首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine whether the difficulty of initiating volitional movements in Parkinson's disease is primarily due to impaired termination of preceding movement/posture or to impaired initiation of new movement, patients with Parkinson's disease and age-matched controls were first asked to visually fixate a stationary spot and simultaneously align wrist position accurately with it. They were then requested to make rapid movements of eyes and wrist to a test stimulus presented in the peripheral visual field. We analyzed latencies of ocular and manual movements to the test stimulus in two conditions; in the overlap task the stationary spot remained on during illumination of the test stimulus requiring subjects to terminate fixation and wrist positioning themselves to initiate new movements. In the gap task, the stationary spot was turned off 200 ms before illuminating the test stimulus. Latencies of ocular and manual movements were prolonged in the overlap task than those in the gap task. Effects of fixation/wrist positioning on the latency of new movement were evaluated by the difference in latencies between the overlap and gap tasks normalized by the latency difference of the controls. These ratios increased exponentially as Parkinson's stage increased, suggesting the latency prolongation in patients with stage III and IV Parkinson's disease under the overlap condition primarily reflected the contribution of difficulty to terminate existing fixation/wrist positioning.  相似文献   

2.
In real life we produce vertical saccades at different distances and eccentricities, and while our fixation is more or less actively engaged. The goal of this study is to examine vertical saccades in aged and young subjects, taking into consideration all these parameters. Eleven adults (20–28 years) and 11 aged subjects (63–83 years) were recruited. We used LED targets at 7.5° or 15°, up or down in four conditions: gap and overlap tasks, each done at two distances—at near (40 cm) and at far (150 cm). In the gap task fixation target extinguishes prior to target onset, while in the overlap condition it stays on after target onset; consequently, visual attention and fixation are employed differently in the two tasks. Eye movements were recorded with the Chronos video eye tracker. Results showed that vertical saccades were longer for aged subjects than for young adults under almost all conditions. For both aged and young subjects, latencies were shorter under the gap than under the overlap task. Latencies for eccentric targets at 15° were significantly longer than those at 7.5° but for aged subjects only; this effect was more pronounced for upward saccades under the overlap condition. Express type of latencies (80–120 ms) occurred frequently in the gap task and at similar rates for young adults (16%) and aged subjects (12%); in the overlap task express latencies were scarce in young adults (0.4%) and aged subjects (1.8%). Age deteriorates the ability to trigger regular volitional saccades but not the ability to produce express type of saccades. Latency increase with aging is attributed to the degeneration of central areas, e.g. oculomotor cortical areas involved in the initiation of vertical saccades.Grant/financial support: European Union (QLK6-CT-2002-00151: EUROKINESIS) and CNRS/CTI, Handicap contract CR:N.  相似文献   

3.
Saccadic eye movements to visual, auditory, and bimodal targets were measured in four adult cats. Bimodal targets were visual and auditory stimuli presented simultaneously at the same location. Three behavioral tasks were used: a fixation task and two saccadic tracking tasks (gap and overlap task). In the fixation task, a sensory stimulus was presented at a randomly selected location, and the saccade to fixate that stimulus was measured. In the gap and overlap tasks, a second target (hereafter called the saccade target) was presented after the cat had fixated the first target. In the gap task, the fixation target was switched off before the saccade target was turned on; in the overlap task, the saccade target was presented before the fixation target was switched off. All tasks required the cats to redirect their gaze toward the target (within a specified degree of accuracy) within 500 ms of target onset, and in all tasks target positions were varied randomly over five possible locations along the horizontal meridian within the cat's oculomotor range. In the gap task, a significantly greater proportion of saccadic reaction times (SRTs) were less than 125 ms, and mean SRTs were significantly shorter than in the fixation task. With visual targets, saccade latencies were significantly shorter in the gap task than in the overlap task, while, with bimodal targets, saccade latencies were similar in the gap and overlap tasks. On the fixation task, SRTs to auditory targets were longer than those to either visual or bimodal targets, but on the gap task, SRTs to auditory targets were shorter than those to visual or bimodal targets. Thus, SRTs reflected an interaction between target modality and task. Because target locations were unpredictable, these results demonstrate that cats, as well as primates, can produce very short latency goal-directed saccades.  相似文献   

