首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
目的 比较间歇皮下注射人甲状旁腺激素不同片段(hPTH1-34)及(hPTH1-84)对完整雌性(Non-OVX)大鼠和去卵巢(OVX)大鼠股骨及腰椎1-4骨矿物含量(BMC)和骨密度(BMD)的影响。方法 Wistar雌性大鼠176只,分为hPTH1-34和hPTH1-84两大组(各80只及96只),每大组及各自分4组(每组各20只或24只),分别为:两组安慰剂组(未切卵巢及切卵巢)用安慰剂(PBS)进行皮下注射,每周3次,共2周;两组治疗组(未切卵巢及切卵巢)用hPTH1-34或hPTH1-84,皮下注射,每周3次,共2周。结果 1.卵巢切除术后3个月大鼠股骨及腰椎1-4BMC和BMD明显下降;2.两种片段的甲状旁腺激素(hPTH1-34及pPTH1-84)间歇注射均能使Non-OVX大鼠和OVX大鼠股骨及腰椎1-4BMC和BMD较相应对照组明显升高;且腰椎1-4较股骨的BMC和BMD升高更明显;3.OVX大鼠治疗后股骨与腰椎1-4BMC和BMD的升高率较Non-OVX大鼠更明显;OVX大鼠在治疗后股骨及腰椎骨量能恢复到去卵巢前水平;4.hPTH1-34较hPTH1-84更明显的使完整大鼠和OVX大鼠股骨BMC和BMD升高。结论 间歇皮下注射人甲状旁腺激素对大鼠股骨及腰椎骨量均有增高作用,尤其对腰椎的骨量以及对去卵巢大鼠骨量升高作用更明显;hPTH1-34片段对大鼠股骨骨量的增高作用强于hPTH1-84片段。  相似文献   

2.
Cathepsin K (CatK) is a cysteine protease expressed predominantly in osteoclasts, that plays a prominent role in degrading Type I collagen. Growing CatK null mice have osteopetrosis associated with a reduced ability to degrade bone matrix. Bone strength and histomorphometric endpoints in young adult CatK null mice aged more than 10 weeks have not been studied. The purpose of this paper is to describe bone mass, strength, resorption, and formation in young adult CatK null mice. In male and female wild-type (WT), heterozygous, and homozygous CatK null mice (total N=50) aged 19 weeks, in-life double fluorochrome labeling was performed. Right femurs and lumbar vertebral bodies 1-3 (LV) were evaluated by dual-energy X-ray absorptiometry (DXA) for bone mineral content (BMC) and bone mineral density (BMD). The trabecular region of the femur and the cortical region of the tibia were evaluated by histomorphometry. The left femur and sixth lumbar vertebral body were tested biomechanically. CatK (-/-) mice show higher BMD at the central and distal femur. Central femur ultimate load was positively influenced by genotype, and was positively correlated with both cortical area and BMC. Lumbar vertebral body ultimate load was also positively correlated to BMC. Genotype did not influence the relationship of ultimate load to BMC in either the central femur or vertebral body. CatK (-/-) mice had less lamellar cortical bone than WT mice. Higher bone volume, trabecular thickness, and trabecular number were observed at the distal femur in CatK (-/-) mice. Smaller marrow cavities were also present at the central femur of CatK (-/-) mice. CatK (-/-) mice exhibited greater trabecular mineralizing surface, associated with normal volume-based formation of trabecular bone. Adult CatK (-/-) mice have higher bone mass in both cortical and cancellous regions than WT mice. Though no direct measures of bone resorption rate were made, the higher cortical bone quantity is associated with a smaller marrow cavity and increased retention of non-lamellar bone, signs of decreased endocortical resorption. The relationship of bone strength to BMC does not differ with genotype, indicating the presence of bone tissue of normal quality in the absence of CatK.  相似文献   

