首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
OBJECTIVE: To test the hypothesis that consumption of a high-fat diet leads to an increase in UCP mRNA expression in human skeletal muscle. In a group of endurance athletes, with a range in fiber type distribution, we hypothesized that the effect of the high-fat diet on UCP2 and UCP3 mRNA expression is more pronounced in muscle fibers which are known to have a high capacity to shift from carbohydrate to fat oxidation (type IIA fibers). DESIGN: Ten healthy trained athletes (five males, five females) consumed a low-fat diet (17+/-0.9 en% of fat) and high-fat diet (41.4+/-1.4 en% fat) for 4 weeks, separated by a 4 week wash-out period. Muscle biopsies were collected at the end of both dietary periods. MEASUREMENTS: Using RT-PCR, levels of UCP2 and UCP3 mRNA expression were measured and the percentage of type I, IIA and IIB fibers were determined using the myofibrillar ATPase method in all subjects. RESULTS: UCP3L mRNA expression tended to be higher on the high-fat diet, an effect which reached significance when only males were considered (P=0.037). Furthermore, diet-induced change in mRNA expression of UCP3T (r: 0.66, P=0.037), UCP3L (r: 0.61, P=0.06) and UCP2 (r: 0.70, P=0.025), but not UCP3S, correlated significantly with percentage dietary fat on the high-fat diet. Plasma FFA levels were not different during the two diets. Finally, the percentage of type IIA fibers was positively correlated with the diet-induced change in mRNA expression for UCP2 (r: 0.7, P=0.03), UCP3L (r: 0.73, P=0.016) and UCP3T (r: 0.68, P=0.03) but not with UCP3S (r: 0.06, NS). CONCLUSION: UCP2 and UCP3 mRNAs are upregulated by a high-fat diet. This upregulation is more pronounced in humans with high proportions of type IIA fibers, suggesting a role for UCPs in lipid utilization.  相似文献   

4.
5.
The newly described uncoupling proteins, UCP2 and UCP3, may play a role in regulating energy expenditure (EE) in humans. GH deficiency (GHD) is associated with decreased lean body mass, increased adiposity, and reduced EE, which are reversed by GH treatment. In the present study we investigated whether GH treatment for 4 months influenced the expression of UCPs in skeletal muscle and adipose tissue in 22 GHD patients who were investigated before and after GH (n = 11) or placebo (n = 11) treatment. GH treatment increased the amount of lean body mass by 4.5% (P < 0.05) and decreased body fat mass by 12% (P < 0.05), whereas no changes in these parameters were observed after placebo treatment. The level of UCP3 messenger ribonucleic acid (mRNA) increased 3-fold (P < 0.005) in skeletal muscle and almost 2-fold (P < 0.05) in adipose tissue after GH treatment, with no changes observed after placebo treatment. Skeletal muscle UCP2 mRNA was slightly (25%), but significantly (P < 0.05), decreased, whereas the level of UCP2 mRNA in adipose tissue was unaffected after GH treatment. The T4 level was positively correlated with skeletal muscle UCP2 and UCP3 expression (r = 0.518; P < 0.05 and r = 0.463; P < 0.05, respectively). Furthermore, plasma free fatty acids were positively correlated with the expression of UCP2 (r = 0.573; P < 0.01) and UCP3 (r = 0.518; P < 0.05) in skeletal muscle. The marked increase in UCP3 expression after GH treatment indicates that the UCPs might play a role in the effects of GH on EE in GHD patients. Finally, the strong association between thyroid hormone and skeletal muscle UCP and the correlation between plasma free fatty acids and UCP expression in skeletal muscle indicate that these hormones/metabolites might influence UCP expression in humans as previously demonstrated in rodents.  相似文献   

