首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mitochondria generate ATP and participate in signal transduction and cellular pathology and/or cell death. TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) decreases hepatic ATP levels and generates mitochondrial oxidative DNA damage, which is exacerbated by increasing mitochondrial glutathione redox state and by inner membrane hyperpolarization. This study identifies mitochondrial targets of TCDD that initiate and sustain reactive oxygen production and decreased ATP levels. One week after treating mice with TCDD, liver ubiquinone (Q) levels were significantly decreased, while rates of succinoxidase and Q-cytochrome c oxidoreductase activities were increased. However, the expected increase in Q reduction state following TCDD treatment did not occur; instead, Q was more oxidized. These results could be explained by an ATP synthase defect, a premise supported by the unusual finding that TCDD lowers ATP/O ratios without concomitant changes in respiratory control ratios. Such results suggest either a futile cycle in ATP synthesis, or hydrolysis of newly synthesized ATP prior to release. The TCDD-mediated decrease in Q, concomitant with an increase in respiration, increases complex 3 redox cycling. This acts in concert with glutathione to increase membrane potential and reactive oxygen production. The proposed defect in ATP synthase explains both the greater respiratory rates and the lower tissue ATP levels.  相似文献   

2.
The effects of primycin on mitochondrial respiration, volume changes, ATPase activity and the acidification following ATP hydrolysis were studied. Primycin in concentrations below 2--3 nmoles/mg mitochondrial protein reacts only with energized mitochondria rendering their inner membrane permeable to K+, Na+, Tris+ but not to TEA+. Above this concentration primycin interacts both with energized and deenergized mitochondria and the inner membrane also becomes permeable for H+, Cl- but not for ATP. In this case mitochondria very probably lose Mg2+. It is concluded that primycin up to concentrations of 2--3 nmoles/mg mitochondrial protein acts like an ionophore, while at higher concentrations it changes the permeability properties of the mitochondrial inner membrane without a drastic alteration of the membrane itself.  相似文献   

3.
The effects of sodium salicylate (SS), phenazone (Ph) and aminophenazone (APh) on mitochondrial respiration respiration and oxidative phosphorylation were studied in vitro, SS inhibited state 3 but stimulated state 4 of respiration, if alpha-ketoglutarate and succinate were used as the substrates. The inhibition of state 3 of respiration was not reversed by 2,4-dinitrophenol (DNP). Ph and APh inhibited the respiratory state 3 without affecting the state 4 in the presence of the same substrates, and the produced inhibition in state 3 was reversible by DNP. Studies on ATP synthesis have revealed that SS was the only antypyretic tested that exerted an uncoupling action. SS stimulated the mitochondrial ATPase activity but inhibited it after uncoupling of oxidative phosphorylation with DNP. The mitochondrial ATPase activity remained uninfluenced by Ph or APh. The only similar action of all the drugs investigated was the inhibition of oxidation in the respiratory state 3.  相似文献   

4.
The effects of the anti-inflammatory drugs diclofenac, piroxicam, indomethacin, naproxen, nabumetone, nimesulide, and meloxicam on mitochondrial respiration, ATP synthesis, and membrane potential were determined. Except for nabumetone and naproxen, the other drugs stimulated basal and uncoupled respiration, inhibited ATP synthesis, and collapsed membrane potential in mitochondria incubated in the presence of either glutamate + malate or succinate. Plots of membrane potential versus ATP synthesis (or respiration) showed proportional variations in both parameters, induced by different concentrations of nimesulide, meloxicam, piroxicam, or indomethacin, but not by diclofenac. The activity of the adenine nucleotide translocase was blocked by diclofenac and nimesulide; diclofenac also slightly inhibited mitochondrial ATPase activity. Naproxen did not affect any of the mitochondrial parameters measured. Nabumetone inhibited respiration, ATP synthesis, and membrane potential in the presence of glutamate + malate, but not with succinate. NADH oxidation in submitochondrial particles also was inhibited by nabumetone. Nabumetone inhibited O2 uptake in intact cells and in whole heart, whereas the other five drugs stimulated respiration. These observations revealed that in situ mitochondria are an accessible target. Except for diclofenac, a negative inotropic effect on cardiac contractility was induced by the drugs. The data indicated that nimesulide, meloxicam, piroxicam, and indomethacin behaved as mitochondrial uncouplers, whereas nabumetone exerted a specific inhibition of site 1 of the respiratory chain. Diclofenac was an uncoupler too, but it also affected the adenine nucleotide translocase and the H+-ATPase.  相似文献   

