首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work examines the release of etodolac from various molecular weight fractions of polyethylene glycol (PEG) solid dispersions. Solid dispersions of etodolac were prepared in different molar ratios of drug/carrier by using solvent and melting methods. The release rate of etodolac from the resulting complexes was determined from dissolution studies by use of USP dissolution apparatus 2 (paddle method). The physical state and drug:PEG interaction of solid dispersions and physical mixtures were characterized by X-ray diffraction (XRD), infrared spectroscopy (IR) and differential scanning calorimetry (DSC). The dissolution rate of etodolac is increased in all of the solid dispersion systems compared to that of the pure drug and physical mixtures. The solid dispersion compound prepared in the molar ratio of 1:5 by the solvent method was found to have the fastest dissolution profile. The physical properties did not change after 9 months storage in normal conditions.  相似文献   

2.
目的提高难溶性药物酮洛芬体外溶出速度。方法以聚乙烯吡咯烷酮(PVPK30)为载体,制备药物与载体不同比例的固体分散物及物理混合物,采用X射线衍射和红外吸收方法,比较二者及药物的结晶形态,并进行体外药物溶出度的测定。结果固体分散物体外溶出速率明显高于物理混合物及酮洛芬原料的体外溶出速度,且随载体比例增加而增大。固体分散物的X射线衍射及红外吸收图谱确定了酮洛芬以无定形态分散在载体中,放置6个月后,固体分散物X射线衍射图谱没有明显变化。结论药物与载体以合适比例制备的固体分散物可以明显提高药物体外溶出速度。  相似文献   

3.
The aim of present study was to enhance the dissolution rate of poorly water-soluble drug aceclofenac by solid dispersion technique using corn starch, dicalcium phosphate, lactose, and microcrystalline cellulose as carriers. Solid dispersions were prepared by solvent wetting method using 32 full factorial design for each of the carrier. The prepared solid dispersions were evaluated for differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy (FTIR), and angle of repose. In vitro dissolution studies were carried out in phosphate buffer (pH 7.5) and 0.1 N HCl (pH 1.2). The results of solid state characterization bring to view that in solid dispersions the crystalline drug gets converted to its amorphous form. FTIR study results indicated the absence of interaction between aceclofenac and carriers. For prepared solid dispersions, angle of repose was found to be in the range of 26.19° to 35.29°, which indicates good flowability. Enhanced drug dissolution was obtained with carrier in order lactose > corn starch > microcrystalline cellulose > dicalcium phosphate. Hence, these carriers could be used to enhance the dissolution rate of poorly water-soluble drug.  相似文献   

4.
The aim of the study was in vitro evaluation of piroxicam solid dispersions containing hydroxypropyl methylcellulose acetate succinate (HPMCAS-LF, -HF) as a carrier. Binary (piroxicam-HPMCAS) and ternary (piroxicam-HPMCAS-Carbopol 940) solid dispersions were prepared by spray-drying method. The morphological characteristics were investigated by scanning electron microscopy. X-ray diffraction and differential scanning calorimetry were employed to study physical and chemical properties. In vitro release was studied using a flow-through cell technique. Studies of dissolution rate of piroxicam from solid dispersions were carried out in comparison with corresponding physical mixtures and drug alone. The dissolution profiles depend on the presence of Carbopol 940 in solid dispersions.  相似文献   

5.
目的 采用固体分散技术提高难溶性药物托伐普坦的体外溶出度。方法 选用聚维酮K29/32为载体材料,以溶剂蒸发法制备托伐普坦固体分散体。采用差示扫描量热法(DSC)、X-射线粉末衍射法(XRPD)对所得固体分散体进行鉴定, 并进行溶解度、体外溶出实验。结果 固体分散体的DSC 图谱及X-射线粉末衍射确定了托伐普坦以无定形态分散在载体中, 体外溶解实验表明其溶出较原料药、物理混合物均有明显提高。结论 将托伐普坦与PVP K29/32制成固体分散体,其分散状态发生了改变,溶出性能明显提高。  相似文献   