6.
OBJECTIVE: To analyse the impact of vitamin A supplementation of both a normal fat (NF) diet and a high fat (HF) diet and of acute retinoic acid (RA)-treatment on the expression of uncoupling protein 3 (UCP3) in mice. DESIGN: C57BL/6J mice were fed for 18 weeks a NF or a HF diet (10 and 45 energy% as fat, respectively), both with the normal vitamin A content or an excess vitamin A (8 mg and 320 mg retinyl palmitate/kg diet, respectively). Body weight and energy intake were recorded periodically. UCP3 mRNA and UCP3 protein levels in skeletal muscle (soleus/gastrocnemius) were analysed, as well as UCP1, UCP2 and UCP3 mRNA levels in interscapular brown adipose tissue (BAT), and UCP2 mRNA, UCP2 protein and leptin mRNA levels in white adipose tissue (WAT) depots. The effect of acute RA-treatment (100 mg/kg/day, 4 days) on UCP3 mRNA levels in skeletal muscle and BAT of NMRI mice was also assessed. RESULTS: Vitamin A supplementation of a NF diet led to increased levels of UCP3 mRNA and UCP3 protein in muscle, UCP1 mRNA in BAT, and UCP2 mRNA in inguinal WAT, but had no impact on body weight or adiposity of B6 mice. HF diet promoted obesity and increased levels of UCP3 mRNA and UCP3 protein in skeletal muscle, and of the mRNAs for all three UCPs in BAT. Supplementing the HF diet with vitamin A had little effect on the final obesity reached and did not lead to further increases of muscle UCP3 mRNA nor BAT UCP1 mRNA over the levels achieved with the non-supplemented HF diet. Adipose leptin mRNA levels were down regulated after vitamin A supplementation, independently of the fat content of the diet. Up-regulation of muscle, but not BAT, UCP3 mRNA levels was also found after acute RA-treatment in NMRI mice. CONCLUSION: The results provide evidence of a stimulatory effect of retinoids on muscle UCP3 expression in vivo, and a differential retinoid-regulation of the UCP3 gene in muscle and BAT.  相似文献   

7.
OBJECTIVE: It has been reported that an increased availability of free fatty acids (NEFA) not only interferes with glucose utilization in insulin-dependent tissues, but may also result in an uncoupling effect of heart metabolism. We aimed therefore to investigate the effect of an increased availability of NEFA on gene expression of proteins involved in transmembrane fatty acid (FAT/CD36) and glucose (GLUT4) transport and of the uncoupling proteins UCP2 and 3 at the heart and skeletal muscle level. STUDY DESIGN: Euglycemic hyperinsulinemic clamp was performed after 24 h Intralipid(R) plus heparin or saline infusion in lean Zucker rats. Skeletal and heart muscle glucose utilization was calculated by 2-deoxy-[1-(3)H]-D-glucose technique. Quantification of FAT/CD36, GLUT4, UCP2 and UCP3 mRNAs was obtained by Northern blot analysis or RT-PCR. RESULTS: In Intralipid(R) plus heparin infused animals a significant decrease in insulin-mediated glucose uptake was observed both in the heart (22.62+/-2.04 vs 10.37+/-2.33 ng/mg/min; P<0.01) and in soleus muscle (13.46+/-1.53 vs 6.84+/-2.58 ng/mg/min; P<0.05). FAT/CD36 mRNA was significantly increased in skeletal muscle tissue (+117.4+/-16.3%, P<0.05), while no differences were found at the heart level in respect to saline infused rats. A clear decrease of GLUT4 mRNA was observed in both tissues. The 24 h infusion of fat emulsion resulted in a clear enhancement of UCP2 and UCP3 mRNA levels in the heart (99.5+/-15.3 and 80+/-4%) and in the skeletal muscle (291.5+/-24.7 and 146.9+/-12.7%). CONCLUSIONS: As a result of the increased availability of NEFA, FAT/CD36 gene expression increases in skeletal muscle, but not at the heart level. The augmented lipid fuel supply is responsible for the depression of insulin-mediated glucose transport and for the increase of UCP2 and 3 gene expression in both skeletal and heart muscle.  相似文献   