5.
The effects of propranolol on mitochondrial ion fluxes have been studied in oscillatory conditions in the presence of potassium plus valinomycin. The drug was able to decrease slightly the rate of swelling and that of passive contraction a little more. When the concentration of external salt was below 10 mM, propranolol decreased the extent of swelling; above 15 mM it was increased by the drug. The inhibition of contraction was abolished by nigericin or raised pH and was less evident with ATP rather than succinate as the source of energy. Propranolol only slightly affected the oxidative phosphorylation and latent ATPase activity of mitochondria. At low concentrations of salts the rate of valinomycin-stimulated respiration and ATPase activity were both inhibited. At higher concentrations of the salts, both were stimulated. It is suggested that the stimulation of respiration and ATPase activity result from increased ion uptake. Propranolol seems to stabilize an “energized” state, possibly by inhibiting the entry of protons, thereby retarding the equilibration of ionic gradients across the inner membrane.  相似文献   

6.
Bisphenols are a class of compounds that exhibit a broad spectrum of antimicrobial activity. One of the most widely used member of this group is triclosan (TRN). TRN is a synthetic, non-ionic, broad-spectrum antimicrobial agent, which is incorporated into several products, including hand soaps and detergents and those of skin care and oral hygiene. The effects of TRN on mitochondrial respiratory parameters and the inner mitochondrial membrane potential (DeltaPsi) are described. That of TRN (up to 60 nmol mg(-1) protein) on isolated liver mitochondria decreased oxygen consumption of state 3 respiration, as well as DeltaPsi, but increased oxygen consumption of state 4 respiration, characteristic of an uncoupler effect. Analysis of segments of the respiratory chain suggested that the TRN inhibition site is located between complexes II and III. Mitochondrial swelling, energized or driven by the K+ diffusion potential using valinomycin, was also inhibited by TRN, the former being completely inhibited at concentrations greater than 10 nmol TRN mg(-1) protein, suggesting that it is also able to interfere with fluidity of the inner mitochondrial membrane. These results suggest that, besides its antibacterial effect, TRN can also impair the mitochondrial function of animal cells.  相似文献   

7.
Hypoxia and reoxygenation in working rat hearts were investigated in this study. Cardiac hemodynamic parameters which decline immediately under hypoxic conditions, recover during reoxygenation. Biochemical and ultrastructural alterations exhibit a more complicated pattern. There is a primary phase in hypoxic perfusion up to 15 min with a steep increase of ADP contents and ATPase activities, and a severe fall of ATP/ADP ratios in mitochondria, as well as in tissue. High CAT (carboxyatractyloside) sensitivity of the ATPase is observed at 5 min of hypoxia. Furthermore, the number of ATPase particles visible at the inner mitochondrial membrane decreases. During the ensuing second phase of hypoxic perfusion (from 30 min on) the damage of mitochondrial ultrastructure becomes more evident. The amount of ATPase particles visible at the inner mitochondrial membrane further decreases. ATPase activities fluctuate, however, they remain connected with the membrane during hypoxia. ATP/ADP ratios attain values of almost 1. During reoxygenation (after 30 min of hypoxia) the levels of mitochondrial adenine nucleotides, oxidative phosphorylation rate and respiratory control index increase within 20 min and then slightly decline again. The ATP/ADP ratio is diminished in the course of reoxygenation. ATPase activity also decreases within 20 min of reoxygenation and the ADP/O ratio reaches control values. The ATPase activity gains its highest sensitivity towards CAT at 10 min of reoxygenation attaining a value similar to that of 5 min of hypoxic perfusion. It is suggested that hypoxia and reoxygenation under our conditions result in reversible derangement of ATPase and mitochondrial membrane structure.  相似文献   

