首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence, pharmacological properties and anatomical distribution of serotonin-1C and serotonin-2 receptor subtypes were studied in the human brain by both radioligand binding and autoradiographic procedures. Frontal cortex, hippocampus and choroid plexus from human brains obtained at autopsy without history of neurological diseases were used in this study. [3H]5-HT and [3H]mesulergine were used to label 5-HT1C recognition sites while [3H]ketanserin was used to label 5-HT2 receptors. The pharmacological profile of 5-HT1C sites which are very concentrated in the choroid plexus, was extremely similar to that of pig and rat 5-HT1C sites. These receptors were also detected in the hippocampus and the cortex from human brain. The general distribution of 5-HT1C sites in human and rat brain was similar although slight differences were observed. Human 5-HT2 receptors were concentrated in cortical areas but also found in the hippocampus. The pharmacological profile of these receptors was extremely similar in human and pig brain tissue, but differed in certain respects to that found in rat brain 5-HT2 receptors. The anatomical distribution of 5-HT2 receptors is similar in human and rat brain with some differences at the microscopic level. The importance of species differences in the development of 5-HT2 compounds is discussed.  相似文献   

2.
A. Pazos  J.M. Palacios   《Brain research》1985,346(2):205-230
The distribution of serotonin-1 (5-HT1) receptors in the rat brain was studied by light microscopic quantitative autoradiography. Receptors were labeled with [3H]serotonin (5-[3H]HT), 8-hydroxy-2-[N-dipropylamino-3H]tetralin (8-OH- [3H]DPAT), [3H]LSD and [3H]mesulergine, and the densities quantified by microdensitometry with the aid of a computer-assisted image-analysis system. Competition experiments for 5-[3H]HT binding by several serotonin-1 agonists led to the identification of brain areas enriched in each one of the three subtypes of 5-HT1 recognition sites already described (5-HT1A, 5-HT1B, 5-HT1C). The existence of these 'selective' areas allowed a detailed pharmacological characterization of these sites to be made in a more precise manner than has been attained in membrane-binding studies. While 5-[3H]HT labeled with nanomolar affinity all the 5-HT1 subtypes, the other 3H-labeled ligands labeled selectively 5-HT1A (8-OH-[3H]DPAT), 5-HT1C ([3H]mesulergine) and both of them ([3H]LSD). Very high concentrations of 5-HT1 receptors were localized in the choroid plexus, lateroseptal nucleus, globus pallidus and ventral pallidum, dentate gyrus, dorsal subiculum, olivary pretectal nucleus, substantia nigra, reticular and external layer of the entorhinal cortex. The different fields of the hippocampus (CA1-CA4), some nuclei of the amygdaloid complex, the hypothalamic nuclei and the dorsal raphé, among others, also presented high concentrations of sites. Areas containing intermediate densities of 5-HT1 receptors included the claustrum, olfactory tubercle, accumbens, central grey and lateral cerebellar nucleus. The nucleus caudate-putamen and the cortex, at the different levels studied, presented receptor densities ranging from intermediate to low. Finally, in other brain areas--pons, medulla, spinal cord--only low or very low concentrations of 5-HT1 receptors were found. From the areas strongly enriched in 5-HT1 sites, dentate gyrus and septal nucleus contained 5-HT1A sites, while globus pallidus, dorsal subiculum, substantia nigra and olivary pretectal nucleus were enriched in 5-HT1B. The sites in the choroid plexus, which presented the highest density of receptors in the rat brain, were of the 5-HT1C subtype. The distribution of 5-HT1 receptors reported here is discussed in correlation with the distribution of serotoninergic neurons and fibers, the related anatomical pathways and the effects which appear to be mediated by these sites.  相似文献   