6.
Ezetimibe (EZE), a water insoluble drug, depicts variable bioavailability. The objective of the present investigation was to improve dissolution characteristics of EZE, which might offer improved bioavailability. The solid dispersions were prepared using poloxamer 407 (L 127) and polyvinyl pyrrolidone by melt and solvent method, respectively. Phase solubility studies indicated linear relationship between drug solubility and carrier concentration. In vitro release studies revealed improvement in the dissolution characteristics of EZE in solid dispersions. Solid dispersion with L 127 gave better rate and extent of dissolution. The best fit model indicating the probable mechanism of drug release from solid dispersions was found to be Korsemeyer–Peppas. The results of characterization of solid dispersions by Fourier transform infrared spectroscopy, differential scanning calorimetry, and powder X-ray diffraction revealed reduction in drug crystallinity which might be responsible for improved dissolution properties. The tablets of solid dispersion, containing L 127 prepared by direct compression, exhibited better drug release as compared to marketed formulation.  相似文献   

7.
The aim of the study was in vitro evaluation of piroxicam solid dispersions containing hydroxypropyl methylcellulose acetate succinate (HPMCAS-LF, -HF) as a carrier. Binary (piroxicam–HPMCAS) and ternary (piroxicam–HPMCAS–Carbopol 940) solid dispersions were prepared by spray-drying method. The morphological characteristics were investigated by scanning electron microscopy. X-ray diffraction and differential scanning calorimetry were employed to study physical and chemical properties. In vitro release was studied using a flow-through cell technique. Studies of dissolution rate of piroxicam from solid dispersions were carried out in comparison with corresponding physical mixtures and drug alone. The dissolution profiles depend on the presence of Carbopol 940 in solid dispersions.  相似文献   

8.
目的以泊洛沙姆188(F68)为载体制备环孢素(CsA)固体分散体并考察其体外溶出。方法以溶剂一熔融法制备固体分散体,以差示扫描量热法(DSC)和X.射线衍射法鉴定CsA在体系中的存在状态,以FTIR表征药物与载体的相互作用,以摇瓶法测定CsA的溶解度,按《中国药典》溶出度第三法测定CsA从物理混合物和固体分散体中的溶出。结果X-射线衍射图谱显示CsA结晶衍射峰消失,提示药物以无定形或分子状态存在于固体分散体中。FTIR结果表明药物与载体间无相互作用。药物溶解度和溶出度均随着F68比例的增加而增大,固体分散体和物理混合物60min的累积溶出百分率分别为99.32%和75.41%,两者具显著性差异(P〈0.01)。结论F68能提高CsA的溶解度和溶出度,可用来制备CsA的固体剂型。  相似文献   

9.
Abstract

The solid dispersion technique is one of the most effective methods for improving the dissolution rate of poorly water-soluble drugs; however this is reliant on a suitable carrier and solvent being selected. The work presented explores amino sugars (d-glucosamine HCl and d-gluconolactone) as potential hydrophilic carriers to improve dissolution rate of a poorly water-soluble drug, piroxicam, from physical mixtures and solid dispersion formulations. Solid dispersions of the drug and carrier were prepared using different ratios by the conventional solvent evaporation method. Acetone was used as solvent in the preparation of solid dispersions. Physical mixtures of piroxicam and carrier were also prepared for comparison. The properties of all solid dispersions and physical mixtures were studied using a dissolution tester, Fourier transform infrared, XRD, SEM and differential scanning calorimetry. These results showed that the presence of glucosamine or gluconolactone can increase dissolution rate of piroxicam compared to pure piroxicam. Glucosamine or Gluconolactone could be used as carrier in solid dispersion formulations and physical mixtures to enhance the dissolution rate. Solid state studies showed that no significant changes occurred for piroxicam in physical mixtures and solid dispersion.  相似文献   

10.
A straightforward solvent wetting method was used to prepare felodipine solid dispersions in the presence of various carriers. Dichloromethane is not needed when HPMC solid dispersions were produced using the solvent wetting method. The amount of ethanol used to prepare solid dispersions did not have a significant effect on the dissolution rate of felodipine. The results of X-ray diffraction and thermal analysis indicated that the drug was in the amorphous state when PVP, HPMC, and poloxamer were used as carriers. The dissolution rates of felodipine in PVP, HPMC, or poloxamer solid dispersions were much faster than those for the corresponding physical mixtures. However, dissolution profiles were found to depend on the carrier used; the dissolution rate of felodipine increased slowly for solid dispersions prepared using HPMC, whereas rapid initial dissolution rates were observed for solid dispersions prepared using PVP or poloxamer. Increases in dissolution rates were partly dependent on the ratios of felodipine to carrier. No significant changes in crystal form were observed by X-ray diffraction or thermal analysis, and no significant changes in dissolution rate were observed when sorbitol and mannitol were used as carriers.  相似文献   