3.
Iida-Klein A  Lu SS  Cosman F  Lindsay R  Dempster DW 《BONE》2007,40(2):391-398
Previously, we demonstrated that the human parathyroid hormone (1-34) fragment (hPTH(1-34)) increased bone strength in proportion to its effects on BMD and cortical bone structure in the murine femur by comparing cyclic vs. daily administration of hPTH(1-34). Both cyclic and daily regimens increased vertebral BMD similarly at 7 weeks. Here, we have examined the effects of daily and cyclic PTH regimens on bone structure and cellular activity by static and dynamic histomorphometry. Twenty-week-old, intact female C57BL/J6 mice were treated with the following regimens (n=7 for each group): daily injection with vehicle for 7 weeks [control]; daily injection with hPTH(1-34) (40 microg/kg/day) for 7 weeks [daily PTH]; and daily injection with hPTH(1-34) (40 microg/kg/day) and vehicle alternating weekly for 7 weeks [cyclic PTH]. At days 9 and 10, and 2 and 3 prior to euthanasia, calcein (10 mg/kg) was injected subcutaneously. At the end of study, the lumbar vertebrae 1-3 and the left femora were excised, cleaned, and processed for histomorphometry. In the lumbar vertebrae, daily and cyclic PTH regimens significantly increased cancellous bone volume (BV/TV), trabecular number, trabecular osteoclast and osteoblast perimeters, trabecular mineral apposition rate (MAR) and bone formation rate (BFR), and periosteal MAR and BFR compared to control, with no significant difference between the two PTH-treated groups. Increased trabecular tunneling was observed in both PTH-treated groups. Both regimens tended to increase vertebral cortical bone formation parameters with the effects at the periosteum site being more marked than those at the endosteum site, resulting in a significant increase in cortical width. In the femur, the effects of cyclic PTH on BV/TV, trabecular width and number, trabecular and endocortical osteoblast and osteoclast perimeters, cortical width, and trabecular and periosteal BFR were less marked than those of daily PTH. A cyclic PTH regimen was as effective as a daily regimen in improving cancellous and cortical bone microarchitecture and cellular activity in the murine vertebra.  相似文献   

4.
Rehman  Q.  Lang  T.F.  Arnaud  C.D.  Modin  G.W.  Lane  N.E. 《Osteoporosis international》2003,14(1):77-81
 Daily treatment with hPTH (1–34) is associated with a significant increase in bone formation which results in large gains in lumbar spine bone mass. However, bone formation is known to occur on trabecular, endocortical and periosteal surfaces. The purpose of this study was to determine whether daily treatment with hPTH (1–34) for 1 year was associated with a change in vertebral cross-sectional area, or vertebral size, as measured by serial quantitative computed tomography scans. Fifty-one postmenopausal women treated chronically with both glucocorticoids and hormone replacement therapy (HRT) were randomized to either daily hPTH (1–34) for 1 year and HRT or to a control group treated with only HRT. Measurements of bone density of the spine were obtained every 6 months by dual-energy X-ray absorptiometry (DXA) and annually by QCT of the L1 and L2 vertebrae. Vertebral cross-sectional area (VCSA) was obtained from the QCT scans. In addition, we estimated the vertebral compressive strength (VSFOM, g2/cm4 = trabecular BMD2 × VCSA). After 1 year of hPTH (1–34) treatment, VCSA increased 4.8% (p < 0.001), and 1 year after treatment was discontinued VCSA was still 2.6% higher than the baseline value (p < 0.05). The control group had no change in VCSA. In addition, estimated vertebral compressive strength increased more than 200% over baseline levels in the hPTH (1–34) treatment group and no change was observed in the control group. In summary, daily treatment with hPTH (1–34) for 1 year increased vertebral size as measured by VCSA and this increase was maintained after hPTH (1–34) was discontinued. Since vertebral fracture risk is related to both bone size and bone mass, we cautiously speculate that the increase in vertebral size associated with hPTH (1–34) treatment is at least partially responsible for increased vertebral bone strength and reduction of fracture risk associated with this therapy in postmenopausal osteoporosis. Received: 26 March 2002 / Accepted: 9 August 2002 Acknowledgement This work was supported by Public Health Service Grants 1-R01-46661, and the Rosalind Russell Arthritis Research Center.  相似文献   

5.
The role of trabecular microarchitecture in whole‐vertebral biomechanical behavior remains unclear, and its influence may be obscured by such factors as overall bone mass, bone geometry, and the presence of the cortical shell. To address this issue, 22 human T9 vertebral bodies (11 female; 11 male; age range: 53–97 yr, 81.5 ± 9.6 yr) were scanned with μCT and analyzed for measures of trabecular microarchitecture, BMC, cross‐sectional area, and cortical thickness. Sixteen of the vertebrae were biomechanically tested to measure compressive strength. To estimate vertebral compressive stiffness with and without the cortical shell for all 22 vertebrae, two high‐resolution finite element models per specimen—one intact model and one with the shell removed—were created from the μCT scans and virtually compressed. Results indicated that BMC and the structural model index (SMI) were the individual parameters most highly associated with strength (R2 = 0.57 each). Adding microarchitecture variables to BMC in a stepwise multiple regression model improved this association (R2 = 0.85). However, the microarchitecture variables in that regression model (degree of anisotropy, bone volume fraction) differed from those when BMC was not included in the model (SMI, mean trabecular thickness), and the association was slightly weaker for the latter (R2 = 0.76). The finite element results indicated that the physical presence of the cortical shell did not alter the relationships between microarchitecture and vertebral stiffness. We conclude that trabecular microarchitecture is associated with whole‐vertebral biomechanical behavior and that the role of microarchitecture is mediated by BMC but not by the cortical shell.  相似文献   

