首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The effect of exogenous GM1 ganglioside on the 5,7-dihydroxytryptamine (5,7-HT; a selective serotonin neurotoxin) induced alteration of the postnatal development of central 5-hydroxytryptamine (5-HT; serotonin) neurons has been investigated using neuro-chemical and immunocytochemical techniques. Neonatal 5,7-HT (50 mg/kg s.c.) treatment is known to lead to a marked and a permanent degeneration of distant 5-HT nerve terminal projections (e.g. in cerebral cortex, hippocampus and spinal cord), while projections close to the 5-HT perikarya in the mesencephalon and pons-medulla increase their nerve density. These regional alterations are reflected by decreases and increases, respectively, of endogenous 5-HT, [3H]5-HT uptake in vitro and number of 5-HT nerve terminals demonstrated by immunocytochemistry. Treatment of newborn rats with GM1 (4 X 30 mg/kg s.c.; 24 h interval) had no significant effect on the postnatal development of 5-HT neurons. GM1 administration had furthermore no effect on the 5,7-HT induced alteration of the regional 5-HT levels and [3H]5-HT uptake in the cerebral cortex acutely, indicating that GM1 did not significantly interfere with the primary neurodegenerative actions of 5,7-HT. At the age of 1 month a clear counteracting effect of GM1 was observed, in particular of the 5,7-HT induced 5-HT denervations. The 5-HT levels in the frontal and occipital cortex were reduced to 25 and 20% of control after 5,7-HT alone, while these values were 70 and 40%, respectively, after 5,7-HT and GM1 treatment. A similar antagonizing effect of GM1 was found in the frontal cortex when measuring [3H]5-HT uptake. GM1 treatment also caused a minor reduction of the 5,7-HT induced increase of the 5-HT levels in striatum and mesencephalon. Quantitation of 5-HT nerve terminal density in sections processed for 5-HT immunocytochemistry using an automatic image analysis system showed markedly more nerve terminals in the frontal and occipital cortex after 5,7-HT + GM1 compared to 5,7-HT treatment alone. Minor counteracting effects of GM1 were noted in the hippocampus and spinal cord (thoracic-lumbar) as evaluated by chemical 5-HT assay, although substantial counteracting effects were observed locally in these areas by quantitative immunocytochemistry.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Cocaine induced locomotor stimulant effects are generally attributed to cocaine effects on brain dopamine. In this report, we present evidence that the 5-hydroxytryptamine(1A) (5-HT(1A)) agonist, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OHDPAT) and the 5-HT(1A) antagonist, N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinyl-cycylhexanecarboxaminde maleate (WAY 100635) can enhance or block, respectively, the locomotor stimulant effects induced by cocaine. In two separate experiments, rats administered cocaine (10 mg/kg) exhibited a locomotor stimulant effect and decreased grooming behavior compared to saline treated rats. Pretreatment with the 5-HT(1A) agonist, 8-OHDPAT (0.2 mg/kg) enhanced and pretreatment with the 5-HT(1A) antagonist, WAY 100635 (0.4 mg/kg) eliminated the locomotor stimulant effect of cocaine. Neither the 8-OHDPAT nor WAY 100635 effects were attributable to effects on the behavioral baseline. The 8-OHDPAT and WAY 100635 had opposite effects on grooming behavior. 8-OHDPAT decreased and WAY 100635 increased grooming. Neither treatment, however, affected the grooming suppression induced by cocaine. Ex vivo biochemical measurements indicated that neither 8-OHDPAT or WAY 100635 affected brain dopamine metabolism or cocaine availability in brain. Both treatments affected 5-HT metabolism and altered the effect of cocaine on 5-HT metabolism. 8-OHDPAT increased and WAY 100635 decreased cocaine effects on 5-HT metabolism. Cocaine and 8-OHDPAT but not WAY 100635 increased corticosterone. Altogether, these findings indicate that the 5-HT(1A) receptor site may be an important target for the development of pharmacotherapies for the treatment of cocaine abuse.  相似文献   