3.
The development of the new ligand serotonin-5-O-carboxymethyl-glycyl [125I]tyrosinamide (abbreviated [125I]GTI) allows for the direct visualization of serotonin1B and serotonin1D (5-HT1B/1D) sites. Autoradiographic techniques were used to demonstrate the selective binding of this ligand to 5-HT1D sites in human post-mortem brain materials. The distribution of [125I]GTI binding sites was compared to [3H]5-HT sites in the presence of different displacers. The results show the selective binding of [125I]GTI to sites in the basal ganglia and substantia nigra which corresponds to 5-HT1D receptors.  相似文献   

4.
The in vitro autoradiographic technique was used to characterize the distribution of serotonin 5-HT1 and 5-HT2 receptors and uptake sites in 11 cortical areas of frontal, parietal, and occipital lobes in the rhesus monkey; 5-HT1 receptors were labeled with [3H]5-HT; 5-HT2 receptors were labeled with [3H]ketanserin; and 5-HT uptake sites were labeled with [3H]citalopram. Five-HT1 and 5-HT2 receptors and 5-HT uptake sites were found in every cortical area examined with the absolute concentration of 5-HT1 receptors higher than that of 5-HT2 receptors in all areas. In eight regions of prefrontal and parietal as well as in prestriate cortex, 5-HT1 and 5-HT2 receptors had complementary distribution profiles: 5-HT1 receptors were concentrated in layers I and II and the upper strata of layer III, while 5-HT2 receptors had their highest concentration throughout layers III and IV. Only the primary motor and visual cortex had receptor distributions different from that described above. Thus, in the primary visual cortex, both 5-HT1 and 5-HT2 receptors were found in high concentration in sublayer IVc beta, though the density of 5-HT1 receptor was also high in other subdivisions of layer IV and in layers III, V, and VI. In the primary motor cortex, both receptor subtypes were concentrated in layers I and II and the upper strata of layer III. The pattern of distribution of serotonin uptake sites did not match the patterns of distribution of either 5-HT1 or 5-HT2 receptors alone; rather it approximated the combined patterns of distribution of both receptor subtypes. The complementary patterns of distribution of 5-HT1 and 5-HT2 receptors in most areas of the monkey cerebral cortex suggest that these two receptor subtypes may make differential contributions to cortical functions.  相似文献   

5.
The superficial layers of the guinea pig superior colliculus are characterized by high densities of [3H]5-HT binding sites. We have chosen receptor autoradiography to establish the drug binding profile and the localization of these sites. The binding of [3H]5-HT to guinea pig superior colliculus was nearly completely blocked by drugs such as 5-carboxamido-tryptamine and yohimbine, but only slightly sensitive to the 5-HT1 receptor agonist 8-hydroxy-dipropylamino-tetralin. 5-HT1C antagonists such as mesulergine or the beta-adrenergic receptor blocking compound SDZ 21-009 did not show any effect. The profile of the majority of these sites corresponds to that of 5-HT1D sites. Unilateral enucleation resulted in a nearly complete depletion of [3H]5-HT binding in the contralateral superior colliculus, whereas [125I]Bolton-Hunter-8-methoxy-N-propylaminotetralin binding sites, corresponding to 5-HT1A receptors, were preserved. These results indicate that 5-HT1D (and not 5-HT1A) receptors might be presynaptically localized on non-serotoninergic neuronal pathways. The guinea pig visual system may be a useful model for the study of the properties of these presynaptic 5-HT heteroreceptors.  相似文献   

