首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
An experiment was conducted to determine whether multi-frequency continuous bimanual circling movements of varying difficulty (1:2. 2:3, 3:4, and 4:5) could be effectively performed following relatively little practice when on-line continuous relative velocity feedback is provided. The between-subjects results indicate extremely effective bimanual multi-frequency performance for all coordination patterns with relatively stable and continuous movements of both limbs. The findings suggest that the previous performance effects using Lissajous feedback with reciprocal movement can be extended to circling movements using on-line relative velocity feedback. Contrary to the long-held position that these coordination patterns result in increasing difficulty, we failed to find systematic relative velocity error, variability, or bias differences between the participants performing the various multi-frequency coordination patterns. Indeed, coordination error, variability, and biases were remarkably low for each of the tasks. The results clearly indicate the ease with which participants are able to produce bimanual coordination patterns typically considered difficult if not impossible when salient visual information is provided that allows the participants to detect and correct their coordination errors.  相似文献   

2.
Bimanual 1:1 coordination patterns other than in-phase (0°) and anti-phase (180°) have proven difficult to perform even with extended practice. The difficulty has been attributed to phase attraction that draws the coordination between the limbs towards the bimanual patterns of in-phase and anti-phase and variability associated with the activation of non-homologous muscles via crossed and uncrossed cortical pathways. We found participants could very effectively produce a large range of supposedly unstable coordination patterns (between 0° and 180° in 30° increments) after only 3 min of practice when integrated feedback (Lissajous plots) was provided and other perceptual and attentional distractions were minimized. These findings clearly indicate that the perception-action system is fully capable of producing a wide range of bimanual coordination patterns and that the reason for the failure to produce these patterns in previous experiments reside in the perceptual information and attentional requirements typically found in experimental testing environments.  相似文献   

3.
Both discrete and continuous bimanual coordination patterns are difficult to effectively perform when the two limbs are required to perform different movements patterns, move at different velocities and/or move different amplitudes unless some form of integrated feedback is provided. The purpose of the present experiment was to determine the degree to which a complex bimanual coordination pattern could be performed when integrated feedback and movement template are provided. The complex bimanual coordination pattern involved reciprocal movements of the two limbs under different difficulty requirements. As defined by Fitts’ index of difficulty (ID), the left arm (ID = 3, A = 16°, W = 4°) task was of lower difficulty than the right arm task (ID = 5, A = 32°, W = 2°). Note that the left and right limb movements are also different in terms of movement time, movement velocity, accuracy requirements and amplitude as well as one movement was continuous and the other intermittent. Participants were provided 2 blocks of 9 trials in the bimanual condition (30 s/trial). Following the bimanual phase, participants performed two unimanual test trials—one with each limb. The results demonstrated that the performance for each limb in the bimanual condition was similar to the performance for the same limb and conditions in the unimanual control conditions. The similarity was indicated by the same movement speed, movement structure, endpoint variability and hit rates for the bimanual and unimanual conditions. The results support our hypothesis that people can overcome the intrinsic difficulties associated with performing complex bimanual coordination patterns when provided appropriate perceptual information feedback that allows them to detect and correct coordination errors.  相似文献   

4.
The purpose of the present experiment was to observe the performance of participants attempting to produce a 1:1 bimanual coordination pattern with 90° relative phase between the arms when feedback concerning the movement of the two limbs was integrated within a Lissajous plot and when this information was withdrawn. One group was paced with an auditory metronome and the other was encouraged to increase frequency when they fell below the goal frequency. We predicted that providing a salient integrated feedback display without a metronome would allow participants to effectively tune-in the goal relative phase pattern within several minutes; instead of several days as typically found in the literature when the metronome was used. The data indicated remarkably effective performances after 5 min of practice when the metronome was not used, with motion of both limbs harmonic in nature, and continuous relative phase errors (~10°) and standard deviation of continuous relative phase (~10°) relatively small. This seems remarkable given that this coordination pattern has proven relatively difficult to perform under normal and Lissajous feedback conditions even after several days of practice. As predicted relative phase errors and variability increased substantially when the metronome was used. When the extrinsic feedback was withdrawn all participants tended to drift from the required 90° relative phase, but the cycle duration variability in the two limbs remained stable and limb motion remained harmonic in nature. The current findings suggest that some of the difficulty typically associated with producing various relative phase patterns is due to the less than optimal perceptual information available in the various testing situations and the use of pacing metronomes.
Charles H. SheaEmail:
  相似文献   

