emerged as a regulator of cell migration but the mechanism by which CCN2 regulates keratinocyte function is not well understood. In this article, we sought to elucidate the basic mechanism of CCN2‐induced cell migration in human keratinocytes. Immunohistochemical staining was used to demonstrate that treatment with CCN2 induces a migratory phenotype through actin disassembly, spreading of lamellipodia and re‐orientation of the Golgi. In vitro assays were used to show that CCN2‐induced cell migration is dependent on FAK, RhoA and Cdc42, but independent of Rac1. CCN2‐treated keratinocytes displayed increased Cdc42 activity and decreased RhoA activity up to 12 hours post‐treatment, with upregulation of p190RhoGAP. An improved understanding of how CCN2 regulates cell migration may establish the foundation for future therapeutics in fibrotic and neoplastic diseases.  相似文献   

7.
The role of Rac1 in osteoclast survival and bone-resorbing activity was examined using adenovirus vector expression systems. Rac1 is critically involved in M-CSF receptor signaling and mediates survival signaling primarily through PI3K/Akt pathways. Rac1 also plays a significant role in bone resorptive activity, probably by regulating the motility of osteoclasts. INTRODUCTION: Rac1 is a member of Rho family small G-proteins, and recent studies have revealed that it mediates anti-apoptotic signals in some types of cells. Rac1 is reported to be required for the cytoskeletal organization and bone-resorbing activity of osteoclasts, but their roles in osteoclast survival and function are not fully elucidated. MATERIALS AND METHODS: We constructed the adenovirus vector carrying cDNA of either the dominant negative Rac1 (Rac1(DN)) or constitutively active Rac1 (Rac1(CA)) gene, and osteoclast-like cells (OCLs) generated in mouse co-culture system were infected with these viruses. To examine the role of Rac1 in osteoclast survival and function, we performed pit formation assays, survival assays, and Western blotting, including an activated-Rac1 pull-down assay using adenovirus-infected OCLs. To further clarify the mechanism of Rac1 regulation in osteoclast survival, some specific inhibitors and adenovirus vectors of signal transduction molecules were used. To quantify membrane movement before and after macrophage colony-stimulating factor (M-CSF) treatment, OCLs expressing either enhanced green fluorescent protein (EGFP) or Rac1(DN) were recorded with a time-lapse video microscope. RESULTS: Adenovirus vector-mediated dominant negative Rac1 (Rac1(DN)) expression significantly reduced pit formation, and promoted their apoptosis. M-CSF rapidly activated Rac1, and the prosurvival effect of M-CSF for OCLs was abrogated by Rac1(DN) overexpression. Constitutively active Rac1 enhanced OCL survival, which was completely suppressed by phosphatidylinositol 3'-kinase (PI3K) inhibitors, whereas a Mek inhibitor had only partial effect. Rac1(DN) also partially blocked the activation of Akt induced by the overexpressing catalytic subunit of PI3K. Using time-lapse video microscopy, we found that Rac1(DN) expression reduced membrane ruffling and the spreading of OCLs in response to M-CSF. CONCLUSIONS: Small guanosine triphosphatase (GTPase) Rac1 is critically involved in M-CSF receptor signaling and mediates survival signaling of osteoclasts primarily by modulating PI3K/Akt pathways. Rac1 also plays a significant role in the bone resorptive activity of cells, probably by regulating the motility of osteoclasts.  相似文献   

8.
Dong  Nan  Meng  Lixia  Xue  Ruqun  Yu  Meng  Zhao  Zhonghua  Liu  Xueguang 《International urology and nephrology》2017,49(8):1489-1506
International Urology and Nephrology - Podocyte injury is a key event in proteinuric kidney disease and eventually glomerular scarring. While adrenomedullin (AM), a potent vasodilatory peptide, has...  相似文献   

9.
Guleria RS  Pan J  Dipette D  Singh US 《Diabetes》2006,55(12):3326-3334
Diabetes is a risk factor for neuronal dysfunction. Impairment in signaling mechanisms that regulate differentiation of neurons is hypothesized to be one of the main causes of neuronal dysfunction. Retinoic acid, a physiologically active retinoid synthesized from vitamin A, regulates neuronal differentiation during embryonic development and is required for maintenance of plasticity in differentiated neurons. To date, little is known about the molecular events underlying hyperglycemia-induced complications in the central nervous system (CNS). Here, we provide evidence, in a diabetes rat model, of hyperglycemia-induced oxidative stress along with apoptotic stress in developing cortical neurons isolated from 16-day-old rat embryos. We also demonstrate impaired retinoic acid signaling that is involved in neuronal differentiation. Retinoic acid-induced neurite outgrowth and expression of neuronal markers were reduced in this model. The activation of small-molecular weight G-protein, Rac1, that mediates these effects was also reduced. Retinoic acid applied at a physiological concentration significantly decreased hyperglycemia-induced oxidative stress and thus supported the antioxidant defense system. These results suggest that diabetes-induced neuronal complications during pregnancy might be due to impaired retinoic acid signaling, and exogenously administered retinoic acid may be useful against CNS complications associated with diabetes.  相似文献   