6.
7.
The present study provides further evidence for the presence of serotonin1D (5-HT1D) receptors in post-mortem human brain. Receptor binding parameters in temporal cortex homogenates were assessed using [3H]5-HT in the presence of 100 nM 8-OH-DPAT, 1 microM propranolol and 1 microM mesulergine to prevent labelling of the 5-HT1A, 5-HT1B and 5-HT1C sites, respectively. Under these conditions, [3H]5-HT apparently bound to a class of high affinity (Kd = 5.0 +/- 1.0 nM) low capacity (Bmax = 96 +/- 23 fmol/mg protein) sites. In competition experiments, 5-HT and 5-carboxyamidotryptamine (5-CT), as well as ergotamine, lysergic acid, sumatriptan and RU-24969 exhibited high affinity for these sites. This pharmacological profile is concordant with the ligand selectivity pattern reported for 5-HT1D receptors in other species and thus provides further evidence for its existence in human temporal cortex. In addition, the competition profile of some ligands, particularly of unlabelled 5-HT, 5-CT and ergotamine, revealed the existence of a lower affinity binding site. The latter suggests receptor heterogeneity or the presence of a lower affinity state of 5-HT1D receptors.  相似文献   

8.
Selective labeling of 5-HT1A and 5-HT1B binding sites in bovine brain   总被引:1,自引:0,他引:1  
Stephen J. Peroutka   《Brain research》1985,344(1):167-171
Drug interactions with serotonin(1A) 5-HT1A and serotonin(1B) (5-HT1B) binding sites were analyzed in bovine brain membranes. 5-HT1A binding sites were directly labeled with [3H]8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) in bovine hippocampal membranes. 5-HT1B binding sites were labeled by [3H]5-HT in bovine striatal membranes where less than 15% of specific binding sites are sensitive to nanomolar concentrations of 8-OH-DPAT. Each of the 12 agents tested was more potent at the 5-HT1A than 5-HT1B binding site. 5-HT, bufotenine, N,N-dimethyltryptamine (DMT) and quipazine were only slightly more potent at the 5-HT1A binding site. By contrast, 8-OH-DPAT, TVX Q 7821 and buspirone were significantly more potent at [3H]8-OH-DPAT binding sites in bovine hippocampus than at [3H]5-HT binding sites in bovine striatum. These findings suggest that 5-HT1A, and 5-HT1B binding sites have distinct pharmacological profiles and can be directly labeled with appropriate [3H]ligands in specific brain regions.  相似文献   

9.
The distribution of 5-HT(1B) and 5-HT(1D) receptors in the human post mortem brain was examined using whole hemisphere autoradiography and the radioligand [(3)H]GR 125743. [(3)H]GR 125743 binding was highest in the substantia nigra and the globus pallidus. Lower levels were detected in the striatum, with the highest densities in the ventromedial parts. In the amygdala, the hippocampus, the septal region and the hypothalamus, lower [(3)H]GR 125743 binding was observed, reflecting low densities of 5-HT(1B/1D) receptors. In the cerebral cortex, binding was similar in most regions, although restricted parts of the medial occipital cortex were markedly more densely labeled. Binding densities were very low in the cerebellar cortex and in the thalamus. Two methods were used to distinguish between the two receptor subtypes, the first using ketanserin to block 5-HT(1D) receptors and the second using SB 224289 to inhibit 5-HT(1B) receptor binding. The autoradiograms indicated that in the human brain, the 5-HT(1B) receptor is much more abundant than the 5-HT(1D) receptor, which seemed to occur only in low amounts mainly in the ventral pallidum. Although [(3)H]GR 125743 is a suitable radioligand to examine the distribution of 5-HT(1B) receptors in the human brain in vitro, the selectivities of ketanserin and SB 224289 are not sufficiently high to give definite evidence for the occurrence of the 5-HT(1D) receptor in the human brain.  相似文献   

10.
We have used receptor autoradiography to investigate the distribution and pharmacological profile of non 5-HT1A/5-HT1C[3H]5-hydroxytryptamine binding sites in the brain of rabbits, hamsters and opossums. These data were compared to those found under similar conditions in the brain of rats and guinea pigs, species which are known to possess 5-HT1B and 5-HT1D receptors, respectively. In the presence of 100 nM 8-OH-DPAT and mesulergine, the regional distribution of [3H]5-hydroxytryptamine binding sites was very similar in the brain of all species investigated; densest labelling was observed in the globus pallidus, substantia nigra and superior colliculus. In all species, 5-carboxamidotryptamine competed for the labelled sites in a biphasic manner and metergoline displayed a subnanomolar affinity. In contrast, the beta-adrenoceptor blocking agents (-)propranolol, (-)pindolol, and (+/-)SDZ 21009 were potent displacers only in the rat, hamster and opossum brains. These data indicate that non 5-HT1A/5-HT1C[3H]5-HT binding sites display a high affinity for these agents in a particular rodent suborder as well as in opossum, a phylogenetically unrelated species.  相似文献   