4.
The role of fixation and the subjects' response preparedness in producing express saccades were explored in seven human subjects. The occurrence frequencies of the express saccades were compared in the overlap (continuous presentation of fixation point), gap (fixation point offset 0-400 ms prior to target onset) and no-fixation tasks under the conventional and self-initiation paradigms. In the latter paradigm, the subjects, when ready, touched a sensor in order to ignite the target lamp with a delay time of 0-400 ms (target onset delay time). Therefore, the subjects' response preparedness might be expected to be higher than that in the normal paradigm and equated in each subject at the time when the subjects touched a sensor regardless of the paradigms. Although express saccades were produced neither in the normal overlap nor in the normal no-fixation tasks, they could be produced at the rate of 24 and 48% in the overlap and no-fixation tasks under the self-initiation paradigm, respectively. The highest occurrence frequency of express saccades was obtained when the gap paradigm was combined with the self-initiation paradigm with a delay time of 100 ms (62%). The value was higher by 20% than in the normal gap task. At a target onset delay time of 0 ms under the self-initiation paradigm, the occurrence frequency of express saccades was higher in the overlap task than in the gap task. These results suggest that the subjects' response preparedness has a potentiality to produce express saccades without fixation point offset and that fixation point offset at the same time of the target stimulus onset has an interference, rather than facilitatory, influence on the generation of express saccades.  相似文献   

5.
Triggering of saccades depends on the task: in the gap task, fixation point switches off and target appears after a gap period; in the overlap task, target appears while fixation point is still on. Saccade latencies are shorter in the gap task, due to fixation disengagement and advanced movement preparation during the gap. The two modes of initiation are also hypothesized to be subtended by different cortical-subcortical circuits. This study tested whether interleaving the two tasks modifies latencies, due to switching between different modes of triggering. Two groups of healthy participants (21–29 vs. 39–55 years) made horizontal and vertical saccades in gap, overlap, and mixed tasks; saccades were recorded with the Eyelink. Both groups showed shorter latencies in the gap task, i.e. a robust gap effect and systematic differences between directions. For young adults, interleaving tasks made the latencies shorter or longer depending on direction, while for middle-age adults, latencies became longer for all directions. Our observations can be explained in the context of models such as that of Brown et al. (Neural Netw 17:471–510, 2004), which proposed that different combinations of frontal eye field (FEF) layers, interacting with cortico-subcortical areas, control saccade triggering in gap and overlap trials. Moreover, we suggest that in early adulthood, the FEF is functioning optimally; frequent changes of activity in the FEF can be beneficial, leading to shorter latencies, at least for some directions. However, for middle-age adults, frequent changes of activity of a less optimally functioning FEF can be time consuming. Studying the alternation of gap and overlap tasks provides a fine tool to explore development, aging and disease. M. Vernet and Z. Kapoula contributed equally to this work.  相似文献   

6.
The latency of eye movements is influenced by the fixation task; when the fixation stimulus is switched off before the target presentation (gap paradigm) the latency becomes short and express movements occur. In contrast, when the fixation stimulus remains on when the target appears (overlap paradigm), eye movement latency is longer. Several previous studies have shown increased rates of express saccades in children; however the presence of an express type of latency for vergence and combined movements in children has never been explored. The present study examines the effects of the gap and the overlap paradigms on horizontal saccades at far (150 cm) and at close (20 cm) viewing distances, on vergence along the median plane, and on saccades combined with convergence or divergence in 15 normal seven-year-old children. The results show that the gap paradigm produced shorter latency for all eye movements than the overlap paradigm, but the difference was only significant for saccades at close viewing distances, for divergence (pure and combined), and for saccades combined with vergence. The gap paradigm produced significantly higher rates of express latencies for saccades at close viewing distances, for divergence, and for saccades combined with divergence; in contrast, the frequencies of express latencies for saccades at far viewing distances and for convergence (pure or combined) were similar in the gap and the overlap paradigms. Interestingly, the rate of anticipatory latencies (<80 ms) was particularly high for divergence in the gap paradigm. Our collective findings suggest that the initiation of saccades at close viewing distances and of divergence is more reflexive, particularly in the gap paradigm. The finding of frequent anticipatory divergence that occurs at similar rates for seven-year-old children (this study) and for adults (Coubard et al., 2004, Exp Brain Res 154:368–381) indicates that predictive initiation of divergence is dominant.  相似文献   