8.
We recently reported that the leptin-induced increase in uncoupling protein 1 (UCP1) mRNA in brown adipose tissue (BAT) is prevented by the denervation of BAT. We also reported that retinoic acid (RA) increases UCP1 mRNA in BAT. To extend these finding to UCP2 and UCP3 in BAT, we examined UCP2 and UCP3 mRNA after unilateral denervation of BAT, as well as after leptin, beta(3)-adrenergic agonist, RA, and glucocorticoid administration to rats. UCP3 mRNA was 20% less in the denervated compared with the intact BAT, whereas UCP2 mRNA was unchanged with denervation. The beta(3)-adrenergic agonist, CGP-12177 (0.75 mg/kg), increased UPC3 mRNA by 40% in the innervated and by 85% in the denervated BAT. Leptin (0.9 mg/day for 3 days) increased both UCP2 and UCP3 mRNA by 30% in the innervated and, surprisingly, in the denervated BAT. RA (7.5 mg/kg) increased UCP1 mRNA but decreased UCP2 and UCP3 mRNA by 50%, whereas methylprednisolone (65 mg/kg, two doses 24 h apart) suppressed all three uncoupling proteins by greater than 60%. The present findings indicate that: sympathetic innervation is necessary to maintain basal levels of UCP3 mRNA; beta(3)-adrenergic agonist stimulation induces UCP3 mRNA; leptin induces UCP2 and UCP3 mRNA and this induction is not dependent on sympathetic innervation; RA increases UCP1 but decreases UCP2 and UCP3 mRNA; and methylprednisolone suppresses UCP1, UCP2, and UCP3 mRNA equally. These data suggest that there are distinct patterns of regulation between UCP1, UCP2, and UCP3, and there may be at least two modes by which leptin could modulate thermogenesis in BAT; first, by increasing sympathetic stimulation of BAT and induction of UCP1 mRNA and, secondly, by increasing UCP2 and UCP3 mRNA by a mechanism independent of sympathetic stimulation.  相似文献   

9.
BACKGROUND: Peak oxygen consumption (V(O(2))) is a powerful predictor of outcome in patients with chronic heart failure. This is not a test that is readily clinically available. We therefore sought to establish a method of assessing peak V(O(2)) from non-invasively acquired data. METHODS: We analysed the results from incremental treadmill exercise tests in 60 patients [aged 59.0 (S.D. 12.4) years] with chronic heart failure or left ventricular dysfunction [left ventricular ejection fraction (29.6 (15.2)%)] and 52 control subjects [aged 36.7 (12.3)]. Metabolic gas exchange during exercise was measured with a respiratory mass spectrometer. Heart rate and blood pressure were measured. RESULTS: Peak V(O(2)) was lower in patients than controls [19.9 (7.7) ml/kg/min vs. 38.3 (9.0), P<0. 001]. Exercise time (r=0.84, P<0.001), heart rate at peak exercise (r=0.63, P<0.0001), change in heart rate (r=0.72, P<0.0001), rate pressure product at peak exercise (r=0.64, P<0.0001) and change in systolic blood pressure (r=0.31, P=0.002) all correlated with peak V(O(2)). In a stepwise regression model, exercise time was the most powerful predictor of peak V(O(2)) (r(2)=0.79). The only additional independent variable was change in heart rate from rest to peak exercise, which increased r(2) to 0.80. In a survival analysis, measured peak V(O(2)) and the peak V(O(2)) estimated from exercise time and change in heart rate had similar predictive power. CONCLUSIONS: In this preliminary study, peak V(O(2)) can be estimated from non-invasively acquired parameters. Estimated peak V(O(2)) and measured peak V(O(2)) have similar predictive power for outcome. Further work is necessary to see if estimated peak V(O(2)) is widely applicable in a clinical setting.  相似文献   

10.
Thyroid hormones (triiodothyronine [T3] and thyroxine [T4]) stimulate UCP-3 expression in skeletal muscle. We examined whether thyroid hormone-induced changes in uncoupling protein (UCP)-3 mRNA expression are related to directs effects of T3 or reflect secondary effects of the hormone through stimulation of renin-angiotensin or beta-adrenergic systems. Hyperthyroidism was produced by three injections of 100 microg T3/100 g body weight on alternate days with or without concomitant treatment with either captopril (an angiotensin-converting enzyme [ACE] inhibitor), propranolol (a beta-blocker) or clenbuterol (a beta2-agonist). The relative abundance of UCP-3 mRNA was measured in ventricular myocardium and skeletal muscle (gastrocnemius and soleus). T3 resulted in a significant increase in the relative abundance of UCP-3 in heart and skeletal muscle (p < 0.05), and the effect was not altered by captopril or propanolol; the inhibitors alone had no effect of UCP-3 mRNA content. There was no synergistic or additive effect of T3 and clenbuterol on UCP-3 mRNA expression in skeletal muscle. Increased UCP-3 mRNA levels were associated with increased UCP-3 protein expression in skeletal muscle. We conclude that the effect of T3 on UCP-3 expression in cardiac and skeletal muscle is not dependent on either angiotensin II or the beta-adrenergic system and probably reflects a direct action of the hormone on UCP-3 gene expression.  相似文献   