11.
Transgenic mice bearing a transgene coding for a glucocorticoid receptor antisense mRNA, which partially blocks glucocorticoid receptor expression, were used in order to clarify the role of glucocorticoid receptors in the regulation of 5-HT(1A), 5-HT(1nonA) and 5-HT(2) binding sites labelled by quantitative autoradiography in the frontal and prefrontal cortex, striatum, hypothalamus, amygdala and raphe nuclei. We found that 1 nM [3H]8-hydroxy-2-[di-N-propylamino]tetralin ([3H]8-OH-DPAT) binding to 5-HT(1A) sites was decreased in strata oriens (-15.1+/-3.5%) and radiatum-lacunosum-moleculare (-13.3+/-4.3%) of the hippocampal CA(3) area, and 2 nM [3H]5-hydroxytryptamine binding to 5-HT(1nonA) sites in the presence of 100 nM 8-OH-DPAT and mesulergine was decreased in the dorsal subiculum (-17.8+/-6.9%). By contrast, 5-HT(2) sites labelled by 0.5 nM of (+/-)-1-(2, 5-dimethoxy-4-[125I]iodophenyl)-2-aminopropane was increased in the dorsal subiculum (+35.2+/-11.5%) and CA(2) area (+29.2+/-11.3%). The observed differences in binding to 5-HT(1) and 5-HT(2) sites were all located in areas of the hippocampus that contain both gluco- and mineralo-corticoid receptors, and no difference was observed in anatomical structures which contain only glucocorticoid receptors. Therefore, it seems that the important factor for the regulation of these 5-HT receptors is the interaction between gluco- and mineralo-corticoid receptors rather than the absolute density of glucocorticoid receptors. These results suggest that some of the alterations of the serotonergic neurotransmission observed in depressed patients might be secondary to an altered glucocorticoid receptor function.  相似文献   

12.
In this study, we compared the localization of central 5-HT1 binding sites of rat and guinea pig. The 5-HT1B sites were absent in the guinea pig brain. Good correlations were found between species in the regional distribution of 5-HT1 sites labelled with [3H]5-HT (r = 0.73), 5-HT1A sites labelled with [3H]8-OH-DPAT (r = 0.87), and 5-HT1B versus 5-HT1D sites labelled with [3H]5-HT in the presence of ipsapirone and DOI (r = 0.76). Despite the overall similarities, species differences were observed in many brain regions. The CA1/CA2 fields of the hippocampus and the dorsal subiculum displayed significantly more 5-HT1A receptor binding in guinea pig than in rat. Conversely, the 5-HT1A binding in dorsolateral septum, cingulate cortex and laminae IV-V of the neocortex, was more pronounced in rat. Areas almost exclusively containing 5-HT1B or 5-HT1D sites, such as the ventral pallidum, globus pallidus and substantia nigra, expressed markedly more [3H]5-HT binding in rat as compared to guinea pig, while the opposite occurred in claustrum, dorsal endopiriform nucleus, lateral geniculate nucleus, and superficial grey layer of the superior colliculus. The implications of the species differences are illustrated by the binding of [3H]eltoprazine. The distribution of [3H]eltoprazine binding sites showed a good correlation with that of the 5-HT1B sites in rat (r = 0.89), and with that of the 5-HT1A sites in guinea pig (r = 0.97). The data give rise to the possibility that differences in the presence and distribution of 5-HT1 receptor sites are related to species differences in behavioural, neurochemical and physiological responses to drugs with 5-HT1 receptor affinity.  相似文献   