10.
11.
Fibroblast activation protein(Fap) is a serine protease that degrades denatured type I collagen, α2-antiplasmin and FGF21. Fap is highly expressed in bone marrow stromal cells and functions as an osteogenic suppressor and can be inhibited by the bone growth factor Osteolectin(Oln). Fap is also expressed in synovial fibroblasts and positively correlated with the severity of rheumatoid arthritis(RA). However, whether Fap plays a critical role in osteoarthritis(OA) remains poorly understood. Here, ...  相似文献   

12.
Glucose sensing is essential for the ability of pancreatic beta-cells to produce insulin in sufficient quantities to maintain blood glucose within the normal range. Stress causes the release of adrenergic hormones that increase circulating glucose by promoting glucose production and inhibiting insulin release. We have shown that extracellular signal-regulated kinases 1 and 2 (ERK1/2) are responsive to glucose in pancreatic beta-cells and that glucose activates ERK1/2 by mechanisms independent of insulin. Here we show that glucose-induced activation of ERK1/2 is inhibited by epinephrine through the alpha2-adrenergic receptor. Epinephrine and the selective alpha2-adrenergic agonist UK14304 reduced insulin secretion and glucose-stimulated ERK1/2 activation in a pertussis toxin-sensitive manner, implicating the alpha subunit of a Gi family member. Alpha2-adrenergic agonists also reduced stimulation of ERK1/2 by glucagon-like peptide 1 and KCl, but not by phorbol ester or nerve growth factor. Our findings suggest that alpha2-adrenergic agonists act via a Gi family member on early steps in ERK1/2 activation, supporting the idea that ERK1/2 are regulated in a manner that reflects insulin demand.  相似文献   

13.
MicroRNA-155(miR-155) and protein prenylation have been reported to participate in acute graft-versus-host disease (aGVHD) through modulating T lymphocyte differentiation, however the mechanism remains elusive. In this study, we found that the expression of miR-155 and protein prenyltransferases in peripheral blood T lymphocytes of aGVHD mice was significantly increased. Suppression of miR-155 by antagomir-155 could remarkably reduce prenyltransferases mRNA and protein expression in T lymphocytes of aGVHD mice. Conversely, prenyltransferase inhibitors significantly reduced the level of miR-155. Inhibition of this feedback loop of miR-155 and protein prenylation in aGVHD mice led to improved survival and lower aGVHD histopathology scores and significantly induced T cell deficient differentiation towards T helper 17 (Th17) cells and titled differentiation towards CD4+CD25hi regulatory T (Treg) cells. Furthermore, the immunoregulatory effects and protection from aGVHD of prenyltransferase inhibitors could be reversed by the addition of miR-155. The dual treatment of prenylation inhibitors and antagomir-155 showed synergistic effects on T polarization and protection from aGVHD. Consistent with the in vivo changes, inhibition of this feedback loop of miR-155 and protein prenylation affected Th17 and Treg cell polarization in vitro. Our data suggest that miR-155 and protein prenylation may constitute a feedback loop that amplifies immune and inflammatory responses in subjects with aGVHD, and they may serve as potential targets for aGVHD prophylaxis and treatment.  相似文献   

14.
OBJECTIVES: Patients undergoing cardiopulmonary bypass frequently manifest generalized systemic inflammation and occasionally manifest serious multiorgan failure. Inflammatory responses of bypass are triggered by contact of blood with artificial surfaces of the bypass circuits, surgical trauma, and ischemia-reperfusion injury. We studied the effects of specific inhibition of the alternative complement cascade by using an anti-factor D monoclonal antibody (166-32) in extracorporeal circulation of human whole blood used as a simulated model of cardiopulmonary bypass. METHODS: Five healthy blood donors were used in the study. Monoclonal antibody 166-32 was added to freshly collected, heparinized human blood recirculated in a pediatric cardiopulmonary bypass circuit at a final concentration of 18 microg/mL. An irrelevant monoclonal antibody was used as a negative control with the same donor blood in a parallel bypass circuit on the same day. Blood samples were collected at different time points during recirculation for measurement of activation of complement, neutrophils, and platelets by immunofluorocytometric methods and enzyme-linked immunosorbent assays. RESULTS: Monoclonal antibody 166-32 inhibited the alternative complement activation and the production of Bb, C3a, sC5b-9, and C5a. Upregulation of CD11b on neutrophils and CD62P on platelets was also significantly inhibited by monoclonal antibody 166-32. This is consistent with the inhibition of the release of neutrophil-specific myeloperoxidase and elastase and platelet thrombospondin. The production of proinflammatory cytokine interleukin 8 was also suppressed by the antibody. CONCLUSIONS: The alternative complement cascade is predominantly activated during extracorporeal circulation. Anti-factor D monoclonal antibody 166-32 is effective in inhibiting the activation of complement, neutrophils, and platelets. Inhibition of the alternative complement pathway by targeting factor D could be useful in reducing systemic inflammation in patients undergoing cardiopulmonary bypass.  相似文献   