11.
Pharmaceutical availability of diazepam, oxazepam and nitrazepam from solid dispersions of PEG 6000 have been studied in comparison with corresponding physical mixtures and pure benzodiazepines. Selected derivatives of 1,4-benzodiazepin-2-one are poorly water soluble drugs. The aim of this work was to report the properties of diazepam- and nitrazepam-PEG 6000 solid dispersions. Differential scanning calorimetry (DSC) and X-ray diffraction were used to characterize the solid dispersions. The effect of PEG 6000 on the dissolution of selected derivatives of 1,4-benzodiazepin-2-one was investigated. The dissolution of diazepam, oxazepam and nitrazepam from its solid dispersions increased in the presence of PEG 6000.  相似文献   

12.
Aim of the present study was to improve the solubility and dissolution rate of poorly water soluble, BCS class-II drug Ketoprofen (KETO) by solid-dispersion approach. Solid dispersions were prepared by using polyvinylpyrrolidone K30 (PVP K30) and d-mannitol in different drugs to carrier ratios. Dispersions with PVP K30 were prepared by kneading and solvent evaporation techniques, whereas solid dispersions containing d-mannitol were prepared by kneading and melting techniques. These formulations were characterized in the liquid state by phase-solubility studies and in the solid state by Differential Scanning Calorimetry (DSC), Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The aqueous solubility of KETO was favored by the presence of both carriers. The negative values of Gibbs free energy illustrate the spontaneous transfer from pure water to the aqueous polymer environment. Solid state characterization indicated KETO was present as fine particles in d-mannitol solid dispersions and entrapped in carrier matrix of PVP K30 solid dispersions. In contrast to the very slow dissolution rate of pure KETO, dispersions of drug in carriers considerably improved the dissolution rate. This can be attributed to increased wettability and dispersibility, as well as decreased crystallinity and increase in amorphous fraction of drug. Solid dispersions prepared with PVP K30 showed the highest improvement in dissolution rate of KETO. Even physical mixtures of KETO prepared with both carriers also showed better dissolution profiles than those of pure KETO.  相似文献   

13.
The objective of the present work was to improve the dissolution properties of the poorly water-soluble drug meloxicam by preparing solid dispersions with hydroxyethyl cellulose (HEC), mannitol and polyethylene glycol (PEG) 4000 and to develop a dosage form for geriatric population. Differential scanning calorimetry, X-ray diffractometry, Fourier transform infrared spectroscopy and scanning electron microscopy were used to investigate the solid-state physical structure of the prepared solid dispersions. Higher in vitro dissolution of solid dispersions was recorded compared to their corresponding physical mixtures and the pure drug. PEG 4000 in 1: 9 drug to carrier ratio exhibited the highest drug release (100.2%), followed by mannitol (98.2%) and HEC (89.5%) in the same ratio. Meloxicam-PEG 4000 solid dispersion was formulated into suspension and optimization was carried out by 23 factorial design. Formulations containing higher levels of methyl cellulose and higher levels of either sodium citrate or Tween 80 exhibited the highest drug release.  相似文献   

14.
The oral bioavailability of nalidixic acid (NA) is low due to its poor solubility and slow dissolution. Solid dispersions of NA containing varying concentrations of polyvinylpyrrolidone (PVP), beta-cyclodextrin (BCD) and sodium starch glycolate (SSG) were prepared by solvent evaporation technique in an attempt to improve dissolution rate of NA. Physical characterization of NA, physical mixtures (PM) and solid dispersions were investigated by a variety of analytical methods including scanning electron microscopy (SEM), infrared (IR) spectroscopy and powder X-ray diffraction (XRD). SEM was useful in the verification of possible nalidixic acid inclusion in the dispersion system by studying its surface and shape characteristics of different samples. IR analysis demonstrated no strong interaction between the drug and the carrier exists in the solid dispersions. The degree of crystallinity of nalidixic acid decreased and also differed with the dispersion systems of different carriers. Disolution studies indicated that the dissolution rate and percent dissolution efficiency (DE) were significantly increased in the solid dispersions compared with drug alone. The relative potency of the carriers to enhance the dissolution rate of nalidixic acid was in the order: BCD > PVP > SSG. The dissolution rate of the drug in the solid dispersions was faster when the ration of the drug to carrier was smaller. F-test suggests that first order model may be used for explaining the kinetics of drug release from all the solid dispersion systems.  相似文献   