5.
The purpose of the experiment was to determine the influence of Lissajous feedback on 1:1 bimanual coordination patterns (0°, 90°, and 180° phase lags) when the movement amplitudes of the two limbs were different (30°, 60°). The present data supports the notion that the lead–lag relationship as well as amplitude assimilation observed in the literature can be partially attributed to the visual-perceptual factors present in the testing environment. When participants are provided integrated feedback in the form of Lissajous plots much of the lead–lag and amplitude assimilation effects were eliminated, and relative phase error and variability were also greatly reduced after only 3 min of practice under each condition.  相似文献   

6.
The experiment was designed to replicate and extend to an integrated feedback condition the pattern of movement time results found by Kelso et al. (J Exp Psychol Hum Percept Perform 5:229–238, 1979a, Science 204:1029–1031, 1979b) where the simultaneous movement of one hand to a low ID target and the other to a higher ID target indicated “a tight coordinate coupling between the hands” (p. 229). In the present experiment, a control group was provided feedback that depicted the independent movement of the two limbs under low and higher indexes of difficulty (ID). A Lissajous group was provided integrated feedback in the form of a Lissajous plot. The results indicated a pattern of results for the control and Lissajous groups similar to that found by Kelso et al. for one and two-limb movements to the same difficulty targets. The control group also replicated the finding for two-limb movements to mixed ID tasks. However, the Lissajous group simultaneously produced disparate movement in the mixed target conditions. The results are consistent with recent findings indicating that when provided salient integrated feedback participants can effectively produce disparate movements of the two limbs.  相似文献   

7.
Two experiments are reported that examined the influence of spatial orientation of the upper limbs in bimanual coordination. In both experiments, the upper limbs were oriented in either parallel, orthogonal, or obtuse spatial configurations and participants were asked to move their limbs continuously in temporal (1:1) synchrony, prepared in either in-phase or anti-phase modes of coordination. Bimanual coordination trials in Experiment 1 were paced by a metronome at one of four frequencies (1.0, 1.5, 2.0 or 2.5 Hz). Measures of relative phase accuracy and stability both revealed that, as metronome frequency increased, in-phase coordination dominated for the parallel spatial orientation, anti-phase coordination dominated for the orthogonal spatial orientation, and neither pattern dominated for the obtuse spatial orientations. In Experiment 2, an intentional switch method replicated and extended these influences of spatial orientation. The time to voluntarily switch from an anti-phase pattern to an in-phase pattern was faster than an in-phase to anti-phase switch (confirming support for the dominance of the in-phase pattern), but this was true only for the parallel spatial orientation. The reverse was true for the orthogonal spatial orientation (i.e., faster from in-phase to anti-phase), and no difference in switch times was observed for an obtuse spatial orientation. These findings support and extend previous research regarding the influence of spatial orientation in bimanual coordination and may be attributed to the role of, and potential interactions between, egocentric, allocentric, and mechanical constraints during action.  相似文献   

8.
 The basal ganglia have traditionally been associated with motor control functions and this view has prevailed since the late nineteenth century. Recent experimental studies suggest that this neuroanatomical system is also critically involved in motor learning. In the present study, motor learning/transfer capabilities were compared between patients with Parkinson’s disease and a group of normal elderly people. Subjects practiced a bimanual coordination task that required continuous flexion-extension movements in the transverse plane with a 90° phase offset between the forearms. During acquisition, augmented visual feedback of the relative motions was provided in real time. The findings revealed improvements in the bimanual coordination pattern across practice in both groups when the augmented concurrent feedback was present. However, when transferred to performance conditions in which the augmented information was withheld, performance deteriorated (relative to the augmented condition) and this effect was more prevalent in the Parkinson patients. More specifically, no improvement in interlimb coordination was observed under nonaugmented feedback conditions across practice. Instead, a drift toward the preferred in-phase and anti-phase coordination patterns was evident. The present findings suggest that Parkinson patients can improve their performance on a new motor task, but they remain strongly dependent on augmented visual information to guide these newly acquired movements. The apparent adoption of a closed-loop control mode is accompanied with decreases in movement speed in order to use the feedback to ensure accuracy. When the augmented feedback is withheld and the movement pattern is to be controlled by means of intrinsic information feedback sources, performance is severely hampered. The findings are hypothesized to indicate that learning/transfer is affected in Parkinson patients who apparently prefer some constancy in the environmental contingencies under which practice takes place. The present findings are consistent with the notion that the basal ganglia form a critical neuroanatomical substrate for motor learning. Received: 7 December 1995 / Accepted: 12 August 1996  相似文献   