3.
Chronic injection of iminodipropionitrile (IDPN) to rats causes persistent motor abnormalities such as hyperactivity, lateral and vertical dyskinesia of the neck, and random circling. These behavioral changes are very similar to those observed after the acute administration of serotonin (5-HT) agonists in rodents. Moreover, some aspects of this syndrome are reproduced by stimulation of 5-HT1A receptors. The present quantitative autoradiographic study revealed a number of changes in 8-hydroxy-2-[di-n-propylamino-3H]tetralin (8-OH[3H]DPAT)-labeled 5-HT1A receptors in the brains of IDPN-treated rats. There were significant increases of 8-OH[3H]DPAT binding in the frontal cortex and in the caudate-putamen. In contrast, there were significant decreases in the interpeduncular nucleus, the pyramidal layer of the CA3 field of hippocampus, the superior colliculus and the pars reticulata of the substantia nigra. These results provide further evidence for the involvement of the 5-HT system in the development of the IDPN-induced dyskinetic syndrome.  相似文献   

4.
We investigated whether cocaine-induced behavioral sensitization is associated with changes in serotonin (5-HT) immunoreactivity. Male Sprague-Dawley rats were injected with either cocaine (15 mg/kg, IP) or saline twice daily for seven days. Their behavior was observed and rated for locomotor activation and stereotypy. One day after the final injection, the brains were processed for 5-HT immunohistochemistry. The intensity of 5-HT immunoreactive staining of 5-HT axons and terminal varicosities was blindly rated in cocaine-sensitized rats and found not to differ from saline-treated rats. The results support the hypothesis that unlike some amphetamine derivatives, repeated cocaine administration which results in behavioral sensitization is not neurotoxic to 5-HT axons and terminals in the forebrain.  相似文献   

5.
Cocaine produces biochemical alterations in brain serotonin (5-HT) neurons. Since 5-HT is critical to the development of fetal 5-HT neurons and target tissues, we hypothesized that in utero exposure to cocaine could result in long-term alterations in postnatal 5-HT systems. Pregnant Sprague-Dawley rats were administered either saline or (?)cocaine (15 mg/kg, s.c., b.i.d.) from gestational day 13 to 20. Prenatal cocaine exposure did not alter litter size, gender number, or progeny birth weights. Functional alterations in serotonergic systems were determined in postnatal day (PD) 70 male progeny by measuring changes in 5-HT mediated plasma hormones following a single 8 mg/kg injection of the 5-HT releaser p-chloroamphetamine (PCA). Cocaine exposed male progeny exhibited significant reductions in adrenocorticotropic hormone (ACTH, ?43%) and renin (?62%) responses to PCA. However, no alterations were observed in the corticosterone or prolactin response to PCA. In utero exposure to cocaine did not alter basal levels of ACTH, renin, corticosterone, or prolactin. There were no significant differences in the density of either hypothalamic or cortical 5-HT uptake sites. Likewise, there were no significant differences in the densities of any of the 5-HT1 receptor subtypes or in the density of 5-HT2 receptors in cortex. These data, which provide the first demonstration of deficits in 5-HT mediated neuroendocrine function in adult progeny following in utero exposure to cocaine, indicate long-term functional alterations of brain 5-HT systems. © 1993 Wiley-Liss, INe.  相似文献   