8.
Triethylphosphine gold complexes have therapeutic activity in the treatment of rheumatoid arthritis. Many of these compounds are also highly cytotoxic in vitro to a variety of tumor and non-tumor cell lines. Triethylphosphine gold chloride (TEPAu) is highly cytotoxic to isolated rat hepatocytes at concentrations greater than 25 microM. The earliest changes that could be detected in hepatocytes included bleb formation in the plasma membrane, alterations in the morphology of mitochondria, and rapid decreases in cellular ATP and oxygen consumption. The degradation of ATP could be followed sequentially through ADP and AMP and was ultimately accounted for entirely as xanthine. The sum of adenine and xanthine-derived nucleotides remained constant throughout the experiments. TEPAu (50 microM) caused a significant decrease in the hepatocyte ATP/ADP ratio and energy charge within 5 min. The antioxidant, N,N'-diphenyl-p-phenylenediamine (DPPD), which blocked TEPAu-induced malondialdehyde formation but not cell death, also had no effect on the decreases in oxygen consumption, ATP, ATP/ADP ratio, or energy charge. In isolated rat liver mitochondria, TEPAu (1 microM) caused significant reductions in carbonyl cyanide-4-trifluoromethoxyphenylhydrazone (FCCP) (uncoupled)-stimulated respiration. TEPAu (5 microM) inhibited state 3 respiration and the respiratory control ratio without affecting state 4 respiration and caused a rapid dissipation of the mitochondrial-membrane hydrogen-ion gradient (membrane potential). Concentrations greater than 5 microM also inhibited state 4 respiration. TEPAu caused a concentration-dependent inhibition of FCCP-stimulated respiration with pyruvate/malate and succinate as substrates but had not effect on ascorbate/tetramethyl-p-phenylenediamine-supported respiration. The inhibition of state 4 respiration and FCCP-stimulated respiration by TEPAu (10 microM) could be reversed by the addition of 2 mM dithiothreitol. Dithiothreitol also partially protected cells from TEPAu-induced injury and reversed the TEPAu-induced depletion in cellular ATP. These data indicate that TEPAu may be acting functionally as a respiratory site II inhibitor, similar to antimycin. The reversal of TEPAu-induced inhibition of mitochondrial respiration and cell lethality by dithiothreitol suggests that mitochondrial thiols may be involved.  相似文献   

9.
Suramin, a polysulfonated naphthylamine, caused a dose dependent inhibition of carbonyl cyanide p-(tri-fluoromethoxy)phenylhydrazone-stimulated respiration supported either by succinate or a cocktail of alphaketoglutarate, malate and isocitrate in isolated rat liver mitochondria. The half-maximum effect was obtained at 40 and 140 microM suramin for NADH- or FADH(2)-linked substrates, respectively. The respiration supported by N,N,N'N'-tetramethyl-p-phenylenediamine oxidation was unaffected by suramin (相似文献   

10.
Short application of the volatile anesthetic isoflurane at reperfusion after ischemia exerts strong protection of the heart against injury. Mild depolarization and acidification of the mitochondrial matrix are involved in the protective mechanisms of isoflurane, but the molecular basis for these changes is not clear. In this study, mitochondrial respiration, membrane potential, matrix pH, matrix swelling, ATP synthesis and -hydrolysis, and H(2)O(2) release were assessed in isolated mitochondria. We hypothesized that isoflurane induces mitochondrial depolarization and matrix acidification through direct action on both complex I and ATP synthase. With complex I-linked substrates, isoflurane (0.5mM) inhibited mitochondrial respiration by 28±10%, and slightly, but significantly depolarized membrane potential and decreased matrix pH. With complex II- and complex IV-linked substrates, respiration was not changed, but isoflurane still decreased matrix pH and depolarized mitochondrial membrane potential. Depolarization and matrix acidification were attenuated by inhibition of ATP synthase with oligomycin, but not by inhibition of mitochondrial ATP- and Ca(2+)-sensitive K(+) channels or uncoupling proteins. Isoflurane did not induce matrix swelling and did not affect ATP synthesis and hydrolysis, but decreased H(2)O(2) release in the presence of succinate in an oligomycin- and matrix pH-sensitive manner. Isoflurane modulated H(+) flux through ATP synthase in an oligomycin-sensitive manner. Our results indicate that isoflurane-induced mitochondrial depolarization and acidification occur due to inhibition of the electron transport chain at the site of complex I and increased proton flux through ATP synthase. K(+) channels and uncoupling proteins appear not to be involved in the direct effects of isoflurane on mitochondria.  相似文献   