9.
An experiment was designed to determine the effectiveness of auditory and visual models in the learning of a 2:3 bimanual tapping pattern. Participants were randomly assigned to an auditory model, visual model, auditory + visual model, or a control (visual metronome) group. The task for all groups was to tap a left side force transducer with the left hand and a right side force transducer with the right hand in attempt to produce the desired 2:3 bimanual coordination pattern. The auditory model consisted of a series of tones representing the goal pattern played prior to each practice trial. The visual model consisted of a visual display representing the goal tapping pattern. Visual pacing metronomes were provided to the control group. The right and left side metronomes flashed during the trial in a pattern representing the goal tapping pattern. Subjects in all groups performed 14 practice trials consisting of 15 s each devoted to tapping the goal pattern (total practice time = 3.5 min). A retention test without the aid of the models or metronomes was administered following the practice trials. The results for the model groups indicated extremely effective performance of the bimanual coordination patterns for the auditory, visual, and auditory + visual model conditions with not only the relative, but also the absolute characteristics of the models exhibited during retention testing. Retention performance for the visual metronome condition was less accurate and more variable than the three model conditions. In addition, the auditory + visual model condition resulted in retention performance that was more stable than the auditory model condition.  相似文献   

10.
Previous behavioural studies have provided a framework for understanding coordination dynamics using traditional dual-task methodology. The central cost associated with stabilising bimanual coordination patterns has been inferred from performance trade-offs during the concurrent performance of a probe reaction time (RT) task. The present study aimed to provide a direct measure of central cost by assessing electrophysiological correlates of performance trade-offs under dual-task conditions. Event-related potentials (ERPs) were recorded from 16 participants while an anti-phase bimanual coordination task and a visual three-stimulus task were performed under single task conditions and under dual-task conditions in which either task was prioritised. The visual task required a foot response to low probability target stimuli, while low probability distracter and high probability standard stimuli were ignored. Consistent with previous research, there was a performance trade-off between pattern stability and RT to visual targets when the coordination task was prioritised relative to when the visual task was prioritised. This was accompanied by a significant reduction in central P3a amplitude elicited by distracter stimuli and parietal P3b amplitude elicited by target stimuli. These findings indicate that prioritisation and thus stabilisation of the motor task reduced the amount of central/perceptual and automatic attentional resources available to perform the visual task providing insight into CNS mechanisms that constrain the coordination of movement through the allocation of attentional resources.  相似文献   

11.
Bimanual movement disorders are common dysfunctions post stroke. This stroke study investigated bimanual force control capabilities to determine the effect of coupled bimanual movement training on bimanual coordination and motor synergy. Stroke participants (N = 11) completed three bimanual force control tasks at 5, 25, and 50 % of maximum voluntary contraction before and after coupled bimanual movement training. Root mean square error (RMSE), approximate entropy, correlation, and bimanual motor synergy were analyzed in two-way completely within-subjects ANOVAs (Test Session × Force Level: 2 × 3). Multiple linear regression analysis determined the relationship between RMSE and other force control measures. The analyses revealed three important findings: (1) RMSE decreased from baseline to posttest (2) negative correlation (e.g., error compensation) and bimanual motor synergy increased at 25 and 50 % after rehabilitation, and (3) increased bimanual motor synergy was strongly associated with decreased RMSE after training. The findings indicate that coupled bimanual movement training improved force control performance, bimanual coordination, and motor synergies. Indeed, the present findings extend bimanual motor synergies as a meaningful indicator for estimating task performance improvements. Finally, bimanual force control is a valid outcome measure in quantifying progress toward motor recovery post stroke.  相似文献   

12.
The present study investigated the influence of a bilateral exhaustive exercise on the stability of bimanual anti-phase coordination pattern and attentional demands. Eight subjects performed the anti-phase coordination pattern in two sessions: an Exhausting Session and a Control Session. During the Exhausting Session, subjects performed the bimanual coordination after exhaustion of forearms muscles (i.e. endurance time test). For the Control Session, no endurance time test was previously designed before the performance of anti-phase coordination. Within these experimental sessions, two levels of load (loaded and unload) and two frequencies (1.75 and 2.25 Hz) were also manipulated during the bimanual task. Attentional demands associated with performing the anti-phase coordination pattern was measured via a probe reaction time task (RT). The results showed that relative phase variability was higher for the fastest frequency after the exhaustive exercise. Moreover, as a result of the previous muscle exercise, the observed phase coupling was less accurate. No significant effect was found concerning the attentional demands as assessed through RT. The present findings suggest that the muscle exhaustion affects bimanual performance at a more peripheral level.  相似文献   