6.
Recently, basic fibroblast growth factor (bFGF) has been found to increase trabecular bone mass and connectivity in the proximal tibial metaphyses (PTM) in osteopenic rats. The purpose of this study was to determine the bone anabolic effects of bFGF in the lumbar vertebral body (LVB), a less loaded skeletal site with a lower rate of bone turnover than the PTM. Six-month old female Sprague-Dawley rats were ovariectomized (OVX) or sham-operated and untreated for 8 weeks to induce osteopenia. Then group 1 (sham) and group 2 (OVX) were treated subcutaneously (SC) with vehicle, and OVXed groups 3 and 4 were treated SC with PTH [hPTH (1–34) at 40 g/kg, 5×/week] and bFGF (1 mg/kg, 5×/week), respectively, for 8 weeks. At sacrifice, the fifth LVB was removed, subjected to micro-CT for determination of trabecular bone structure and then processed for histomorphometry to assess bone turnover. The sixth LVB was used for mechanical compression testing (MTS, Bionix 858). The data were analyzed with the Kruskal-Wallis test followed by post-hoc testing as needed. After 16 weeks of estrogen deficiency, there were significant reductions in vertebral trabecular bone volume and trabecular thickness. Treatment with either bFGF or hPTH (1–34) increased BV/TV in OVX animals. Human PTH (1–34)-treated animals had significant increases in trabecular (48%) and cortical thickness (30%) and bone strength [maximum load (53%) and work to failure (175%)] compared to OVX + Vehicle animals. Treatment of osteopenic rats with bFGF increased bone volume (15%), trabecular thickness (13%), maximum load (45%) and work to failure (140%) compared to OVX + Vehicle animals (all P <0.05). Basic FGF increased trabecular bone volume in the lumbar vertebral body of osteopenic rats by restoring trabecular number, thickness and connectivity density. Also, bFGF improved bone mechanical properties (maximum force and work to failure) compared to the OVX + Vehicle group. Therefore, increasing the number, thickness and connections of the trabeculae contributes to increased bone strength in this small animal model of osteoporosis.This work was supported by grants from the NIH 1R01AR43052 and the Rosalind Russell Arthritis Research Center.  相似文献   

7.
To test the hypothesis that factors associated with bone strength (i.e., volumetric bone mineral density [vBMD], geometry, and microstructure) have heritable components, we exploited the 12 BXH recombinant inbred (RI) strains of mice derived from C57BL/6J (B6; low bone mass) and C3H/HeJ (C3H; high bone mass) progenitor strains. The femurs and lumbar vertebrae from each BXH RI strain were characterized for phenotypes of vBMD, microstructural, biomechanical, and geometrical properties. Methods included bending (femur) and compression (vertebra) testing, peripheral quantitative computed tomography (pQCT), and microcomputed tomography (microCT). Segregation patterns of femoral and vertebral biomechanical properties among the BXH RI strains suggested polygenic regulation. Femoral biomechanical properties were strongly associated with femoral width in the anteroposterior (AP) direction and cortical thickness--geometric properties with complex genetic regulation. Vertebral vBMD and biomechanical properties measured in BXH RI strains showed a greater variability than either B6 or C3H progenitors, suggesting both progenitor strains have independent subsets of genes that yield similar vBMD and strength. The microCT and pQCT data suggested that the distribution of vertebral mineral into cortical and trabecular compartments is regulated genetically. Although the B6 and C3H progenitors had similar vertebral strength, their vertebral structures were markedly different: B6 had good trabecular bone structure and modest cortical bone mineral content (BMC), whereas C3H had high cortical BMC combined with a deficiency in trabecular structure. These structural traits segregated independently in the BXH RI strains. Finally, vertebral strength was not correlated consistently with femoral strength among the BXH RI strains, suggesting genetic regulation of bone strength is site specific.  相似文献   

8.
To determine the effects of tower climbing exercise on mass, strength, and local turnover of bone, 50 Sprague-Dawley rats, 10 weeks of age, were assigned to five groups: a baseline control and two groups of sedentary and exercise rats. Rats voluntarily climbed the 200-cm tower to drink water from the bottle set at the top of it. In 4 weeks, the trabecular bone formation rate (BFR/bone surface [BS]), bone volume (BV/TV), and trabecular thickness (Tb.Th) of both the lumbar vertebra and tibia and the bone mineral density (BMD) of the tibia increased, while the osteoclast surface (Oc.S) decreased. The parameter values in the midfemur, such as the total cross-sectional area, the moment of inertia, the periosteal mineralizing surface (MS/BS), mineral apposition rate (MAR), BFR/BS, and bending load increased, while the endosteal MAR decreased. In 8 weeks, the increases in the bone mineral content (BMC), BMD of the femur and tibia, and the bending load values of the femur were significant, but the climbing exercise did not increase BMC, BMD, or the compression load of the lumbar vertebra. Although the periosteal MS/BS, MAR, and BFR/BS increased, the endosteal MS/BS, MAR, and BFR/BS decreased. These results show that climbing exercise has a beneficial effect on the femoral cortex and tibia trabecular, rather than the vertebral trabecular. In the midfemur, effects on bone formation are site specific, supporting accelerated cortical drift by mechanical stimulation.  相似文献   