7.
Saccade latencies are significantly reduced by extinguishing a foveal fixation stimulus before the appearance of a saccade target. It has been shown recently that this fixation offset effect (FOE) can be modulated by varying target probability. Cortico-collicular top-down effects have been assumed to mediate this strategic FOE modulation. Here, we have investigated strategic FOE modulation in 14 healthy human subjects performing gap and warning tasks. In the former task, the central fixation point was extinguished 200 ms before target onset. In the latter task, the central fixation point changed its colour 200 ms before target onset, but remained illuminated until the target appeared. Target probability was varied block-wise between 25 and 75%. In both tasks, mean latencies decreased with increasing target probability. However, in contrast with what can be expected from preceding studies, we found no differential modulation of mean latencies by target probability between tasks. Instead, we observed differential probability-dependent changes in latency distributions. In the gap task, discrete changes of saccade latencies were found, with a probability-dependent change in frequency of express and regular latencies. By contrast, in the warning task a shift of the entire latency distribution towards longer latencies with low target probability was found. We conclude that strategic modulation of saccade latencies by target probability may be mediated by two distinct neural mechanisms. Selection of either mechanism seems to depend critically on activation of the fixation system.  相似文献   

8.
Temporal gaps between the offset of a central fixation stimulus and the onset of an eccentric target typically reduce saccade latencies (saccadic gap effect). Here, we test whether temporal gaps also affect perceptual performance in peripheral vision. In Experiment 1, subjects executed saccades to briefly presented peripheral target letters and reported letter identity afterwards. A central fixation stimulus either remained visible throughout the trial (overlap) or disappeared 200 ms before letter onset (gap). Experiment 2 tested perceptual performance without saccade execution, whereas Experiment 3 tested saccade execution without perceptual demands. Peripheral letter perception performance was enhanced in gap as compared to overlap conditions (perceptual gap effect) irrespective of concurrent oculomotor demands. Furthermore, the saccadic gap effect was modulated by concurrent perceptual demands. Experiment 4 ruled out a general warning explanation of the perceptual gap effect. These findings extend recent theories assuming a strong coupling between the preparation of goal-directed saccades and shifts of visual attention from the spatial to the temporal domain.  相似文献   

9.
While Parkinson's disease (PD) is associated with motor slowing, less attention has been paid to variability in performance on motor and cognitive tasks. To examine reaction time latencies and intraindividual variability in untreated patients with PD compared to healthy controls. Twenty-nine (19 men/10 women) patients with untreated PD and 16 controls (8 men/8 women) were examined using measures of simple reaction time (SRT) and choice reaction time (CRT) in addition to cognitive measures of executive function (Trail Making Test; adaptive digit ordering). Latencies and intraindividual variability were compared between groups. Partial correlation coefficients, adjusting for age, sex and education were used to examine the relationship between RT measures and motor or cognitive measures. Patients and controls did not differ with respect to age or sex distribution. Education and cognitive status differed between groups, but no subject was demented or clinically depressed. After adjusting for age, sex and education, significant group differences were found in latencies (2-choice RT and 8-choice RT) and intraindividual variability scores (all CRT conditions). Latencies did not differ significantly after adjusting for finger tapping rate. In the PD group neither the motor nor the executive measures correlated significantly with any of the reaction time measures. We conclude that CRT intraindividual variability and latencies are increased in untreated PD.  相似文献   

10.
Reaction times of the eye and the hand of the monkey in a visual reach task   总被引:1,自引:0,他引:1  
Two monkeys were trained to execute saccadic eye movements and reach movements with the hand from a central fixation point to a peripheral target. Reaction times for both movements were compared on a trial-by-trial basis. If the fixation point was extinguished before the target appeared (gap condition), extremely short latency saccades (85 ms) (express saccades) were obtained, that were followed by short latency reach movements (250 ms), but there was no correlation between them on a trial-by-trial basis. If the fixation point remained visible (overlap condition), very short (100 ms) and rather long (220 ms) latency saccades were observed. Long saccadic latencies correlated strongly with the reach reaction times. Short latency saccades were followed by reach movements of reaction times longer than those observed after express saccades in the gap condition; there was no correlation between them. All reaction times varied systematically with practice.  相似文献   