13.
Following earlier work by Mechsner et al. (Nature 414 (2001) 69), the purpose of this experiment was to determine the perceptual and motoric contributions to bimanual coordination. Twenty right-handed, healthy, young adults performed continuous, horizontal, linear movements of both upper limbs at frequencies of 1.5 and 2.0 Hz. The goal was to control the spatial-temporal displacement of two flags by coordinating upper limb movements in two perceptual conditions. In a congruent condition, the movement of the flags matched the movement of the upper limbs. In an incongruent condition, the movement of the flags was opposite to the movement of the upper limbs. Measures of error in coordination provided support primarily for a motor view of bimanual coordination, and failed to replicate the earlier findings of Mechsner et al.  相似文献   

14.
Although previous studies indicated that the stability properties of interlimb coordination largely result from the integrated timing of efferent signals to both limbs, they also depend on afference-based interactions. In the present study, we examined contributions of afference-based error corrections to rhythmic bimanual coordination using a kinesthetic tracking task. Furthermore, since we found in previous research that subjects activated their muscles in the tracked (motor-driven) arm, we examined the functional significance of this activation to gain more insight into the processes underlying this phenomenon. To these aims, twelve subjects coordinated active movements of the right hand with motor-driven oscillatory movements of the left hand in two coordinative patterns: in-phase (relative phase 0°) and antiphase (relative phase 180°). They were either instructed to activate the muscles in the motor-driven arm as if moving along with the motor (active condition), or to keep these muscles as relaxed as possible (relaxed condition). We found that error corrections were more effective in in-phase than in antiphase coordination, resulting in more adequate adjustments of cycle durations to compensate for timing errors detected at the start of each cycle. In addition, error corrections were generally more pronounced in the active than in the relaxed condition. This activity-related difference was attributed to the associated bilateral neural control signals (as estimated using electromyography), which provided an additional reference (in terms of expected sensory consequences) for afference-based error corrections. An intimate relation was revealed between the (integrated) motor commands to both limbs and the processing of afferent feedback.
Arne RidderikhoffEmail:
  相似文献   

15.
The present study addressed whether the timing of muscle activation and the relative direction of limb movements are dissociable constraints that may affect learning and transfer of bimanual coordination patterns, either independently or in combination. Subjects were assigned to two experimental groups in which the to-be-learned muscular phasing (135°) was either practiced with 45° (i.e., predominantly isodirectional) or 135° (i.e., predominantly nonisodirectional) of spatial relative phase (RP) across 2 days of practice. Prior to, during, and following practice, probe tests were held in which various relative phasing patterns were administered to assess transfer of learning. Converging evidence was obtained that the relative direction of moving limbs prominently constrained transfer of learning rather than muscular relationships. Acquisition of a specific pattern resulted in spontaneous positive transfer of learning to a new coordination pattern having the same spatial RP but not to a pattern with a different spatial RP, irrespective of muscular phasing relationships. In summary, the present results suggest that learning and transfer of coordination patterns is mediated by abstract directional codes that become part of the memory representation for bimanual coordination.  相似文献   

16.
The current project evaluated the relationship between the stability of intrapersonal coordination and the emergence of spontaneous interpersonal coordination. Participants were organized into pairs, and each participant was instructed to produce either an inphase or antiphase pattern of intrapersonal bimanual coordination using two hand-held pendulums, while simultaneously performing an interpersonal puzzle task. At issue was whether the emergence and stability of spontaneous interpersonal rhythmic coordination is influenced by ("Experiment 1") the stability of the intrapersonal coordination patterns produced by co-actors and ("Experiment 2") the congruency of the intrapersonal coordination patterns produced by co-actors. The stability of intrapersonal movement coordination did not affect the emergence of spontaneous interpersonal coordination. The degree of interpersonal coordination observed was similar when both participants in a pair produced either inphase or antiphase patterns of intrapersonal bimanual coordination. Moreover, the congruency of the intrapersonal coordination patterns only slightly affected the emergence of interpersonal coordination, with only marginally lower inphase interpersonal entrainment when participants produced incongruent patterns of intrapersonal coordination (e.g., inphase-antiphase). Interestingly, movement observation and the emergence of interpersonal coordination did not affect the stability of intrapersonal bimanual coordination. The results suggest that interlimb rhythmic bimanual coordination reflects a single intrapersonal perceptual-motor synergy and that these bimanual synergies (not individual limbs) are what become spontaneously entrained interpersonally.  相似文献   