6.
Primary astrocyte cultures prepared from the cerebral cortices of neonatal rats showed significant accumulation of serotonin (5-hydroxytryptamine; [3H]-5-HT). At concentrations in the range of 0.01 to 0.7 microM [3H]-5-HT, this uptake was 50 to 85% Na+ dependent and gave a Km of 0.40 +/- 0.11 microM [3H]-5-HT and a Vmax of 6.42 +/- 0.85 (+/- SEM) pmol of [3H]-5-HT/mg of protein/4 min for the Na+-dependent component. In the absence of Na+ the uptake was nonsaturable. Omission of the monoamine oxidase inhibitor pargyline markedly reduced the Na+-dependent component of [3H]-5-HT uptake but had a negligible effect on the Na+-independent component. This suggest significant oxidative deamination of serotonin after it has been taken up by the high affinity system, followed by release of its metabolite. We estimated that this system enabled the cells to concentrate [3H]-5-HT up to 44-fold at an external [3H]-5-HT concentration of 10(-7) M. Inhibition of [3H]-5-HT uptake by a number of clinically effective antidepressants was also consistent with a specific high affinity uptake mechanism for 5-HT, the order of effectiveness of inhibition being chlorimipramine greater than fluoxetine greater than imipramine = amitriptyline greater than desmethylimipramine greater than iprindole greater than mianserin. Uptake of [3H]-5-HT was dependent on the presence of Cl- as well as Na+ in the medium, and the effect of omission of both ions was nonadditive. Varying the concentration of K+ in the media from 1 to 50 mM had a limited effect on [3H]-5-HT uptake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Adult intact, or castrated testosterone propionate (TP, 150 μg/kg) treated male rats, were tested for masculine sexual behavior after having been injected with 5,7-dihydroxytryptamine (5,7-DHT, 4 μg/4 ml) intracerebrally either alone or in combination with systemic treatment with protriptyline, a noradrenaline (NA) re-uptake blocking agent. No changes were found in the sexual behavior of intact rats although the brain 5-HT levels were reduced to about one-third of their normal value. By contrast, there was a marked increase in the proportion of rats showing ejaculation patterns in the castrate + TP group after 5,7-DHT lesion than in the vehicle-injected group.Compared to the control group, the 5,7-DHT group showed a reduced uptake of [3H]5-HT and [3H]NA in the hypothalamus. Also the uptake of [3H]amines in the cerebral cortex was lowered although the difference did not attain statistical significance. A statistically significant relationship was found between the behavioral changes and the reduction of [3H]5-HT uptake in the hypothalamus while no such relationship was found between the NA uptake and the behavioral changes.Tistochemical analysis of the site of the 5,7-DHT injections showed that the unspecific damage (nerve cell loss, glial cell infiltration) involved a somewhat larger area in the 5,7-DHT group than in the controls. These unspecific lesions were, however, located outside the region of the large medial 5-HT bundle.The results support the hypothesis that 5-HT serves as a transmitter in the neural processes underlying masculine sexual behavior and, further, points to one component of the ascending 5-HT projections which innervates inter alia the hypothalamus as being of particular importance in this context.  相似文献   

8.
The effects of lithium treatment on serotonin (5-HT) binding sites in the rat brain were investigated. Oral administration of lithium carbonate for 3 weeks did not influence 5-HT2 binding sites in the cerebral cortex. On the other hand, the number of 5-HT1 binding sites labeled with [3H]5-HT was decreased significantly in the hippocampus, but not in the cerebral cortex. While non-5-HT1A sites, defined as specific [3H]5-HT binding in the presence of 100 nM 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), were not affected by lithium treatment in either brain region, chronic lithium administration reduced significantly the density of 5-HT1A sites labeled with [3H]8-OH-DPAT only in the hippocampus, but not in the cerebral cortex. These results suggest that 5-HT1A components are responsible for lithium-induced down-regulation of 5-HT1 binding sites in the hippocampus and that 5-HT1A sites in the hippocampus might be connected with the therapeutic efficacy of lithium.  相似文献   

9.
Yan QS 《Brain research》2002,929(1):21-69
This study was designed to assess the effects of prenatal cocaine exposure on the development of the serotonergic system. Pregnant Sprague-Dawley rats received daily sc injections of either cocaine (30 mg/kg) or saline from gestation day 7 (GD 7) to GD 20. At 1 week postnatal, all pups were killed and tissues containing the striatum and nucleus accumbens dissected out. In superfusion experiments, tissue slices were incubated with [3H]serotonin ([3H]5-HT) for 30 min and then superfused. The [3H]5-HT release was induced by exposures to the following treatments: electrical stimulations (20 mA or 40 mA, 0.5 Hz, 4 min), the medium containing 15 or 30 mM potassium (2 min), fenfluramine (1 or 2 microM for 2 min), para-chloroamphetamine (1 or 2 microM for 2 min), methiothepin (1 or 2 microM for 2 min), and fluoxetine (1 or 2 microM for 2 min). The results showed that the treatment-induced [3H]5-HT releases were all significantly less pronounced in the pups prenatally exposed to cocaine than in those prenatally exposed to saline regardless of the mechanisms by which the treatment increases extracellular 5-HT. Saturation analysis showed that the Bmax of [3H]citalopram binding sites was also significantly lower in the pups prenatally treated with cocaine than in those prenatally treated with saline. The results are consistent with the concept that less serotonergic innervation may exist in the examined brain areas of cocaine-treated offspring at 1 week postnatal, and support the hypothesis that prenatal cocaine exposure affects the postnatal development of the serotonergic system.  相似文献   