9.
We explore the relationship of region-specific densitometric and geometry-based (cortical) parameters at the distal radial metaphysis with gender, age, and osteoporotic status, using multislice computed tomography (CT). We specifically test the hypothesis that these parameters can improve the prediction of mechanical strength of the distal radius vs bone mass (bone mineral content [BMC]). The BMC was determined in 56 forearm specimens with peripheral dual-energy X-ray absorptiometry (DXA). Trabecular and cortical density and geometric properties of the metaphyseal cortex were determined using multislice CT and proprietary image analysis software. Specimens were tested to failure in a fall simulation, maintaining the integrity of the elbow joint and hand. Women displayed significantly lower failure strength (-34%), BMC (-35%), trabecular density (-26%), and cortical area (-12%) than men. The reduction of trabecular density with age and osteoporotic status was stronger than that of cortical density or thickness. DXA explained approx 50% (r2) of the variability in bone failure loads. This proportion was slightly increased (55%) when adding geometry-based parameters. The study suggests that high-resolution tomographic measurements with current clinical imaging methodology can marginally improve the prediction of mechanical failure strength. Further efforts are required to improve spatial resolution for determining metaphyseal cortical properties clinically.  相似文献   

10.
An orally active, highly potent analog of 1alpha,25-dihydroxyvitamin D3, 2MD, restores trabecular and cortical bone mass and strength by stimulating periosteal bone formation and decreasing trabecular bone resorption in OVX rats with established osteopenia. INTRODUCTION: The purposes of this study were to determine the effects of long-term treatment with 2-methylene-19-nor-(20S)-1alpha,25(OH)2D3 (2MD) on restoring bone mass and bone strength in ovariectomized (OVX) rats with established osteopenia and 2MD effects on bone formation and bone resorption on trabecular and cortical bone surfaces. MATERIALS AND METHODS: Sprague-Dawley female rats were sham-operated (sham) or OVX at 4 months of age. Beginning at 8 weeks after OVX, OVX rats were orally dosed with 2MD at 0.5, 1, 2.5, 5, or 10 ng/kg/day for 16 weeks. Serum calcium was measured at 6, 13, and 16 weeks after treatment, and bone mass and structure, bone formation, bone resorption, and bone strength were determined at the end of the study. RESULTS: Serum calcium did not change significantly with 2MD at 0.5 or 1 ng/kg/day, whereas it significantly increased at 2.5, 5, or 10 ng/kg/day. 2MD significantly and dose-dependently increased total body BMD, total BMC, and stiffness of femoral shaft (FS), maximal load and stiffness of femoral neck, and toughness of the fifth lumbar vertebral body (L5) at all doses compared with OVX controls. In 2MD-treated OVX rats, there was a dose-dependent increase in total BMD and total BMC of the distal femoral metaphysis (DFM), trabecular bone volume of L3, ultimate strength and stiffness of L5, and maximal load of FS compared with OVX controls at dosages>or=1 ng/kg/day. At dosages>2.5 ng/kg/day, most of the bone mass and bone strength related parameters were significantly higher in 2MD-treated OVX rats compared with sham controls. Bone histomorphometric analysis of L3 showed dose-dependent decreases in osteoclast number and osteoclast surface on trabecular bone surface and a dose-dependent increase in periosteal bone formation associated with 2MD treatment. CONCLUSIONS: 2MD not only restored both trabecular and cortical bone mass but also added bone to the osteopenic OVX rats beyond that of sham controls by stimulating bone formation on the periosteal surface and decreasing bone resorption on the trabecular surface. 2MD increased bone mass and strength at doses that did not induced hypercalcemia.  相似文献   