11.
Several drugs used in the treatment of chronic peripheral ischaemic and venous diseases, i.e. aescine, Cyclo 3, Ginkor Fort, hydroxyethylrutosides, naftidrofuryl, naphthoquinone and procyanidolic oligomers, were tested on the mitochondrial respiratory activity. The results show that all these drugs protected human endothelial cells against the hypoxia-induced decrease in ATP content. In addition, they all induced a concentration-dependent increase in respiratory control ratio (RCR) of liver mitochondria pre-incubated with the drugs for 60 min. The drugs were divided into two groups according to their effects. The first group (A), comprising aescine, Ginkor Fort, naftidrofuryl and naphthoquinone, increased RCR by decreasing state 4 respiration rate. The second group of drugs (B), comprising hydroxyethylrutosides, procyanidolic oligomers and Cyclo 3, increased RCR by increasing state 3 respiration rate. The drugs of group A were able to prevent the inhibition of complexes I and III respectively by amytal and antimycin A while the first two drugs of group B increased adenine nucleotide translocase activity. Cyclo 3 inhibited the carbonylcyanide m-chlorophenyl hydrazone (mCCP)-induced uncoupling of mitochondrial respiration. None of these seven drugs could protect complexes IV and V, respectively, from inhibition by cyanide and oligomycin. When tested on endothelial cells the drugs of group A, in contrast to group B, prevented the decrease in ATP content induced by amytal or antimycin A. The present results suggest that the protective effects on mitochondrial respiration activity by these venotropic drugs may explain their protective effect on the cellular ATP content in ischaemic conditions and some of their beneficial therapeutic effect in chronic vascular diseases.  相似文献   

12.
In order to further investigate the mechanism of action of bridged lipophilic bis-pyridinium oximes previously observed to interfere with mitochondrial metabolism and to induce growth arrest and apoptosis in HeLa cells (Nocentini et al., Biochem Pharmacol 53: 1543-1552, 1997), we studied the effects of a bis-pyridinium oxime with a polymethylene chain N = 12 (BP12) on isolated rat liver mitochondria. Respiration in the absence of ADP with succinate plus rotenone as substrate was not affected after treatment with various concentrations of BP12 up to 10 microM, while the ADP-stimulated respiration was slowed down, with a parallel decrease in ATP synthesis. No effects of BP12 were detected on membrane potential, ATPase activity, and inorganic phosphate transport, but the adenine nucleotide translocase was inactivated and a permeability transition of the inner membrane was induced in the presence of calcium. These data suggest that mitochondrial impairment of ATP synthesis and the formation of the permeability transition pore may be responsible for apoptotic cell death already observed in cells treated with BP12.  相似文献   

13.
Cylindrospermopsin (CYN) is a widely spread cyanotoxin that can occur in fresh water and food. This research aims to investigate CYN toxicity by studying the effects of drinking 0.25 nM of CYN-contaminated water from a natural source, and of the direct application of moderate concentrations of CYN on different animal targets. The chosen structures and activities are rat mitochondria inner membrane permeability, mitochondrial ATP synthase (ATPase) and rat liver diamine oxidase (DAO) activities (EC 1.4.3.22.), the force of the contraction of an excised frog heart preparation with functional innervation, and the viability of a human intestinal epithelial cell line (HIEC-6). The oral exposure to CYN decreased the reverse (hydrolase) activity of rat liver ATPase whereas its short-term, in vitro application was without significant effect on this organelle, DAO activity, heart contractions, and their neuronal regulation. The application of CYN reduced HIEC-6 cells’ viability dose dependently. It was concluded that CYN is moderately toxic for the human intestinal epithelial cells, where the regeneration of the epithelial layer can be suppressed by CYN. This result suggests that CYN may provoke pathological changes in the human gastrointestinal tract.  相似文献   

14.
Oxygen electrode polarographic measurements of the rate of oxygen consumption by isolated rat liver mitochondria revealed that oligomycin inhibition of respiration was offset to different degrees by varying concentrations of perfluidone (1,1,1-trifluoro-N-(2 methyl-4-(phenylsulfonyl) methanesulfonamide). Using any of pyruvate-malate, succinate or ascorbate-TMPD (N,N,N',N'-tetramethyl-p-phenylenediamine) as substrate, this herbicidal and anti-inflammatory agent at 100 microM concentration caused a 5-fold stimulation of oligomycin-inhibited respiration. Higher concentrations of the herbicide (greater than or equal to 120 microM) gave lower stimulatory effects. Similar stimulatory effects were obtained with 1 microM FCCP (carbonylcyanide p-trifluoromethyoxyphenyl-hydrazone), a classical protonophore. Our results also show an enhanced oligomycin-sensitive ATPase action in intact mitochondria incubated with ATP and varying concentrations of perfluidone. Maximum enhancement effect (111.3%) was obtained at 120 microM perfluidone. FCCP (1 microM) stimulated this ATPase action by 130%. An initial inhibition of respiration by oligomycin is due to an interaction with the proton well of FOF1-ATP synthetase (Lardy, H.A. et al., Arch. Biochem. Biophys., 78 (1953) 587). Perfluidone probably increases the proton conductance of mitochondrial inner membrane in the same manner as FCCP and thus causes an increase in mitochondrial respiratory rate. As protons move into the matrix, delta mu H+, the proton electrochemical potential gradient becomes very small and the F0F1-ATP synthetase functions in the direction of hydrolysis of ATP rather than its shnthesis (Mitchell, P., Eur. J. Biochem., 95 (1979) 1). These findings therefore indicate that perfluidone acts in a way similar to FCCP, a classical uncoupler and protonophore.  相似文献   