17.
The underlying neural mechanisms of a perceptual bias for in-phase bimanual coordination movements are not well understood. In the present study, we measured brain activity with functional magnetic resonance imaging in healthy subjects during a task, where subjects performed bimanual index finger adduction–abduction movements symmetrically or in parallel with real-time congruent or incongruent visual feedback of the movements. One network, consisting of bilateral superior and middle frontal gyrus and supplementary motor area (SMA), was more active when subjects performed parallel movements, whereas a different network, involving bilateral dorsal premotor cortex (PMd), primary motor cortex, and SMA, was more active when subjects viewed parallel movements while performing either symmetrical or parallel movements. Correlations between behavioral instability and brain activity were present in right lateral cerebellum during the symmetric movements. These findings suggest the presence of different error-monitoring mechanisms for symmetric and parallel movements. The results indicate that separate areas within PMd and SMA are responsible for both perception and performance of ongoing movements and that the cerebellum supports symmetric movements by monitoring deviations from the stable coordination pattern.  相似文献   

18.
Extensive research has shown that augmented feedback presented too often can create a dependency on the feedback and hinder long-term memory formation of a motor skill. This dependency has been labeled the guidance effect, and one way to overcome the guidance effect is to reduce how often augmented feedback is presented during training. In two experiments, participants were presented with visual augmented feedback during every trial in a 5-min training interval. Participants were provided visual augmented feedback in the form of a Lissajous template of a 1:2 multi-frequency pattern and a cursor representing the coordination between the limbs. Some participants were trained with the cursor superimposed (behind group) on the Lissajous template, and others were trained with the cursor presented in a separate window (side group) from the Lissajous template. In experiment 1, motion of the end-effectors was constrained to the medial–lateral direction in the horizontal plane. In experiment 2, end-effector motion was possible in both the medial–lateral and anterior–posterior directions in the horizontal plane. The location of the cursor did not influence performance during the 5-min training interval in either experiment. After a 15-min break, a retention test performed without the visual feedback provided by the cursor revealed that the behind groups’ performance was guided by the visual feedback in both experiments, whereas the side groups were able to perform without visual feedback. In experiment two, the side group’s performance without feedback was influenced when anterior–posterior motion was not constrained; however, the extent of the guidance effect was significantly less compared to the behind trained group in both experiments. The results show that the emergence of guided motor performance depends on the format of the display that provides visually based augmented feedback, and not just on how often the feedback is provided. In conclusion, visually based augmented feedback leads to the simultaneous development of a spatial and motor representation of the task. The behind format led to a dependence on the spatial representation developed during training, while the side format facilitated the development of the motor representation as a means to overcome guidance.  相似文献   

19.
The difficulty of a visual three stimulus and a bimanual coordination task was manipulated by varying discrimination difficulty (easy, hard) and coordination mode (in-phase, anti-phase) respectively. Electroencephalographic activity was recorded from 32 sites whilst participants (n = 16) completed four dual-task conditions in counterbalanced order. Longer reaction time and lower accuracy were found for the hard relative to the easy visual task and, for the hard visual task, accuracy was lower under anti-phase relative to in-phase conditions. Amplitude and latency of event-related potential components P3a and P3b were recorded and measured. There was a reduction in P3b amplitude and increase in P3a amplitude for the hard visual task overall and a further reduction in frontal P3b amplitude under the more demanding anti-phase condition. For the easy visual task, however, P3b and P3a amplitude were greater under the anti-phase relative to in-phase coordination condition at left hemisphere frontal sites. These findings suggest that the attentional cost of stabilising anti-phase bimanual coordination is largely associated with top-down automatic processes subserved by the frontal attentional network.  相似文献   

20.
Reaching to interact with an object requires a compromise between the speed of the limb movement and the required end-point accuracy. The time it takes one hand to move to a target in a simple aiming task can be predicted reliably from Fitts' law, which states that movement time is a function of a combined measure of amplitude and accuracy constraints (the index of difficulty, ID). It has been assumed previously that Fitts' law is violated in bimanual aiming movements to targets of unequal ID. We present data from two experiments to show that this assumption is incorrect: if the attention demands of a bimanual aiming task are constant then the movements are well described by a Fitts' law relationship. Movement time therefore depends not only on ID but on other task conditions, which is a basic feature of Fitts' law. In a third experiment we show that eye movements are an important determinant of the attention demands in a bimanual aiming task. The results from the third experiment extend the findings of the first two experiments and show that bimanual aiming often relies on the strategic co-ordination of separate actions into a seamless behaviour. A number of the task specific strategies employed by the adult human nervous system were elucidated in the third experiment. The general strategic pattern observed in the hand trajectories was reflected by the pattern of eye movements recorded during the experiment. The results from all three experiments demonstrate that eye movements must be considered as an important constraint in bimanual aiming tasks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号