11.
Osteoporosis is a syndrome of excessive skeletal fragility that results from both the loss of trabecular bone mass and trabecular bone connectivity. Recently, bFGF has been found to increase trabecular bone mass in osteoporotic rats. The purpose of this study was to compare how trabecular bone architecture, bone cell activity, and strength are altered by two different bone anabolic agents, bFGF and hPTH(1-34), in an osteopenic rat model. MATERIALS AND METHODS: Six-month-old female Sprague-Dawley rats (n = 74) were ovariectomized (OVX) or sham-operated (sham) and maintained untreated for 2 months. Then OVX rats were subcutaneously injected with basic fibroblast factor (bFGF; 1 mg/kg, 5 days/week), human parathyroid hormone [hPTH(1-34); 40 microg/kg, 5 days/week], or vehicle for 60 days (days 60-120). Sham-operated and one group of OVX animals were injected with vehicle. Biochemical markers of bone turnover (urinary deoxypyridinoline cross-links; Quidel Corp., San Diego, CA, USA) and serum osteocalcin (Biomedical Technologies, Stroughton, MA, USA) were obtained at study days 0, 60, 90, and 120 and analyzed by ELISA. At death, the right proximal tibial metaphysis was removed, and microcomputed tomography was performed for trabecular bone structure and processed for histomorphometry to assess bone cell activity. The left proximal tibia was used for nanoindentation/mechanical testing of individual trabeculae. The data were analyzed with Kruskal Wallis and post hoc testing as needed. RESULTS: Ovariectomy at day 60 resulted in about a 50% loss of trabecular bone volume compared with sham-treated animals. By day 120 post-OVX, OVX + vehicle treated animals had decreased trabecular bone volume, connectivity, number, and high bone turnover compared with sham-operated animals [p < 0.05 from sham-, hPTH(1-34)-, and bFGF-treated groups]. Treatment of OVX animals with bFGF and hPTH(1-34) both increased trabecular bone mass, but hPTH(1-34) increased trabecular thickness and bFGF increased trabecular number and connectivity. Histomorphometry revealed increased mineralizing surface and bone formation rate in both bFGF and hPTH(1-34) animals. However, osteoid volume was greater in bFGF-treated animals compared with both the hPTH(1-34) and OVX + vehicle animals (p < 0.05). Nanoindentation by atomic force microscope was performed on approximately 20 individual trabeculae per animal (three animals per group) and demonstrated that elastic modulus and hardness of the trabeculae in bFGF-treated animals were similar to that of the hPTH-treated and sham + vehicle-treated animals. CONCLUSION: Both hPTH(1-34) and bFGF are anabolic agents in the osteopenic female rat. However, hPTH(1-34) increases trabecular bone volume primarily by thickening existing trabeculae, whereas bFGF adds trabecular bone mass through increasing trabecular number and trabecular connectivity. These results suggest the possibility of sequential treatment paradigms for severe osteoporosis.  相似文献   

12.
Denosumab is a fully human monoclonal antibody that inhibits RANKL, a protein essential for osteoclast formation, function, and survival. Osteoclast inhibition with denosumab decreased bone resorption, increased bone mineral density (BMD), and reduced fracture risk in osteoporotic women. The effects of 16months of continuous osteoclast inhibition on bone strength parameters were examined in adult ovariectomized (OVX) cynomolgus monkeys (cynos). One month after surgery, OVX cynos (n=14-20/group) were treated monthly with subcutaneous vehicle (OVX-Veh) or denosumab (25 or 50mg/kg). Sham-operated controls were treated with vehicle (n=17). OVX-Veh exhibited early and persistent increases in the resorption marker CTx, followed by similar increases in the formation marker BSAP, consistent with increased bone remodeling. Denosumab reduced CTx and BSAP throughout the study to levels significantly lower than in OVX-Veh or Sham-Veh, consistent with reduced remodeling. Increased remodeling in OVX-Veh led to absolute declines in areal BMD of 4.3-7.4% at the lumbar spine, total hip, femur neck, and distal radius (all p<0.05 vs baseline). Denosumab significantly increased aBMD at each site to levels exceeding baseline or OVX-Veh controls, and denosumab significantly increased cortical vBMC of the central radius and tibia by 7% and 14% (respectively) relative to OVX-Veh. Destructive biomechanical testing revealed that both doses of denosumab were associated with significantly greater peak load for femur neck (+19-34%), L3-L4 vertebral bodies (+54-55%), and L5-L6 cancellous cores (+69-82%) compared with OVX-Veh. Direct assessment of bone tissue material properties at cortical sites revealed no significant changes with denosumab. For all sites analyzed biomechanically, bone mass (BMC) and strength (load) exhibited strong linear correlations (r(2)=0.59-0.85 for all groups combined). Denosumab did not alter slopes of load-BMC regressions at any site, and denosumab groups exhibited similar or greater load values at given BMC values compared with OVX-Veh or Sham. In summary, denosumab markedly reduced biochemical markers of bone remodeling and increased cortical and trabecular bone mass in adult OVX cynos. Denosumab improved structural bone strength parameters at all sites analyzed, and strength remained highly correlated with bone mass. There was no evidence for reduced material strength properties of cortical bone with denosumab over this time period, which approximates to 4years of remodeling in the slower-remodeling adult human skeleton. These data indicate that denosumab increased bone strength by increasing bone mass and preserving bone quality.  相似文献   