13.
Developmental regulation of 5-HT2 and 5-HT1c mRNA and receptor levels   总被引:1,自引:0,他引:1  
We investigated the regulation of 5-HT2 and 5-HT1c receptors and their corresponding mRNAs during rat brain development. This study showed that 5-HT2 and 5-HT1c receptors increased markedly during ontogeny. 5-HT2 receptors, measured with [3H]ketanserin or [125I]lysergic acid diethylamide binding, increased 8-fold between embryonic day 17 (E17) and postnatal day 13 (P13). 5-HT2 receptor mRNA levels, quantified by probing Northern blots of total RNA with a synthetic oligonucleotide cDNA probe, multiplied 13-fold between E17 and P5. The developmental pattern of 5-HT2 receptor and mRNA expression appeared to correlate with the serotonergic hyperinnervation of the cortex which occurs between P2 and P17. 5-HT1c receptors, measured with [125I]lysergic acid diethylamide under site-specific conditions, increased 2-fold between E17 and P27, 5-HT1c mRNA increased 5-fold between E17 and P27. Interestingly, the developmentally induced variations in 5-HT1c receptors did not precisely correlate with mRNA alterations. Further study of the factors responsible for these alterations could help to explain the molecular and biochemical mechanisms responsible for modulating receptor levels in vivo.  相似文献   

14.
5-Hydroxytryptamine (5-HT, serotonin), synthesized in midbrain raphe nuclei and released in various hypothalamic sites, decreases food intake but the specific 5-HT receptor subtypes involved are controversial. Here, we have studied changes in the regional density of binding to 5-HT receptors and transporters and the levels of tryptophan hydroxylase, in rats with obesity induced by feeding a palatable high-energy diet for 7 weeks. We mapped binding at 5-HT receptor subtypes and transporters using quantitative autoradiography and determined tryptophan hydroxylase protein levels by Western blotting. In diet-induced obese (DiO) rats, specific binding to 5-HT(1A) receptors ([3H]8-OH-DPAT) was significantly increased in the dorsal and median raphe by 90% (P<0.01) and 132% (P<0.05), respectively, compared with chow-fed controls. 5-HT(1B) receptor binding sites ([125I]cyanopindolol) were significantly increased in the hypothalamic arcuate nucleus (ARC) of DiO rats (58%; P<0.05), as were 5-HT(2A) receptor binding sites ([3H]ketanserin) in both the ARC (44%; P<0.05) and lateral hypothalamic area (LHA) (121%; P<0.05). However, binding to 5-HT(2C) receptors ([3H]mesulgergine) in DiO rats was not significantly different from that in controls in any hypothalamic region. Binding to 5-HT transporters ([3H]paroxetine) was significantly increased (P<0.05) in both dorsal and median raphe, paraventricular nuclei (PVN), ventromedial nuclei (VMH), anterior hypothalamic area (AHA) and LHA of DiO rats, by 47%-165%. Tryptophan hydroxylase protein levels in the raphe nuclei were not significantly different between controls and DiO rats. In conclusion, we have demonstrated regionally specific changes in binding to certain 5-HT receptor subtypes in obesity induced by voluntary overeating of a palatable diet. Overall, these changes are consistent with reduced 5-HT release and decreased activity of the 5-HT neurons. Reduction in the hypophagic action of 5-HT, possibly acting at 5-HT(1A), 5-HT(1B) and 5-HT(2A) receptors, may contribute to increased appetite in rats presented with highly palatable diet.  相似文献   