11.
OBJECTIVE: In rodents, adaptive thermogenesis in response to cold exposure and high-fat feeding is accomplished by the activation of the brown adipose tissue specific mitochondrial uncoupling protein, UCP1. The recently discovered human uncoupling protein 3 is a possible candidate for adaptive thermogenesis in humans. In the present study we examined the effect of mild cold exposure on the mRNA and protein expression of UCP3. SUBJECTS: Ten healthy male volunteers (age 24.4 +/- 1.6 y; height 1.83 +/- 0.02 m; weight 77.3 +/- 3.0 kg; percentage body fat 19 +/- 2). DESIGN: Subjects stayed twice in the respiration chamber for 60 h (20.00-8.00 h); once at 22 degrees C (72 degrees F), and once at 16 degrees C (61 degrees F). After leaving the respiration chamber, muscle biopsies were taken and RT-competitive-PCR and Western blotting was used to measure UCP3 mRNA and protein expression respectively. RESULTS: Twenty-four-hour energy expenditure was significantly increased at 16 degrees C compared to 22 degrees C (P<0.05). At 16 degrees C, UCP3T (4.6 +/- 1.0 vs 7.7 +/- 1.5 amol/microg RNA, P=0.07), UCP3L (2.0 +/- 0.5 vs 3.5 +/- 0.9 amol/microg RNA, P=0.1) and UCP3S (2.6 +/- 0.6 vs 4.2 +/- 0.7 amol/microg RNA, P=0.07) mRNA expression tended to be lower compared with at 22 degrees C, whereas UCP3 protein content was, on average, not different. However, the individual differences in UCP3 protein content (16-22 degrees C) correlated positively with the differences in 24 h energy expenditure (r=0.86, P<0.05). CONCLUSION: The present study suggests that UCP3 protein content is related to energy metabolism in humans and might help in the metabolic adaptation to cold exposure. However, the down-regulation of UCP3 mRNA with mild cold exposure suggests that prolonged cold exposure will lead to lower UCP3 protein content. What the function of such down-regulation of UCP3 could be is presently unknown.  相似文献   

12.
PURPOSE: Findings recently have shown coupling protein-3 (UCP3) content to be decreased in the skeletal muscle of patients with chronic obstructive pulmonary disease (COPD). Uncoupling protein-3 mRNA exists as two isoforms: long (UCP3L) and short (UCP3S). The UCP3 protein is expressed the least in oxidative and the most in glycolytic muscle fibers. Levels of UCP3 have been associated positively with intramyocellular triglyceride (IMTG) contents in conditions of altered fatty acid metabolism. As a source for muscle free fatty acid metabolism, IMTG is decreased in COPD. The current study completely characterized all the parameters of UCP3 expression (ie, UCP3L and UCP3S mRNA expression in whole muscle samples) and UCP3 protein content as well as IMTG content in the different fiber types in patients with COPD and healthy control subjects. METHODS: Using real-time polymerase chain reaction, UCP3 gene expression was quantified. Skeletal muscle fiber type and UCP3 protein and IMTG content were measured using immunofluorescence and Oil red oil staining, respectively. RESULTS: The findings showed that UCP3L mRNA expression was 44% lower (P < .005) in the patients with COPD than in the control subjects, whereas the UCP3S mRNA content was similar in the two groups. As compared with control subjects, UCP3 protein content was decreased by 89% and 83% and the IMTG content by 64% and 54%, respectively, in types I and IIa fibers (P < .0167) of patients with COPD, whereas they were unchanged in IIx fibers. CONCLUSIONS: The reduced UCP3 and IMTG content in the more oxidative fibers may be linked to the altered muscle fatty acid metabolism associated with COPD. Further studies are required to determine the exact role and clinical relevance of the reduced UCP3 content in patients with COPD.  相似文献   