10.
The objectives of this study were to further characterize the effects of a chronic lithium (Li+) treatment on serotonin (5-HT) uptake sites, and to determine the eventual reversibility of the observed effects. Quantitative autoradiography experiments were carried out on sections from rat brain, using [3H]citalopram to label selectively the 5-HT transporters or uptake sites. In these experiments, we were able to saturate the 5-HT transporters using an isotopic dilution of the radioligand. The lowest densities of [3H]citalopram binding were measured in all cortical regions studied, with the highest cortical labelling in the anterior cingulate cortex. The rostral neostriatum presented a moderate density of labelling, with slightly higher levels in its ventral portion. Relatively high densities were measured in the globus pallidus, hippocampus, and hypothalamus. Finally, the highest densities were found in the brain stem. Indeed, the dorsal raphe nuclei as well as the substantia nigra were characterized by very high amounts of [3H]citalopram binding. The chronic administration of Li+ increased the density of 5-HT uptake sites in cortical regions, and significant differences were observed in the frontal, temporal, and entorhinal-piriform cortices, with an elevation, albeit not significant, in the anterior cingulate region. A significant increase was also observed in the lateral hypothalamus. Since the 5-HT uptake sites were studied with saturating concentrations of citalopram, we can propose that this increase in binding densities can be attributed to an increase in the number of 5-HT transporters. Interestingly, the only modifications observed were located in regions containing nerve terminals of 5-HT neurons, while regions with cell bodies remained unaffected. Moreover, these effects were completely reversed following a recovery of 48 h without Li+. Also, there were no modifications in the density of 5-HT uptake sites after only 2 days of Li+. These results, suggesting an anatomically heterogenous increase in 5-HT uptake in chronically treated rats, are in accord with clinical observations and previous reports with homogenate binding assays. Finally, the conclusions from this study further support the importance of central 5-HT synaptic transmission in the pathophysiology and treatment of human affective disorders. Synapse 27:83–89, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
There is growing evidence that the serotonergic (5-HT) system is involved in the pathogenesis and treatment of major depression. The 5-HT receptor subtype involved in the enhancing effect of antidepressant treatments, however, has not been identified. The present study was undertaken to quantify 5-HT1A sites in the rat brain by autoradiography and membrane binding, using the selective ligand [3H]8-hydroxy-N,N-dipropyl-2-aminotetralin (8-OH-DPAT), following long-term antidepressant treatment. Following a 21-day treatment with amitriptyline (10 mg/kg/day), there was a significant increase of [3H]8-OH-DPAT binding measured by autoradiography in the dorsal hippocampus, but there was no change in the nucleus raphe dorsalis; whole brain membrane binding revealed an increase in the number of binding sites, with no change in the affinity for [3H]8-OH-DPAT. Conversely, fluoxetine (10 mg/kg/day), a selective blocker of 5-HT reuptake, and gepirone (10 mg/kg/day), a 5-HT1A agonist, both administered for 21 days, significantly reduced [3H]8-OH-DPAT binding measured by autoradiography in the nucleus raphe dorsalis without altering hippocampal binding sites. The control active treatment with diazepam (2 mg/kg/day) did not alter [3H]8-OH-DPAT binding in the hippocampus or in the nucleus raphe dorsalis. All groups were compared to a 21-day vehicle-treated control group. These results are fully consistent with previous electrophysiological and behavioral studies and suggest that alterations of 5-HT1A receptors might underlie the enhancement of 5-HT neurotransmission by antidepressant treatments.  相似文献   