15.
Using autoradiography on film, specific binding sites for arginine-vasopressin (AVP) and for oxytocin (OT) were localized in various areas of the brain of adult male guinea pigs. Vasopressin binding sites were detected with [3H]AVP or with [125I]VPA, a recently synthetized linear vasopressin antagonist radiolabeled with 125I. [125I]VPA and [3H]AVP yielded similar results, thus suggesting that AVP binding sites present in the guinea pig brain are V1 type receptors. Supporting evidence on this was obtained in competing studies using structural analogues allowing to discriminate V1 receptors from V2 and from OT receptors. Oxytocin binding sites were labeled with [3H]OT or with the iodinated OT antagonist [125I]OTA; both ligands yielded similar results. The localization in the guinea pig brain of AVP binding sites differed from that of OT binding sites. AVP binding sites were mainly detected in the olfactory bulb and throughout the cerebral cortex. Oxytocin binding sites were most noticeable in the hypothalamic ventromedial nucleus, in the amygdaloid complex and in restricted areas of the cerebral cortex. A comparison of the present data with those previously described in the rat, the mouse, the human and the hamster brain suggests that similar binding sites are present in these species, but that their anatomical distribution differs markedly. These data are discussed in relation to immunocytochemical and electrophysiological data which suggest that binding sites detected by autoradiography may represent, at least in part, functional neuronal receptors.  相似文献   

16.
INTRODUCTION: We wanted to elucidate whether the proposed advantages of citalopram-buspirone combination treatment are related to changes in 5-HT(2A/C) receptor-mediated neurotransmission. METHODS: The affinity of buspirone to 5-HT2A and 5-HT2C receptors was measured in vitro, and the influence of buspirone on 5-HT2C receptor-mediated phosphoinositide hydrolysis was estimated. Four groups of rats received citalopram (10 mg/kg), buspirone (6 mg/kg), citalopram-buspirone combination, or saline once a day s.c. for 14 days. Treatment effects on 5-HT2A and 5-HT2C receptors were investigated by receptor autoradiography with antagonist and agonist radioligands. RESULTS: Buspirone was found to be a weak 5-HT2C receptor antagonist, with a low affinity for 5-HT2A and 5-HT2C receptors. Repeated buspirone-citalopram combination treatment markedly decreased [3H]ketanserin and [125I]DOI binding to 5-HT2A receptors. Repeated administration of buspirone and buspirone-citalopram combination increased the affinity of [3H]mesulergine toward 5-HT2C receptors, and buspirone-citalopram combination also decreased [125I]DOI binding to 5-HT2C receptors. DISCUSSION: We suggest that downregulation of brain 5-HT2A receptors and possibly of 5-HT2C receptor agonist sites is involved in the beneficial clinical effects of buspirone-SSRI augmentation treatment. Furthermore, a conversion of brain 5-HT2C receptors from high- to low-affinity state may provide an additional mechanism for the anti-anxiety effects of buspirone.  相似文献   

17.
Middle age is associated with changes in circadian rhythms (e.g., alterations in the timing of the circadian wheel running rhythm) which resemble changes induced by selective destruction of the serotonergic input to the suprachiasmatic nucleus (SCN), the principal mammalian circadian pacemaker. We hypothesized that serotonergic neurotransmission in the SCN is decreased in middle-aged hamsters, as compared to young adults. This hypothesis was tested indirectly by investigating the effect of aging on two markers of serotonin neurotransmission, 5-HT(1B) receptors and serotonin reuptake sites, which are regulated by serotonin. Previous studies have shown that experimentally induced decreases in serotonergic neurotransmission increase 5-HT(1B) receptors but decrease serotonin reuptake sites. Quantitative autoradiography was conducted using [125I]iodocyanopindolol ([125I]ICYP) and [3H]paroxetine, selective radioligands for the 5-HT(1B) receptors and the serotonin reuptake sites, respectively. Consistent with the hypothesis, specific ([125I]ICYP binding was significantly elevated in the SCN of middle-aged hamsters, as compared to young hamsters. The results also showed that serotonin reuptake sites in the SCN were significantly increased in both middle-aged and old hamsters, as compared to young controls. This result could not have been caused by decreased serotonin release. Alternatively, increased serotonin reuptake, which would reduce serotonin levels in the synaptic cleft, may cause or contribute to the increase in 5-HT(1B) receptor binding in the SCN in middle aged animals. These results show that the SCN exhibits changes in serotonergic function during middle age, which has been characterized by changes in the expression of circadian rhythms. Because these changes occur during middle age, they probably reflect the aging process, rather than senescence or disease.  相似文献   