13.
Inhalation of nitric oxide (NO) is useful for the treatment of patients with pulmonary hypertension. However, the potential toxicity of inhaled NO is still unclear. Coagulation activation plays an important role in lung injury. We assessed the effect of low- and high-dose inhaled NO on the coagulation system in the intraalveolar space of mice. The animals were assigned to five groups (n = 6): [RA] group, mice exposed to fresh air alone; [RA+2 ppm NO] group, fresh air and 2 ppm NO; [RA+40 ppm NO] group, fresh air and 40 ppm NO; [RA+2 ppm NO+O(2)] group, fresh air, 2 ppm NO and O(2); and [RA+40 ppm NO+O(2)] group, fresh air, 40 ppm NO and O(2). Each group was treated for 3 wk. Lung specimens of [RA+40 ppm NO] and [RA+40 ppm NO+O(2)] groups showed significant nitrotyrosine immunoreactivity. BALF concentrations of total protein, thrombin and soluble tissue factor were significantly increased in mice of [RA+40 ppm NO] and [RA+40 ppm NO+O(2)] groups compared with [RA] group. However, BALF concentrations of total protein, thrombin, and soluble tissue factor were not significantly increased in mice of [RA+2 ppm NO] and [RA+2 ppm NO+O(2)] groups compared with [RA] group. Lung tissue factor mRNA expression was higher in the high-dose NO group than in the low-dose NO group. NO donor increased significantly tissue factor activity on alveolar epithelial cells. This study has shown for the first time that long-term inhalation of high, but not low, concentration of NO may activate the clotting system by increasing the lung expression of tissue factor.  相似文献   

14.
OBJECTIVE: To investigate interrelationships between muscle fibre type, respiratory exchange ratio (RER) during exercise at a fixed workload and adiposity. DESIGN: Cross-sectional study. SUBJECTS: 21 untrained, healthy male subjects. MEASUREMENTS: Body fat composition by dual-energy X-ray absorptiometry (DEXA). Exercise test at 55% of VO2max, muscle fibre type composition, muscle NADH and citrate synthase enzyme activity levels; serum insulin, glucose and cortisol concentrations. RESULTS: Percent body fat was inversely correlated to the proportion of type I muscle fibres (r=-0.55, P<0.02). In addition percent trunk fat was negatively correlated with percent type I fibres (r=-0.58, P<0.01) while this relationship was not present for percent leg fat. There was no relation between RER at rest or during exercise and muscle fibre type composition or percent body fat. CONCLUSION: Body fat and percent type I muscle fibres were correlated, supporting skeletal muscle fibre type as a potential etiological factor in obesity. No correlation was observed between percent body fat and substrate oxidation at rest or during moderate exercise, indicating that muscle fuel substrate mix does not appear to provide a mechanism for this relation under either condition.  相似文献   

15.
Aims/hypothesis. The aim of this study was to examine the effect of weight loss on UCP2/UCP3 mRNA expression and UCP3 protein content in subjects with Type II (non-insulin-dependent) diabetes mellitus.¶Methods. We studied seven Type II diabetic subjects who followed a 10-week very low calorie diet. Expression of skeletal muscle UCP2 and UCP3 mRNA was measured using RT-competitive PCR and UCP3 protein content by western blotting, before and after the diet. Total and plasma fatty acid oxidation was measured using infusion of 13C labelled palmitate.¶Results. Body weight decreased from 105.5 ± 8.2 kg to 91.6 ± 7.2 kg (p < 0.001), after 10 weeks of diet intervention. Expression of UCP2 and UCP3 mRNA were significantly reduced after 10 weeks of diet (p < 0.05) but UCP3 protein contents were not significantly altered. Notably, the change in UCP3L mRNA expression and UCP3 protein content after the very low calorie diet were negatively associated with changes in body weight (r = – 0.97, p = 0.006 and r = – 0.83, p = 0.043, respectively) and BMI (r = – 0.99, p = 0.0007 and r = – 0.9, p = 0.016, respectively). Furthermore, changes in UCP3L mRNA expression and UCP3 protein content induced by the diet were positively correlated with changes in cytosolic fatty acid-binding protein content (r = 0.93, p = 0.023 and r = 0.84, p = 0.039, respectively). No correlation between diet-induced changes in UCP3 protein and resting energy expenditure or plasma non-esterified fatty acid concentrations were found.¶Conclusion/interpretation. The negative correlation between the change in UCP3 protein content after weight loss and the change in BMI, suggests that the decrease in UCP3 during weight loss could prevent further weight loss. The finding that the change in UCP3 protein content correlates with the change in skeletal muscle fatty acid-binding protein content, suggests a role for UCPs in the handling of lipids as a fuel. [Diabetologia (2000) 43: 1408–1416]  相似文献   