15.
Lantana (Lantana camara Linn.) is a noxious weed to which certain medicinal properties have been attributed, but its ingestion has been reported to be highly toxic to animals and humans, especially in the liver. The main hepatotoxin in lantana leaves is believed to be the pentacyclic triterpenoid lantadene A (LA), but the precise mechanism by which it induces hepatotoxicity has not yet been established. This work addressed the action of LA and its reduced derivative (RLA) on mitochondrial bioenergetics. At the concentration range tested (5-25 μM), RLA stimulated state-4 respiration, inhibited state-3 respiration, circumvented oligomycin-inhibited state-3 respiration, dissipated membrane potential and depleted ATP in a concentration-dependent manner. However, LA did not stimulate state-4 respiration, nor did it affect the other mitochondrial parameters to the extent of its reduced derivative. The lantadenes didn't inhibit the CCCP-uncoupled respiration but increased the ATPase activity of intact coupled mitochondria. The ATPase activity of intact uncoupled or disrupted mitochondria was not affected by the compounds. We propose, therefore, that RLA acts as a mitochondrial uncoupler of oxidative phosphorylation, a property that arises from the biotransformation (reduction) of LA, and LA acts in other mitochondrial membrane components rather than the ATP synthase affecting the mitochondrial bioenergetics. Such effects may account for the well-documented hepatoxicity of lantana.  相似文献   

16.
The effect of paracetamol intoxication on mitochondrial function was studied in isolated mouse hepatocytes. Inhibition of cellular respiration as well as a lowering of cellular ATP contents and ATP/ADP ratios was associated with exposure to toxic concentrations of paracetamol. Significantly, inhibition of 3-hydroxybutyrate- and lactate/pyruvate-supported respiration, as well as the reduction in cellular ATP levels and ATP/ADP ratios, preceded the appearance of plasma membrane damage, as assessed by LDH leakage. N-Acetylcysteine reduced the extent of plasma membrane damage induced by paracetamol and protected against the impairment of cellular respiration. This suggests that respiratory dysfunction was a consequence of the oxidation of paracetamol to its reactive metabolite within the liver cell. These findings indicate that paracetamol toxicity results in an impairment of mitochondrial function which precedes the loss of plasma membrane integrity.  相似文献   

17.
The effects of auranofin, chloro(triethylphosphine)gold(I) (TEPAu), and aurothiomalate on mitochondrial respiration, pyridine nucleotide redox state, membrane permeability properties, and redox enzymes activities were compared. The three gold(I) derivatives, in the submicromolar range, were extremely potent inhibitors of thioredoxin reductase and stimulators of the mitochondrial membrane permeability transition (MPT). Auranofin appeared as the most effective one. In the micromolar range, it inhibited respiratory chain and glutathione peroxidase activity only slightly if not at all. TEPAu and aurothiomalate exhibited effects similar to auranofin, although TEPAu showed a moderate inhibition on respiration. Aurothiomalate inhibited glutathione peroxidase at concentrations where auranofin and TEPAu were without effect. Under nonswelling conditions, the presence of auranofin and aurothiomalate did not alter the redox properties of the mitochondrial pyridine nucleotides indicating that membrane permeability transition occurred independently of the preliminary oxidation of pyridine nucleotides. Under the same experimental conditions, TEPAu showed a moderate stimulation of pyridine nucleotides oxidation. Mitochondrial total thiol groups, in the presence of the gold(I) derivatives, slightly decreased, indicating the occurrence of an oxidative trend. Concomitantly with MPT, gold(I) compounds determined the release of cytochrome c that, however, occurred also in the presence of cyclosporin A and, partially, of EGTA, indicating its independence of MPT. It is concluded that the specific inhibition of thioredoxin reductase by gold(I) compounds may be the determinant of MPT and the release of cytochrome c.  相似文献   