11.
Horizontal saccadic reaction times (SRTs) have been extensively studied over the past 3 decades, concentrating on such topics as the gap effect, express saccades, training effects, and the role of fixation and attention. This study investigates some of these topics with regard to vertical saccades. The reaction times of vertical saccades of 13 subjects were measured using the gap and the overlap paradigms in the prosaccade task (saccade to the stimulus) and the antisaccade task (saccade in the direction opposite to the stimulus). In the gap paradigm, the initial fixation point (FP) was extinguished 200 ms before stimulus onset, while, in the overlap paradigm, the FP remained on during stimulus presentation. With the prosaccade overlap task, it was found that most subjects (10/13) — whether they were previously trained making horizontal saccades or naive — had significantly faster upward saccades compared with their downward saccades. One subject was faster in the downward direction and two were symmetrical. The introduction of the gap reduced the reaction times of the prosaccades, and express saccades were obtained in some naive and most trained subjects. This gap effect was larger for saccades made to the downward target. The strength of the updown asymmetry was more pronounced in the overlap as compared to the gap paradigm. With the antisaccade task, up-down asymmetries were much reduced. Express antisaccades were absent even with the gap paradigm, but reaction times were reduced as compared to the antisaccade overlap paradigm. There was a slight tendency for a larger gap effect of downward saccades. All subjects produced a certain number of erratic prosaccades in the antitaks, more with the gap than with the overlap paradigm. There was a significantly larger gap effect for the erratic prosaccades made to the downward, as compared to the upward, target, due to increased downward SRTs in the overlap paradigm. Three subjects trained in both the horizontal and the vertical direction showed faster SRTs and more express saccades in the horizontal directions as compared to the vertical. It is concluded that different parts of the visual field are differently organized with both directional and nondirectional components in saccade preparation.  相似文献   

12.
The goal of the study was to examine the effect of different types of eye movements on postural stability. Ten healthy young adults (25 ± 3 years) participated in the study. Postural control was measured by the TechnoConcept© platform and recorded in Standard Romberg and Tandem Romberg conditions while participants performed five oculomotor tasks: two fixation tasks (central fixation cross, without and with distractors), two prosaccade tasks toward peripheral targets displayed 4° to the left or to the right of the fixation cross (reactive saccades induced by a gap 0 ms paradigm and voluntary saccades induced by an overlap 600 ms paradigm) and one antisaccade task (voluntary saccade made in the opposite direction of the visual target). The surface, the length, and the mean speed of the center of pressure were analyzed. We found that saccadic eye movements improved postural stability with respect to the fixation tasks. Furthermore, antisaccades were found to decrease postural stability compared to prosaccades (reactive as well as voluntary saccades). This result is in line with the U-shaped nonlinear model described by Lacour et al. (Neurophysiol Clin 38:411–421, 2008), showing that a secondary task performed during a postural task could increase (prosaccade task) or decrease (antisacade task) postural stability depending on its complexity. We suggest that the different degree of attentional resources needed for performing prosaccade or antisaccade tasks are, most likely, responsible for the different effect on postural control.  相似文献   

13.
The gap effect refers to the finding that saccadic latencies are typically reduced when a fixation point is removed prior to the appearance of a peripheral target. This reduction in saccadic reaction time (SacRT) is thought to be due to a general warning effect and an oculomotor specific fixation offset that occur when the fixation point is removed. In order to estimate the contribution of each of these effects to the overall gap effect, this paper introduces a new manipulation, the partial-gap trial, where the fixation point undergoes a change in size prior to the presentation of the target. The partial-gap trial is presumed to provide the visual warning effect of the fixation offset (i.e. similar to that in a gap trial) but does not provide the fixation offset effect (FOE). When the fixation point was abruptly reduced in size before the presentation of the target, the estimated decrease in SacRT due to the visual warning effect was 5-7% and did not differ in the presence or absence of an auditory warning signal. It was found that auditory warning effect and the FOE interacted in reducing SacRTs. Additionally, when the fixation point was abruptly increased in size before the presentation of the target, SacRTs were slower than when the fixation point did not change in size and remained present for the entire trial (i.e. an overlap trial). We conclude that this new partial-gap paradigm is a useful method for researchers wishing to separately examine FOE and visual warning effects.  相似文献   