16.
17.
The synthetic compound NO-1886 (ibrolipim, [4-(4-bromo-2-cyano-phenylcarbamoyl)-benzyl]-phosphonic acid diethyl ester, CAS 133208-93-2) is a lipoprotein lipase (LPL)-promoting agent that decreases plasma triglycerides, increases high-density lipoprotein cholesterol levels, and prevents fat accumulation in high fat-fed rats. However, the effect of NO-1886 on body weight, fat accumulation, and energy expenditure in ovariectomized (OVX) rats is not clear. The primary aim of this study was to ascertain whether NO-1886 ameliorated obesity in OVX rats and to examine the effects on fatty acid oxidation-related enzymes. NO-1886 decreased accumulation of visceral fat and suppressed the increase in body weight resulting from the ovariectomy. NO-1886 decreased the respiratory quotient and increased expression of the fatty acid translocase messenger RNA (mRNA) in the liver, soleus muscle, and mesenteric fat. NO-1886 also increased the expression of fatty acid-binding protein mRNA in the liver and soleus muscle and the expression of the uncoupling protein 3 (UCP3) mRNA in the heart, soleus muscle, and mesenteric fat, but not in the brown adipose tissue. Furthermore, NO-1886 did not affect UCP1 and UCP2 in brown adipose tissue. Therefore, amelioration of obesity by NO-1886 in OVX rats is possibly because of an the increased expression of fatty acid oxidation-related enzymes and UCP3, both of which are related to fatty acid transfer and fat use. Our study indicates that the LPL-promoting agent NO-1886 may be potentially beneficial in the treatment of obesity and obesity-linked health problems in postmenopausal women.  相似文献   

18.
Blood flow to contracting skeletal muscle is tightly coupled to the oxygenation state of hemoglobin. To investigate if ATP could be a signal by which the erythrocyte contributes to the regulation of skeletal muscle blood flow and oxygen (O2) delivery, we measured circulating ATP in 8 young subjects during incremental one-legged knee-extensor exercise under conditions of normoxia, hypoxia, hyperoxia, and CO+normoxia, which produced reciprocal alterations in arterial O2 content and thigh blood flow (TBF), but equal thigh O2 delivery and thigh O2 uptake. With increasing exercise intensity, TBF, thigh vascular conductance (TVC), and femoral venous plasma [ATP] augmented significantly (P<0.05) in all conditions. However, with hypoxia, TBF, TVC, and femoral venous plasma [ATP] were (P<0.05) or tended (P=0.14) to be elevated compared with normoxia, whereas with hyperoxia they tended to be reduced. In CO+normoxia, where femoral venous O2Hb and (O2+CO)Hb were augmented compared with hypoxia despite equal arterial deoxygenation, TBF and TVC were elevated, whereas venous [ATP] was markedly reduced. At peak exercise, venous [ATP] in exercising and nonexercising limbs was tightly correlated to alterations in venous (O2+CO)Hb (r2=0.93 to 0.96; P<0.01). Intrafemoral artery infusion of ATP at rest in normoxia (n=5) evoked similar increases in TBF and TVC than those observed during exercise. Our results in humans support the hypothesis that the erythrocyte functions as an O2 sensor, contributing to the regulation of skeletal muscle blood flow and O2 delivery, by releasing ATP depending on the number of unoccupied O2 binding sites in the hemoglobin molecule.  相似文献   

19.
20.
STUDY OBJECTIVE: In COPD, it has been shown that peripheral muscle dysfunction is a factor determining exercise intolerance. We examined the hypothesis that exercise capacity of patients with idiopathic pulmonary fibrosis (IPF) is, at least in part, determined by peripheral muscle dysfunction. METHODS: Maximum oxygen uptake (V(O2)max) was evaluated in 41 consecutive patients with IPF, along with potential determinants of exercise capacity, both in the lungs and in the peripheral muscles. RESULTS: Patients had reduced V(O2)max (893 +/- 314 mL, 46.0% predicted) and reduced quadriceps force (QF) [65% predicted]. Significant correlates of V(O2)max reduction were vital capacity (VC) [r = 0.79], total lung capacity (r = 0.64), diffusion capacity (r = 0.64), QF (r = 0.62), maximum expiratory pressure (r = 0.48), and Pa(O2) at rest (r = 0.33). In stepwise multiple regression analysis, VC and QF were independent predictors of V(O2)max. Furthermore, in subgroup analysis, QF was a significant contributing factor for V(O2)max in patients who discontinued exercise because of dyspnea and/or leg fatigue. CONCLUSIONS: We conclude that QF is a predictor of exercise capacity in IPF. Measures that improve muscle function might improve exercise tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号