12.
The effect of chronic cocaine exposure on the central serotonergic system in the rat was investigated using a selective 5-HT1A receptor agonist, [3H]8-hydroxy-2-(di-N-propylamino) tetralin (8-OH-DPAT), and a 5-HT2A receptor antagonist, [3H]ketanserin, as tritiated ligands in a quantitative autoradiography study. Rats were administered cocaine in a “binge” pattern, 15 mg/kg/injection, three times a day, at 1-h intervals for 14 days to mimic the pattern often seen in human cocaine addicts. A significant decrease in the binding of [3H]8-OH-DPAT was found in the ventromedial hypothalamus (P < 0.001) and the dorsal dentate gyrus (P < 0.01) in rats administered cocaine as compared with rats injected with saline. No significant difference in the binding of [3H]ketanserin was found in frontal, parietal, agranular insular, and piriform cortices, caudate-putamen, olfactory tubercle, nucleus accumbens, thalamus, septohippocampal nucleus, and claustrum. Several studies have shown that 5-HT1A receptor agonists have antidepressant properties. Other studies, in animal models, have shown that 5-HT1A receptor agonists stimulate the hypothalamic–pituitary–adrenal axis, which is of interest, since chronic activation of this axis has been related to anxiety and depression. Our data show that the 5-HT1A component of the serotonergic system is altered following chronic “binge” pattern cocaine administration in an animal model and may be related to changes in the HPA axis and behavior. Synapse 30:166–171, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Aged (25-27 months) Long-Evans female rats were distinguished according to whether they showed no significant impairment (AU), moderate impairment (AMI), or severe impairment (ASI) in a spatial reference-memory task. Young (3-5 months) rats served as controls. Electrically evoked overflow of tritium was assessed in hippocampal slices preloaded with [3H]choline or [3H]serotonin (5-HT). Nicotine-evoked overflow of tritium was measured after preloading with [3H]noradrenaline (NA). Choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activity, and concentration of monoamines were assessed in homogenates. Aged rats exhibited reduced accumulation of [3H]choline and [3H]5-HT, increased accumulation of [3H]NA, and weaker electrically evoked overflow of [3H]acetylcholine ([3H]ACh) and [3H]5-HT. The overflow of [3H]NA was not altered consistently by aging. Roughly, drugs acting presynaptically had comparable effects in aged rats: oxotremorine and CP 93,129 inhibited the overflow of [3H]ACh, CP 93,129 and UK 14,304 reduced that of [3H]5-HT. ChAT or AChE activity, and 5-HT concentration were not changed by age; NA concentration was reduced. When significant, changes were comparable in AU, AMI, and ASI rats. Data show that aging alters cholinergic and serotonergic hippocampal innervations, release of ACh and 5-HT, but not presynaptic release-modulating mechanisms. These alterations do not account for variability in water-maze performance of aged rats.  相似文献   

14.
A. Pazos  J.M. Palacios   《Brain research》1985,346(2):205-230
The distribution of serotonin-1 (5-HT1) receptors in the rat brain was studied by light microscopic quantitative autoradiography. Receptors were labeled with [3H]serotonin (5-[3H]HT), 8-hydroxy-2-[N-dipropylamino-3H]tetralin (8-OH- [3H]DPAT), [3H]LSD and [3H]mesulergine, and the densities quantified by microdensitometry with the aid of a computer-assisted image-analysis system. Competition experiments for 5-[3H]HT binding by several serotonin-1 agonists led to the identification of brain areas enriched in each one of the three subtypes of 5-HT1 recognition sites already described (5-HT1A, 5-HT1B, 5-HT1C). The existence of these 'selective' areas allowed a detailed pharmacological characterization of these sites to be made in a more precise manner than has been attained in membrane-binding studies. While 5-[3H]HT labeled with nanomolar affinity all the 5-HT1 subtypes, the other 3H-labeled ligands labeled selectively 5-HT1A (8-OH-[3H]DPAT), 5-HT1C ([3H]mesulergine) and both of them ([3H]LSD). Very high concentrations of 5-HT1 receptors were localized in the choroid plexus, lateroseptal nucleus, globus pallidus and ventral pallidum, dentate gyrus, dorsal subiculum, olivary pretectal nucleus, substantia nigra, reticular and external layer of the entorhinal cortex. The different fields of the hippocampus (CA1-CA4), some nuclei of the amygdaloid complex, the hypothalamic nuclei and the dorsal raphé, among others, also presented high concentrations of sites. Areas containing intermediate densities of 5-HT1 receptors included the claustrum, olfactory tubercle, accumbens, central grey and lateral cerebellar nucleus. The nucleus caudate-putamen and the cortex, at the different levels studied, presented receptor densities ranging from intermediate to low. Finally, in other brain areas--pons, medulla, spinal cord--only low or very low concentrations of 5-HT1 receptors were found. From the areas strongly enriched in 5-HT1 sites, dentate gyrus and septal nucleus contained 5-HT1A sites, while globus pallidus, dorsal subiculum, substantia nigra and olivary pretectal nucleus were enriched in 5-HT1B. The sites in the choroid plexus, which presented the highest density of receptors in the rat brain, were of the 5-HT1C subtype. The distribution of 5-HT1 receptors reported here is discussed in correlation with the distribution of serotoninergic neurons and fibers, the related anatomical pathways and the effects which appear to be mediated by these sites.  相似文献   