13.
Cortical and trabecular load sharing in the human vertebral body.   总被引:4,自引:0,他引:4  
The biomechanical role of the vertebral cortical shell remains poorly understood. Using high-resolution finite element modeling of a cohort of elderly vertebrae, we found that the biomechanical role of the shell can be substantial and that the load sharing between the cortical and trabecular bone is complex. As a result, a more integrative measure of the trabecular and cortical bone should improve noninvasive assessment of fracture risk and treatments. INTRODUCTION: A fundamental but poorly understood issue in the assessment of both osteoporotic vertebral fracture risk and effects of treatment is the role of the trabecular bone and cortical shell in the load-carrying capacity of the vertebral body. MATERIALS AND METHODS: High-resolution microCT-based finite element models were developed for 13 elderly human vertebrae (age range: 54-87 years; 74.6 +/- 9.4 years), and parameter studies-with and without endplates-were performed to determine the role of the shell versus trabecular bone and the effect of model assumptions. RESULTS: Across vertebrae, whereas the average thickness of the cortical shell was only 0.38 +/- 0.06 mm, the shell mass fraction (shell mass/total bone mass)-not including the endplates-ranged from 0.21 to 0.39. The maximum load fraction taken by the shell varied from 0.38 to 0.54 across vertebrae and occurred at the narrowest section. The maximum load fraction taken by the trabecular bone varied from 0.76 to 0.89 across vertebrae and occurred near the endplates. Neither the maximum shell load fraction nor the maximum trabecular load fraction depended on any of the densitometric or morphologic properties of the vertebra, indicating the complex nature of the load sharing mechanism. The variation of the shell load-carrying capacity across vertebrae was significantly altered by the removal of endplates, although these models captured the overall trend within a vertebra. CONCLUSIONS: The biomechanical role of the thin cortical shell in the vertebral body can be substantial, being about 45% at the midtransverse section but as low as 15% close to the endplates. As a result of the complexity of load sharing, sampling of only midsection trabecular bone as a strength surrogate misses important biomechanical information. A more integrative approach that combines the structural role of both cortical and trabecular bone should improve noninvasive assessment of vertebral bone strength in vivo.  相似文献   

14.
Summary The susceptibility to glucocorticoid-induced bone loss may vary in different parts of the skeleton. We studied 62 patients with rheumatoid arthritis, 26 of whom were on low-dose glucocorticoid treatment. Bone mineral content (BMC) in the forearm was measured by single photon absorptiometry at a cortical, diaphyseal, and at a mixed cortical and trabecular, metaphyseal site. Lumbar BMC was measured by dual energy computed tomography in a trabecular and a cortical region of interest. The presence of vertebral deformities was evaluated on lateral spine radiographs. After correction for possibly confounding variables, prednisone therapy significantly influenced BMC at both the trabecular (-22.0%, 95% confidence interval-36.0% to-8.1%) and cortical (-24.8%, 95% confidence interval-39.3% to-10.3%) lumbar site. A significant effect was also seen at the metaphyseal (-15.7%, 95% confidence interval-27.1% to-4.2%), but not the diaphyseal (-3.9%, 95% confidence interval-14.1% to 6.4%) site in the forearm. Correlations between peripheral and vertebral BMC were moderate at best. The diaphyseal to metaphyseal BMC ratio did not identify patients with vertebral osteoporosis. It is concluded that the anterior cortical rim of the vertebral body is more susceptible to the effects of glucocorticoids than the cortical bone in the forearm, and that measurements of trabecular and anterior cortical vertebral BMC are essential in the management of patients with possible glucocorticoid-associated osteoporosis.  相似文献   

15.
CP432 is a newly discovered, nonprostanoid EP4 receptor selective prostaglandin E2 agonist. CP432 stimulates trabecular and cortical bone formation and restores bone mass and bone strength in aged ovariectomized rats with established osteopenia. INTRODUCTION: The purpose of this study was to determine whether a newly discovered, nonprostanoid EP4 receptor selective prostaglandin E2 (PGE2) agonist, CP432, could produce bone anabolic effects in aged, ovariectomized (OVX) rats with established osteopenia. MATERIALS AND METHODS: CP432 at 0.3, 1, or 3 mg/kg/day was given for 6 weeks by subcutaneous injection to 12-month-old rats that had been OVX for 8.5 months. The effects on bone mass, bone formation, bone resorption, and bone strength were determined. RESULTS: Total femoral BMD increased significantly in OVX rats treated with CP432 at all doses. CP432 completely restored trabecular bone volume of the third lumbar vertebral body accompanied with a dose-dependent decrease in osteoclast number and osteoclast surface and a dose-dependent increase in mineralizing surface, mineral apposition rate, and bone formation rate-tissue reference in OVX rats. CP432 at 1 and 3 mg/kg/day significantly increased total tissue area, cortical bone area, and periosteal and endocortical bone formation in the tibial shafts compared with both sham and OVX controls. CP432 at all doses significantly and dose-dependently increased ultimate strength in the fifth lumber vertebral body compared with both sham and OVX controls. At 1 and 3 mg/kg/day, CP432 significantly increased maximal load in a three-point bending test of femoral shaft compared with both sham and OVX controls. CONCLUSIONS: CP432 completely restored trabecular and cortical bone mass and strength in established osteopenic, aged OVX rats by stimulating bone formation and inhibiting bone resorption on trabecular and cortical surfaces.  相似文献   