15.
Kollicoat IR, a new pharmaceutical excipient developed as a coating polymer for instant release tablets, was evaluated as a carrier in solid dispersions of Itraconazole. The solid dispersions were prepared by hot stage extrusion. Modulated temperature differential scanning calorimetry and X-ray powder diffraction were used to evaluate the miscibility of the drug and the carrier. The pharmaceutical performance was evaluated by dissolution experiments, performed in simulated gastric fluid without pepsin (SGF(sp)). In the X-ray diffractograms no Itraconazole peaks were visible; the polymer on the other hand appeared to be semi-crystalline. Moreover, its crystallinity increased during the extrusion process due to exposure to heat and shear forces. Modulated temperature differential scanning calorimetry analysis showed that the drug and the polymer formed a two phase system. Separate clusters of glassy Itraconazole were present for drug loads of 40% or higher, indicating further phase separation. Dissolution measurements demonstrated a significantly increased dissolution rate for the solid dispersions compared to physical mixtures. Interestingly the physical mixture made up of glassy Itraconazole and Kollicoat IR (20/80, w/w) showed a dissolution rate and maximum that was much higher than that of the physical mixture made up of crystalline Itraconazole and that of pure glassy Itraconazole. The results of this study show that Kollicoat IR is a promising excipient for the formulation of solid dispersions of Itraconazole prepared by hot stage extrusion.  相似文献   

16.
Solid dispersions made up of itraconazole and Inutec SP1, a new polymeric surfactant, were prepared by spray drying and hot-stage extrusion. Differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD) were used to evaluate the miscibility of the components of the dispersions, and dissolution experiments were performed in simulated gastric fluid without pepsin (SGFsp) to evaluate the pharmaceutical performance of itraconazole from the solid dispersions. DSC analysis showed that the solid dispersions are phase separated systems made up of glassy and crystalline itraconazole and amorphous Inutec SP1. The amount of crystalline drug substance was higher in the dispersions prepared by hot-stage extrusion and was clearly a function of the drug concentration. Since no crystallinity could be detected by XRD points to the fact that the crystallites formed are very small in size. Despite the presence of glassy and crystalline clusters, the dissolution properties of the solid dispersions were significantly improved in comparison to pure itraconazole (glassy or crystalline) or physical mixtures with Inutec SP1. This study proves the potential of the new polymeric surfactant as a carrier in the formulation of solid dispersions for poorly soluble drugs.  相似文献   

17.
This investigation describes a novel approach to prepare solid dispersions of tanshinone IIA using a laboratory-scale planetary ball mill. Poloxamer 188 was employed as the surfactant carrier to improve the solubility and dissolution of the poorly soluble drug, tanshinone IIA. Solubility and dissolution were evaluated compared to the corresponding physical mixtures and pure drug. Furthermore, the physicochemical properties of the solid dispersions were investigated using scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, Fourier transform infrared spectroscopy and ultraviolet spectrophotometry. The solid dispersion significantly enhanced drug solubility and dissolution compared with pure drug and the physical mixtures. Scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry and Fourier transform infrared spectroscopy analyses of tanshinone IIA/poloxamer 188 system confirmed that there were intermolecular interactions between tanshinone IIA and poloxamer 188 and no conversion to crystalline material. Tanshinone IIA existed in a microcrystalline form in the system. These results suggested that improvement of the dissolution rate could be correlated to the formation of a eutectic mixture between the drug and the carrier. After 60 days the solid dispersion samples were chemically and physically stable. The present studies indicated that the planetary ball mill technique could be considered as a novel and efficient method to prepare solid dispersion formulations.  相似文献   