14.
Fixation and saccade control in an express-saccade maker   总被引:1,自引:0,他引:1  
In express-saccade makers a large incidence of express saccades (latencies around 100 ms) is paralleled by a reduced ability to suppress saccade generation when required. Such a behavior occurs frequently in dyslexies. We studied the latencies and the metrical properties of saccades in the very rare case of an adult, nondyslexic express-saccade maker (male, age 29 years). The subject produced 65–95% express saccades in the gap (fixation point removed 200 ms before target onset) as well as in the overlap (fixation point not removed) paradigm, which qualified the subject as the most clear case of an express-saccade maker found so far. The number of express saccades increased rather than decreased when fixation foreperiod, gap duration, and target location were randomized from trial to trial as compared to when they remained constant. In the memory-guided saccade and in the antisaccade paradigms in which immediate saccade execution to a visual target had to be suppressed, the subject often reacted to the target with express saccades in an involuntary way. The amplitudes of express saccades were — in some conditions — found to progressively decrease with increasing latency, giving rise to amplitude transition functions. The present findings disprove the notion that express saccades are generated based on the prediction of the time and location of target appearance and support the notion that they are the result of an optomotor reflex. It is argued that the operation of the reflex is gated by a separate fixation system. Express-saccade makers are described as subjects with a dysfunction of the fixation system. Recent neurophysiological findings suggest that the subject studied in the present study has a selective dysfunction of the fixation system at the level of the superior colliculus.  相似文献   

15.
Attention-deficit hyperactivity disorder (ADHD) is characterized by the overt symptoms of impulsiveness, hyperactivity, and inattention. A frontostriatal pathophysiology has been hypothesized to produce these symptoms and lead to reduced ability to inhibit unnecessary or inappropriate behavioral responses. Oculomotor tasks can be designed to probe the ability of subjects to generate or inhibit reflexive and voluntary responses. Because regions of the frontal cortex and basal ganglia have been identified in the control of voluntary responses and saccadic suppression, we hypothesized that children and adults diagnosed with ADHD may have specific difficulties in oculomotor tasks requiring the suppression of reflexive or unwanted saccadic eye movements. To test this hypothesis, we measured eye movement performance in pro- and anti-saccade tasks of 114 ADHD and 180 control participants ranging in age from 6 to 59 yr. In the pro-saccade task, participants were instructed to look from a central fixation point toward an eccentric visual target. In the anti-saccade task, stimulus presentation was identical, but participants were instructed to suppress the saccade to the stimulus and instead look from the central fixation point to the side opposite the target. The state of fixation was manipulated by presenting the target either when the central fixation point was illuminated (overlap condition) or at some time after it disappeared (gap condition). In the pro-saccade task, ADHD participants had longer reaction times, greater intra-subject variance, and their saccades had reduced peak velocities and increased durations. In the anti-saccade task, ADHD participants had greater difficulty suppressing reflexive pro-saccades toward the eccentric target, increased reaction times for correct anti-saccades, and greater intra-subject variance. In a third task requiring prolonged fixation, ADHD participants generated more intrusive saccades during periods when they were required to maintain steady fixation. The results suggest that ADHD participants have reduced ability to suppress unwanted saccades and control their fixation behavior voluntarily, a finding that is consistent with a fronto-striatal pathophysiology. The findings are discussed in the context of recent neurophysiological data from nonhuman primates that have identified important control signals for saccade suppression that emanate from frontostriatal circuits.  相似文献   

16.
Subjects were required to make a saccade to a target appearing randomly 4° to the left or right of the current fixation position (1280 trials per experiment). Location cues were used to direct visual attention and start saccade preparation to one of the two locations before target onset. When the cue indicated the target location (valid trials), the generation of express saccades (visually guided saccades with latencies around 100 ms) was strongly facilitated. When the opposite location was cued (invalid trials), express saccades were abolished and replaced by a population of mainly fast-regular saccades (latencies around 150 ms). This was found with a peripheral cue independently of whether the fixation point was removed before target onset (gap condition; experiment 1) or remained on throughout the trial (overlap condition; experiment 2). The same pattern also was observed with a central cue that did not involve any visual stimulation at a peripheral location (experiment 3). In the case where the primary saccade was executed in response to the cue and the target appeared at the opposite location, continuous amplitude transition functions were observed: starting at about 60–70 ms from target onset onward, the amplitude of the cue-elicited saccades continuously decreased from 4° to values below 1°. The results are explained by a fixation-gating model, according to which the antagonism between fixation and saccade activity gives rise to multimodal distributions of saccade latencies. It is argued that allocation of visual attention and saccade preparation to one location entails a successive disengagement of the fixation system controlling saccade preparation within the hemifield to which the saccade is prepared and a partial engagement of the opposite fixation system.  相似文献   