18.
Damage to the mitochondrial electron transport chain has been suggested to be an important factor in the pathogenesis of a range of neurodegenerative disorders. We have previously demonstrated that chronic stress induced an increase in nitric oxide (NO) production via an expression of inducible NO synthase (iNOS) in brain. Since it has been demonstrated that NO regulates mitochondrial function, we sought to study the susceptibility of the mitochondrial respiratory chain complexes to chronic restrain stress exposure in brain cortex. In adult male rats, stress (immobilization for six hours during 21 days) inhibits the activities of the first complexes of the mitochondrial respiratory chain (inhibition of 69% in complex I-III and of 67% in complex II-III), without affecting complex IV activity, ATP production and oxygen consumption. The mitochondrial marker citrate synthase is not significantly affected by stress after 21 days, indicating that at this time the mitochondrial structure is still intact. Moreover, the administration of the preferred inducible nitric oxide synthase (iNOS) inhibitor aminoguanidine (400 mg/kg i.p. daily from days 7 to 21 of stress) protects against the inhibition of the activity of complexes of the mitochondrial respiratory chain as well as prevents NO(x)(-) accumulation, lipid peroxidation and glutathione depletion induced by stress. These results suggest that a sustained overproduction of NO via iNOS is responsible, at least in part, of the inhibition of mitochondrial respiratory chain caused by stress and that this pathway also accounts for the oxidative stress found in this situation.  相似文献   

19.
The effects of ifenprodil on adenosine triphosphatase (ATPase) activity were examined using guinea pig liver mitochondria. 1) Intact mitochondrial ATPase activity was stimulated by ifenprodil in a concentration-dependent manner, this effect being further potentiated with dinitrophenol. The stimulation by ifenprodil appeared with only ATP among four nucleotides as substrate. Mg2+ and Ca2+ attenuated the effect of ifenprodil. Ifenprodil abolished the KCN-induced inhibition. 2) Heat-treated mitochondrial ATPase activity, kept for 60 min at 50 degrees C, was decreased in a concentration-dependent manner by ifenprodil. The inhibitory effect of ifenprodil was abolished by Mg2+ and Ca2+. These results indicate that ifenprodil has two behaviors, acceleration of a latent ATPase and inhibition of an activated ATPase. These findings, together with our previous data, suggest that ifenprodil seems to affect the actions of Mg2+ and Ca2+ on mitochondrial ATPase by directly affecting the membrane, and these mechanisms may be involved in its anti-cyanide effect.  相似文献   

20.
An experimental investigation of the response of the multicomponent oxidative phosphorylation system to the environmental pollutant 2,2',5,5'-tetrachlorobiphenyl (2,2',5,5'-TCB) was performed by modular kinetic analysis in rat liver mitochondria oxidizing succinate (+ rotenone) and glutamate + malate. This approach facilitates the analysis of a complex process by dividing it into a small number of modules, each comprising multiple enzymatic steps, and allows evaluation of changes in the kinetics of individual blocks of the complex system induced by multisite effectors. Kinetic dependencies of the respiratory subsystem, the phosphorylation subsystem, and the proton permeability of the inner membrane on the membrane potential Delta Psi were determined in the control and in the presence of 20 microM 2,2',5,5'-TCB. The toxin inhibited the rate of respiration with both substrates to a similar extent (by 23-26%). We showed that 2,2',5,5'-TCB affected the all three modules of the oxidative phosphorylation system: it inhibited both the respiratory and the phosphorylation subsystems, and increased the membrane leak. As a result, the value of Delta Psi in State 3 of mitochondria oxidizing glutamate + malate remained the same or slightly increased with succinate, indicating that in the former case the respiratory subsystem was more sensitive to 2,2',5,5'-TCB. We explain this by the 2,2',5,5'-TCB-induced inhibition of Complex I. Moreover, 2,2',5,5'-TCB decreased the number of oligomycin-binding sites by 20%, caused a significant drop in the membrane potential generated by ATP hydrolysis, and inhibited activity of ATP hydrolysis in uncoupled mitochondria. Thus, we obtained evidence that at least one of the targets of 2,2',5,5'-TCB action within the phosphorylation module was ATP synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号