15.
One intraventricular injection of 5,6-dihydroxytryptamine (5,6-DHT) caused the disappearance of fluorescent histochemically detectable 5-hydroxytryptamine (5-HT)-containing terminals and a loss in 5-HT uptake sites. There was an almost complete disappearance of 5-HT-containing nerve terminals in periventricularly located diencephalic areas and in the spinal cord 10–15 days after 75 μg of 5,6-DHT. The noradrenaline and dopamine innervation patterns in the hypothalamus, septum, basal ganglia, and spinal cord appeared normal, except in a narrow zone of the caudate nuclei facing the lateral ventricles, where there was a marked reduction in dopamine fluorescence. These changes were accompanied by 50–87% reductions in the uptake of [3H]5-HT by thin slices of cortex, hypothalamus and spinal cordin vitro. In contrast, the uptake ofL-[3H]noradrenaline was close to normal in hypothalamus and spinal cord slices, and about 35% reduced in the cortex slices. These results are consistent with the idea that intraventricularly administered 5,6-DHT causes extensive axonal degeneration of central serotonin neurones, and that noradrenaline and dopamine neurones are largely unaffected after one injection of 75 μg.  相似文献   

16.
We sought to investigate the effect of nicotine exposure (chronic and acute) on serotonin transporter (SERT) activity in two regions of the brain important for behavioral effects of nicotine. We first looked at the effects of chronic nicotine exposure (0.7 mg/kg nicotine, twice a day for 10 days) on [(3)H]5-HT uptake in prefrontal cortex (PFC) and hippocampus of rats. A significant increase in [(3)H]5-HT uptake was observed in synaptosomes prepared from both regions. To rule out the possibility that the increases were due to the last injection given, in a separate set of experiments a single injection of nicotine was administered the evening before sacrifice. No change in uptake occurred in either region, suggesting that the increases in uptake caused by nicotine was an effect of chronic exposure and not to an acute treatment. SERT binding studies, using prefrontocortical or hippocampal membrane preparations, revealed that chronic nicotine exposure significantly increased B(max) which correlated to an increase in SERT density. Lastly, we looked at the short-term effect of nicotine on [(3)H]5-HT uptake. Rats received a single nicotine injection 15-75 min before sacrifice. PFC synaptosomes displayed a time-dependent increase in uptake, whereas hippocampal synaptosomes showed an increase at only one time point.  相似文献   

17.
Summary. The effects of neuroleptics have been attributed to dopamine (DA) receptor blockade; however, other neurotransmitters, in particular serotonin (5-HT), have also been implicated. In this study, we examined the effects of clozapine and haloperidol on the distribution of DA and 5-HT transporters, on endogenous DA, 5-HT and their major metabolites, and on 5-HT1A receptors. Adult male Sprague-Dawley rats were treated with either haloperidol (1 mg/kg/day, i.p.), clozapine (20 mg/kg/day, i.p.) or saline for 21 days, and following 3 days of withdrawal, the brains were removed. Tissue levels of DA and 5-HT and their metabolites were measured by high-performance liquid chromatography in 16 brain regions, while quantitative autoradiography with [125I]RTI-121, [3H]citalopram and [3H]8-OH-DPAT was employed to label DA transporters, 5-HT transporters and 5-HT1A receptors, respectively. After haloperidol, densities of 5-HT transporters were increased in the dorsal insular cortex and in the ventral half of caudal neostriatum, while 5-HT1A receptors augmented in cingulate cortex but decreased in the entorhinal area. After clozapine, [3H]citalopram labelling was increased in ventral hippocampus, ventral caudal neostriatum and nucleus raphe dorsalis, but decreased in medio-dorsal and latero-dorsal neostriatum as well as in substantia nigra. Binding of [3H]8-OH-DPAT following clozapine was decreased in frontal, parietal, temporal and entorhinal cortices but increased in the CA3 division of Ammon's horn. The changes in 5-HT transporters in nucleus raphe dorsalis and substantia nigra, as well as the 5-HT1A receptor down-regulations caused by clozapine but not by haloperidol, may explain effects obtained with clozapine and other atypical neuroleptics. There were no modifications in densities of DA transporters, nor of tissue DA levels, after the chronic neuroleptic treatments. The results are in line with previous suggestions that a certain degree of tolerance to neuroleptics develops, in spite of profound D1 and D2 receptor changes that persist during the entire chronic treatment with these psychotropic agents. Received September 2, 1997; accepted July 9, 1998  相似文献   