15.
16.
17.
18.
19.
BACKGROUND: Polymorphonuclear leukocytes (neutrophils, PMNs) have been shown to mediate vascular and tissue injury, leading to so-called systemic inflammatory response syndrome. The authors evaluated the effect of volatile anesthetics on neutrophil adhesion to human endothelial cells, focusing on whether the inhibitory effect observed is linked to an alteration in the function of endothelial cells or neutrophils. METHODS: The adhesion of human PMNs was quantified using cultured human umbilical vein endothelial cells (HUVECs). The increase in the number of adhering PMNs was assessed when HUVECs (with 1 mM hydrogen peroxide), PMNs (with 10 nM N-formyl-methionyl-leucyl-phenylalanine), or both were prestimulated. To determine the influence of volatile anesthetics on the adhesion of PMNs, the experiments were performed in the absence or presence of 0.5, 1, and 2 minimum alveolar concentration halothane, isoflurane, or sevoflurane, whereby HUVECs, PMNs, or both were pretreated with gas. RESULTS: Activation of HUVECs with hydrogen peroxide or stimulation of PMNs with N-formyl-methionyl-leucyl-phenylalanine resulted in a 2.5-fold increase in PMN adhesion. Preincubation of PMNs, separately, with halothane, isoflurane, or sevoflurane, respectively, abolished enhanced neutrophil adhesion to hydrogen peroxide-activated HUVECs and adhesion of PMNs prestimulated with N-formyl-methionyl-leucyl-phenylalanine to unstimulated HUVECs (maximal effect at 1 minimum alveolar concentration). No decrease in adhesion was detected when only HUVECs were pretreated with volatile anesthetics. Additional exposure of HUVECs and PMNs to volatile anesthetics had no inhibitory effect on adhesion greater than that seen when only PMNs were treated. Appropriately, the volatile anesthetics abolished the upward regulation of the adhesion molecule CD11b on PMNs (as evaluated at 1 minimum alveolar concentration each), whereas 1 minimum alveolar concentration halothane failed to affect the expression of P-selectin, an adhesion molecule on endothelial cells. CONCLUSIONS: This study indicates that halothane, isoflurane, and sevoflurane inhibit neutrophil adhesion to human endothelial cells at concentrations relevant to anesthesia in a static system. The effects appear to be mediated by inhibition of PMN activation; that is, by attenuating the upward regulation of neutrophil CD11b.  相似文献   

20.
Bisphosphonates are the important class of antiresorptive drugs used in the treatment of metabolic bone diseases. Although their molecular mechanism of action has not been fully elucidated, recent studies have shown that the nitrogen-containing bisphosphonates can inhibit protein prenylation in macrophages in vitro. In this study, we show that the nitrogen-containing bisphosphonates risedronate, zoledronate, ibandronate, alendronate, and pamidronate (but not the non nitrogen-containing bisphosphonates clodronate, etidronate, and tiludronate) prevent the incorporation of [14C]mevalonate into prenylated (farnesylated and geranylgeranylated) proteins in purified rabbit osteoclasts. The inhibitory effect of nitrogen-containing bisphosphonates on bone resorption is likely to result largely from the loss of geranylgeranylated proteins rather than loss of farnesylated proteins in osteoclasts, because concentrations of GGTI-298 (a specific inhibitor of geranylgeranyl transferase I) that inhibited protein geranylgeranylation in purified rabbit osteoclasts prevented osteoclast formation in murine bone marrow cultures, disrupted the osteoclast cytoskeleton, inhibited bone resorption, and induced apoptosis in isolated chick and rabbit osteoclasts in vitro. By contrast, concentrations of FTI-277 (a specific inhibitor of farnesyl transferase) that prevented protein farnesylation in purified rabbit osteoclasts had little effect on osteoclast morphology or apoptosis and did not inhibit bone resorption. These results therefore show the molecular mechanism of action of nitrogen-containing bisphosphonate drugs in osteoclasts and highlight the fundamental importance of geranylgeranylated proteins in osteoclast formation and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号