16.
Human parathyroid hormone (hPTH) is currently the only treatment for osteoporosis that forms new bone. Previously we described a fish equivalent, Fugu parathyroid hormone 1 (fPth1) which has hPTH-like biological activity in vitro despite fPth1(1-34) sharing only 53% identity with hPTH(1-34). Here we demonstrate the in vivo actions of fPth1(1-34) on bone. In study 1, young male rats were injected intermittently for 30 days with fPth1 [30 microg-1,000 microg/kg body weight (b.w.), (30fPth1-1,000fPth1)] or hPTH [30 microg-100 microg/kg b.w. (30hPTH-100hPTH)]. In proximal tibiae at low doses, the fPth1 was positively correlated with trabecular bone volume/total volume (TbBV/TV) while hPTH increased TbBV/TV, trabecular thickness (TbTh) and trabecular number (TbN). 500fPth1 and 1000fPth1 increased TbBV/TV, TbTh, TbN, mineral apposition rate (MAR) and bone formation rate/bone surface (BFR/BS) with a concomitant decrease in osteoclast surface and number. In study 2 ovariectomized (OVX), osteopenic rats and sham operated (SHAM) rats were injected intermittently with 500 microg/kg b.w. of fPth1 (500fPth1) for 11 weeks. 500fPth1 treatment resulted in increased TbBV/TV (151%) and TbTh (96%) in the proximal tibiae due to increased bone formation as assessed by BFR/BS (490%) and MAR (131%). The effect was restoration of TbBV/TV to SHAM levels without any effect on bone resorption. 500fPth1 also increased TbBV/TV and TbTh in the vertebrae (L6) and cortical thickness in the mid-femora increasing bone strength at these sites. fPth1 was similarly effective in SHAM rats. Notwithstanding the low amino acid sequence homology with hPTH (1-34), we have clearly established the efficacy of fPth1 (1-34) as an anabolic bone agent.  相似文献   

17.
Parathyroid hormone (PTH) has variable actions on bone. Chronically increased PTH is catabolic and leads to osteoporosis; yet intermittent administration is anabolic and increases bone mass. PTH deficiency is associated with decreased bone remodeling and increased bone mass. However, the effects of PTH replacement therapy on bone in hypoparathyroidism are not well known. We discontinued calcitriol therapy and treated 5 hypoparathyroid subjects (2 adults and 3 adolescents) with synthetic human PTH 1‐34 (hPTH 1‐34), injected two to three times daily for 18 months, with doses individualized to maintain serum calcium at 1.9 to 2.25 mmol/L. Biochemical markers and bone mineral density (BMD) were assessed every 6 months; iliac‐crest biopsies were performed before and after 1 year of treatment. hPTH 1‐34 therapy significantly increased bone markers to supranormal levels. Histomorphometry revealed that treatment dramatically increased cancellous bone volume and trabecular number and decreased trabecular separation. Changes in trabecular width were variable, suggesting that the increase in trabecular number was due to the observed intratrabecular tunneling. Cortical width remained unchanged; however, hPTH 1‐34 treatment increased cortical porosity. Cancellous bone remodeling was also stimulated, inducing significant changes in osteoid, mineralizing surface, and bone formation rate. Similar changes were seen in endocortical and intracortical remodeling. BMD Z‐scores were unchanged at the spine and femoral neck. Total hip Z‐scores increased; however, total body BMD Z‐scores decreased during the first 6 months of treatment and then stabilized, remaining significantly decreased compared to baseline. Radial Z‐scores also decreased with treatment; this was most pronounced in the growing adolescent. Daily hPTH 1‐34 therapy for hypoparathyroidism stimulated bone turnover, increased bone volume, and altered bone structure in the iliac crest. These findings suggest that treatment with hPTH 1‐34 in hypoparathyroid adults and adolescents has varying effects in the different skeletal compartments, leading to an increase in trabecular bone and an apparent trabecularization of cortical bone. Published 2012 American Society for Bone and Mineral Research. This article is a US Government work and, as such, is in the public domain in the United States of America.  相似文献   

18.
Summary We investigated the effect of playing regular golf and HRT on lumbar and thoracic vertebral bone parameters (measured by QCT) in 72 post-menopausal women. The main finding of this study was that there was positive interaction between golf and HRT on vertebral body CSA and BMC at the thoracic 12 and lumbar 2 vertebra but not the third and seventh thoracic vertebras. Introduction Identifying specific exercises that load the spine sufficiently to be osteogenic is an important component of primary osteoporosis prevention. The aim of this study was to determine if in postmenopausal women regular participation in golf resulted in greater paravertebral muscle mass and improved vertebral bone strength. Methods Forty-seven postmenopausal women who played golf regularly were compared to 25 controls. Bone parameters at the mid-vertebral body were determined by QCT at spinal levels T3, T7, T12 and L2 (cross-sectional area (CSA), total volumetric BMD (vBMD), trabecular vBMD of the central 50% of total CSA, BMC and cortical rim thickness). At T7 and L2, CSA of trunk muscles was determined. Results There was a positive interaction between golf and HRT for vertebral CSA and BMC at T12 and L2, but not at T3 or T7 (p ranging < 0.02 to 0.07). Current HRT use was associated with a 10–15% greater total and trabecular vBMD at all measured vertebral levels. Paravertebral muscle CSA did not differ between groups. Vertebral CSA was the bone parameter significantly related to muscle CSA. Conclusion These findings provide preliminary evidence that playing golf may improve lower spine bone strength in postmenopausal women who are using HRT.  相似文献   