18.
[3H]Paroxetine binding to human brain tissue was characterized. Competition studies in the putamen and frontal cortex revealed single-site binding models for binding sensitive to 5-hydroxytryptamine (5-HT) (Ki 1-3 microM) and citalopram (Ki 0.6 nM), which displaced the same amount of binding. However, desipramine, norzimeldine and fluoxetine displaced additional binding (10-20%) and these competitors fitted two-site binding models with high affinity components in the nanomolar range and low affinity components in the micromolar range. The high affinity components approximated the 5-HT- and citalopram-sensitive binding fraction. Most of the [3H]paroxetine binding sites were protease-sensitive, but the low-affinity (microM) sites appeared to be protease-resistant. Based on these findings, only the [3H]paroxetine binding representing the fraction sensitive to 30 microM 5-HT (or e.g. 0.3 microM norzimeldine), was regarded as specific binding. This binding fraction was saturable with an apparent binding affinity (Kd) of 0.03-0.05 nM throughout the brain. The highest binding densities were obtained in the hypothalamus and substantia nigra (Bmax 500 fmol/mg protein). The basal ganglia reached intermediate densities (Bmax 200 fmol/mg protein), whereas cortical areas had low Bmax values (less than 100 fmol/mg protein). The lowest B max value was noted in cerebellar cortex (30 fmol/mg protein). The [3H]paroxetine binding was competitively inhibited by low concentrations of 5-HT, imipramine and norzimeldine, suggesting that the substrate recognition site for 5-HT uptake was labeled. Compounds active at dopaminergic, noradrenergic, histaminergic, 5-HT1, 5-HT2 and cholinergic muscarinic sites did not affect the binding at 100 microM concentrations. It is concluded that [3H]paroxetine is a marker for the 5-HT uptake site in the human brain, provided that an adequate pharmacological definition of specific binding is performed.  相似文献   

19.
Rats were administered either continuous cocaine, daily injections of cocaine, continuous amphetamine, or no drug for 5 days and then given a 30 day drug-free recovery period. When subsequently tested in open field, the daily cocaine injection animals were the most hyperactive whereas the cocaine pellet animals were the most fearful. In vitro autoradiography was then utilized to examine persisting changes in receptor binding for D2 ([3H]spiperone), D1 ([3H]SCH23390), benzodiazepine ([3H]flunitrazepam), 5-HT1 ([3H]5-HT), 5-HT2 ([3H]ketanserin), and muscarinic acetylcholine (ACh) receptors ([3H]QNB; quinuclidinyl benzilate). In the amphetamine pellet animals, there were large increases in [3H]spiperone binding in several dopamine (DA)-rich regions; these were accompanied by conversely decreased [3H]SCH23390 binding. Cocaine pellet animals showed a completely different pattern, with appreciable increases in [3H]flunitrazepam binding in DA-rich areas, cortex, and amygdala but decreased [3H]QNB binding in DA-rich areas, hippocampus, and amygdala. While cocaine injection animals showed elevated [3H]spiperone binding in caudate and substantia nigra, they had generally smaller changes in most brain regions than the other drug groups. These findings replicate and extend previous reports that continuous drug administration induces long-lasting alterations in brain chemistry, but indicate that continuous cocaine has enduring effects on different neurochemical systems from continuous amphetamine.  相似文献   

20.
Bland ST  Schmid MJ  Watkins LR  Maier SF 《Neuroreport》2004,15(17):2637-2641
Uncontrollable, but not controllable, stress produces a persistent potentiation of morphine-induced nucleus accumbens dopamine (DA) efflux and morphine-induced medial prefrontal cortex serotonin (5-HT) efflux. Here we investigate medial prefrontal cortex 5-HT mediation of this potentiation. Male Sprague-Dawley rats received bilateral medial prefrontal cortex microinjections of the neurotoxin 5,7-dihydroxytriptamine (5,7-DHT, 8 microg/microl/side), which selectively depleted medial prefrontal cortex 5-HT, or vehicle (Sham), and cannula implantation in the nucleus accumbens shell. After 2 weeks, rats received either uncontrollable stress or no stress. Microdialysis and morphine (3 mg/kg) treatment were performed the following day. Morphine produced an enhanced increase in DA in the Stress-Sham group that was completely blocked by 5,7-DHT lesions, suggesting that 5-HT in the medial prefrontal cortex mediates this potentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号