17.
To examine the neural correlates of contextually differing control mechanisms in saccade initiation, we studied 18 subjects who performed two saccade paradigms in a pseudo-random order, while their eye movements were recorded in the MRI scanner (1.5 T). In the gap task the fixation point was extinguished 200 ms before target onset, and in the overlap task the fixation point vanished 500 ms after target onset. Subjects were asked to maintain stable fixation in the fixation period and to quickly saccade to peripherally presented targets. Inter-individual activation differences were assessed using regression analyses at the second level, with mean saccadic reaction time (SRT) of subjects as a covariate. To identify brain regions varying with trial-by-trial changes in SRTs, we included SRTs as a parametric modulation regressor in the general linear model. All analyses were regions of interest based and were performed separately for the gap and overlap conditions. For the gap paradigm, we did not obtain activation in regions previously shown to be involved in preparatory processes with much longer gap periods. Interestingly, both inter- and intra-individual variability analyses revealed a positive correlation of activation in frontal and parietal eye-movement regions with SRTs, indicating that slower saccade performance is possibly associated with higher cortical control. For the overlap paradigm, the trial-by-trial variability analysis revealed a positive correlation of activation in the right opercular inferior frontal gyrus with SRTs, possibly linked to fixation-related processes that have to be overcome to perform a speeded saccade in presence of a fixation point.  相似文献   

18.
The Auditory Brainstem Response (ABR) was recorded from fetal sheep in utero between gestational ages of 111 days and 136 days (Normal gestation is 145 days). The ABR was detected at 111 days gestation (dGA) and morphology of the waveform improved rapidly from 116 to 123 dGA. At 123 dGA, the four vertex-positive peaks were similar to those observed in adult ewes. Thresholds of the ABR to clicks and tone bursts improved rapidly between 111 and 123 dGA. From 123 to 136 dGA, ABR thresholds continued to improve, but at a much slower rate. Latencies for the peaks also decreased during development from 111 to 136 days, with latencies for Waves III and IV showing a greater decrease than latencies for Waves I and II. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
To explore visual space, we make saccades, vergence, and, most frequently, combined saccade–vergence eye movements. The initiation of saccades is well studied, while that of vergence is less explored. Saccade latency is influenced by the fixation task: when the target appears simultaneously with the offset of the fixation point, latencies tend to be regular, whereas the introduction of a gap period before target onset causes the emergence of express latencies (80- to 120-ms). This study examines in ten normal adults whether the gap paradigm has a similar effect on the latency of vergence and combined eye movements. The second goal is to identify contextual factors that favor the emergence of short latencies, by comparing a condition in which gap and simultaneous trials were performed in separate blocks (pure blocks) with a condition in which the two types of trials were interleaved randomly (mixed blocks). The results are: (1) the gap paradigm reduced similarly (by approximately –30 ms) the mean latency of saccades, convergence, divergence, and both the saccadic and vergence components of combined eye movements; (2) the gap paradigm was responsible for the emergence of 80– to 120-ms latencies for saccades and divergence (pure or combined), but rarely for convergence; (3) inspection of the latency distributions showed that such short latencies formed a clearly distinct population, different from anticipatory responses or regular latencies, for saccades (pure or combined) but not for pure vergence; importantly, distinct express latencies were found also for the convergence and divergence components of combined eye movements; (4) no difference was found for the group of subjects between pure and mixed blocks, but the latter yielded shorter latencies for some subjects, suggesting an idiosyncratic phenomenon. We suggest that distinct express latencies are specific to saccades and could correspond to a specific mode of saccade initiation. Interestingly, the express mode of triggering can be transferred to the vergence component in the ecological condition in which saccade is combined with vergence.  相似文献   

20.
Indirect evidence from human and monkey investigations supports the idea that impaired frontal tasks in Parkinson's disease (PD) may result from striato-frontal disruption caused by dopamine (DA) denervation of the caudate nucleus. To directly investigate this hypothesis, we used PET with 11C-S-Nomifensine (11C-S-NMF), a sensitive marker of striatal DA denervation, in 10 non-demented PD patients in whom two frontal executive tests, the object alternation (OA) and the conditional associative learning (CAL) tasks, thought to reflect mainly set-shifting/inhibition and planning, respectively, were given. In addition, the central executive function of verbal working memory was assessed with the Brown Peterson paradigm (BPP). We found a highly significant correlation between right caudate 11C-S-NMF specific binding and OA performance, less significant and reverse-direction correlations between CAL performance and putamen 11C-S-NMF binding, and no significant correlation with BPP performance. Thus, caudate DA denervation may subtend poor set-shifting/inhibition process in PD. Our results also point to distinct and complex relationships between striatal DA and specific frontal tasks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号