19.
Significant relationships exist between areal bone mineral density (BMD) derived from dual energy X-ray absorptiometry (DXA) and bone strength. However, the predictive validity of BMD for osteoporotic vertebral fractures remains suboptimal. The diagnostic sensitivity of DXA in the lumbar spine may be improved by assessing BMD from lateral-projection scans, as these might better approximate the objective of measuring the trabecular-rich bone in the vertebral body, compared to the commonly-used posterior-anterior (PA) projections. Nowadays, X-ray micro-computed tomography (μCT) allows non-destructive three-dimensional structural characterization of entire bone segments at high resolution. In this study, human lumbar cadaver spines were examined ex situ by DXA in lateral and PA projections, as well as by μCT, with the aims (1) to investigate the ability of bone quantity measurements obtained by DXA in the lateral projection and in the PA projection, to predict variations in bone quantity measurements obtained by μCT, and (2) to assess their respective capabilities to predict whole vertebral body strength, determined experimentally. Human cadaver spines were scanned by DXA in PA projections and lateral projections. Bone mineral content (BMC) and BMD for L2 and L3 vertebrae were determined. The L2 and L3 vertebrae were then dissected and entirely scanned by μCT. Total bone volume (BV(tot)=cortical+trabecular), trabecular bone volume (BV), and trabecular bone volume fraction (BV/TV) were calculated over the entire vertebrae. The vertebral bodies were then mechanically tested to failure in compression, to determine ultimate load. The variables BV(tot), BV, and BV/TV measured by μCT were better predicted by BMC and BMD measured by lateral-projection DXA, with higher R(2) values and smaller standard errors of the estimate (R(2)=0.65-0.90, SEE=11%-18%), compared to PA-projection DXA (R(2)=0.33-0.53, SEE=22%-34%). The best predictors of ultimate load were BV(tot) and BV assessed by μCT (R(2)=0.88 and R(2)=0.81, respectively), and BMC and BMD from lateral-projection DXA (R(2)=0.82 and R(2)=0.70, respectively). Conversely, BMC and BMD from PA-projection DXA were lower predictors of ultimate load (R(2)=0.49 and R(2)=0.37, respectively). This ex vivo study highlights greater capabilities of lateral-projection DXA to predict variations in vertebral body bone quantity as measured by μCT, and to predict vertebral strength as assessed experimentally, compared to PA-projection DXA. This provides basis for further exploring the clinical application of lateral-projection DXA analysis.  相似文献   

20.
Hamrick MW  Pennington C  Newton D  Xie D  Isales C 《BONE》2004,34(3):376-383
Leptin is a hormone secreted by adipocytes that can regulate bone mass through a central, neuroendocrine signaling pathway. We tested the hypothesis that the response of bone tissue to altered leptin signaling is not uniform throughout the skeleton, but may vary between different skeletal regions and between cortical and trabecular moieties. We investigated the effects of leptin deficiency on muscle mass and bone architecture in obese, leptin-deficient (ob/ob) mice, and in lean controls. Results indicate that the obese mice weigh approximately twice as much as the lean mice, but the quadriceps muscles of the ob/ob mice are 40% smaller than those of controls. Leptin-deficient mice have significantly shorter femora, lower femoral bone mineral content (BMC), bone mineral density (BMD), cortical thickness, and trabecular bone volume compared to lean mice. Marrow tissue from the femora of ob/ob mice also shows a marked increase in adipocyte number compared to that of normal mice. In contrast to the pattern observed in the femur, ob/ob mice have significantly increased vertebral length, lumbar BMC, lumbar BMD, and trabecular bone volume compared to lean controls. Few adipocytes are observed in bone marrow from lumbar vertebrae of ob/ob mice, despite being numerous in marrow of the femur. However, like the femur, significant cortical thinning is also observed in the spine. These results indicate that the effects of altered leptin signaling on bone differ significantly between axial and appendicular regions, and may be mediated in part by muscle mass. The muscle hypoplasia, increased marrow adipogenesis, and decreased bone mass observed in the hindlimbs of ob/ob mice are also observed with aging in humans, suggesting that the ob/ob mouse may be a new and useful animal model for studying the relationship between bone marrow adipogenesis and osteopenia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号