18.
This study compares the physicochemical properties of carbamazepine (CBZ) solid dispersions prepared by either a conventional solvent evaporation versus a supercritical fluid process. Solid dispersions of carbamazepine in polyvinylpyrrolidone (PVP) K30 with either Gelucire 44/14 or Vitamin E TPGS, NF (d-alpha-tocopheryl polyethylene glycol 1000 succinate) were prepared and characterized by intrinsic dissolution, differential scanning calorimetry, powder X-ray diffraction and Fourier transform infrared spectroscopy. CBZ/PVP K30 and CBZ/PVP K30/TPGS solid dispersions showed increased dissolution rate. The best intrinsic dissolution rate (IDR) was obtained for supercritically processed CBZ/PVP K30 that was four-fold higher than pure CBZ. Thermograms of various solid dispersions did not show the melting peak of CBZ, indicating that CBZ was in amorphous form inside the carrier system. This was further confirmed by X-ray diffraction studies. Infrared spectroscopic studies showed interaction between CBZ and PVP K30 in solid dispersions. The amorphous state of CBZ coupled with presence of interaction between drug and PVP K30 suggests fewer, if any, stability problems. Because the supercritical-based process produced solid dispersions with IDR better than conventional solid dispersions augmented with amphiphilic carriers, stability issues associated with lipid carriers do not apply, which, in turn, implies easier scale up under current Good Manufacturing Practice for this technique.  相似文献   

19.
Solid dispersions of theophylline with chitosan as a carrier were prepared using a spray-drying method. Chitosan dissolved in an acid solution forms a gel, but it does not dissolve in an alkaline solution. Therefore, drugs which form composite particles with chitosan would gradually be released in an acid solution, and are expected to have considerably sustained release in an alkaline solution. In this study, we aimed to apply this ability to sustained release pharmaceutics.

In this study, we used theophylline as a model drug and chitosan as a carrier. Mixtures of chitosan and the drug in prescribed ratios were dissolved in an acid solution.

The physicochemical properties of the solid dispersions obtained were investigated by powder X-ray diffraction, differential scanning calorimetry, and dissolution rate analyses, with a view to clarify the effect of crystallinity on the dissolution rate. Furthermore, the interaction between the drug and the carrier was investigated by FT-IR analysis.

The powder X-ray diffraction intensity of the drug in the spray-dried samples decreased with an increase in chitosan contents, which also caused changes from crystalline to amorphous forms. These results indicated that the system formed a solid dispersion. The dissolution profiles of the drug from the physical mixtures and solid dispersions were almost the same at pH 1.2. However, at pH 6.8, the release from the solid dispersions was sustained more than that from the physical mixtures. The FT-IR spectroscopy for the theophylline solid dispersions suggested that the carbonyl group of theophylline and the amino group of chitosan formed a hydrogen bond.

Mass median aerodynamic diameter (MMAD) was measured by using a cascade impactor to evaluate the possibility of solid dispersions as dry powder inhalations. The MMAD of the spray-dried theophylline-chitosan systems were 4.5–5.0 μm. The results suggested that the spray-drying method is usefull to produce dry powders for inhalation.  相似文献   


20.
目的:为了提高难溶性药物阿瑞匹坦(Aprepitant,APR)的溶解度,解决其酸中溶出、碱中结晶沉淀的问题,选择不同功能的聚合物载体,采用热熔挤出技术制备三元固体分散体,并对其进行性能考察;方法:采用溶剂-熔融法制备二元固体分散体,以溶出度和溶出速度为指标,筛选具有增溶功能的载体材料。通过介质转移法考察各聚合物在不同浓度的药物溶液中的抑晶性能,筛选出最佳的沉淀抑制剂。确定药载比,将APR、溶出促进剂及沉淀抑制剂以不同比例混合,采用热熔挤出技术制备三元固体分散体,以溶出度和抑晶时间为指标,优选出三元固体分散体处方。经XRD确认药物在载体中的存在状态,考察该三元固体分散体在模拟肠液中的动态溶解度和加速条件下的物理稳定性。结果:亲水性聚合物PVP K30制备的二元固体分散体溶出速度快,增溶效果佳,肠溶性聚合物HPMCAS显示出优越的抑晶作用,延长了APR的过饱和点,质量比为1:1:3(APR:PVP K30:HPMCAS)的三元固体分散体在酸中迅速完全释放(120min溶出95%),相对于原料药显著提高了溶出度和溶出速率,当介质pH转为6.8后,三元固体分散体完全释放并在6h内维持溶液处于高过饱和的稳定状态,药物以无定形形式存在于载体基质中,同时能在加速条件下保持至少三个月的无定形状态。结论:基于不同聚合物的理化特性,本研究制备的三元固体分散体通过协调溶出速率和结晶抑制效果,不仅显著提高APR的溶解度,并能解决APR在胃中溶出、肠中沉淀析晶的问题,具有良好的溶出特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号