18.
We describe the production and characterization of a specific anti-5-HT1A receptor antibody made against a fusion protein consisting of glutathione-S-transferase (GST) coupled to a 75-amino acid sequence from the middle portion of the third intracellular loop (5-HT1A-m3i, serine253-arginine327) of the rat 5-HT1A receptor protein. This region was chosen to avoid putative phosphorylation and glycosylation sites and regions of known homology with other 5-HT receptors. Western blot analysis indicated that the polyclonal anti-5-HT1A-m3i antibody accurately recognized the fusion protein expressed in bacteria and labeled a prominent 67 kDa protein band in the hippocampus, cortex, brainstem, cerebellum and kidney with a density profile corresponding to the relative abundance of the 5-HT1A receptor in these tissues. No protein was detected in liver or muscle tissue preparations, and no protein bands were labeled in any of the above tissues following preabsorption of the antibody with the 5-HT1A-m3i fusion protein. Immunohistochemistry revealed prominent labeling in limbic structures including the hippocampus, amygdala, entorhinal cortex, and septum as well as in raphe nuclei. In the hippocampus, 5-HT1A-m3i labeling revealed a characteristic laminar pattern that coincided with that seen by autoradiographic binding of the 5-HT1A agonist [3H]-8-OH-DPAT in all strata of the hippocampal formation. In the dorsal and medial raphe nuclei, anti-5-HT1A-m3i antibodies labeled the somatodendritic membranes of 5-HT neurons, consistent with its role as an autoreceptor. The detailed matching of the anti-5-HT1A-m3i antibody with [3H]-8-OH-DPAT binding suggests that the antibody recognizes a functionally active form of the 5-HT1A receptor protein capable of binding 5-HT1A agonist ligands. These anti-5-HT1A antibodies may therefore be useful tools in localizing functional 5-HT1A receptors in specific regions of the brain as well as in studying the plasticity and ontogeny of the 5-HT1A receptor at the cellular and subcellular level.  相似文献   

19.
Quantitative receptor autoradiography was used to study possible alterations of the densities of multiple serotonin (5-HT) receptor subtypes and of serotonin transporter in the brain of 5-HT(2C) receptor knockout mice. The radioligands employed were [(3)H]citalopram, [(3)H]WAY100,635, [(3)H]8-OH-DPAT, [(3)H]GR125743, [(3)H]sumatriptan, [(3)H]MDL100,907, [(125)I](+/-)DOI, [(3)H]mesulergine, [(3)H]5-HT, [(3)H]GR113808, and [(3)H]5-CT. As expected, radioligands that label 5-HT(2C) receptors showed a complete absence of labeling in mutant mice choroid plexus and significantly reduced densities in other brain regions expressing 5-HT(2C) receptors. With the rest of the radioligands, no significant alterations in the densities of labeled sites were found in any brain region. In situ hybridization showed no changes in 5-HT(2A) receptor and serotonin transporter mRNA levels, whereas 5-HT(2C) receptor mRNA levels were reduced in certain brain regions. The present results indicate that the mouse serotonergic system does not exhibit compensatory up- or down-regulation of the majority of its components (serotonin transporter and most 5-HT receptor subtypes) in response to the absence of 5-HT(2C) receptors.  相似文献   

20.
G-protein activation mediated by serotonin 5-HT1A receptors in human and monkey brain was investigated by using quantitative autoradiography of agonist-stimulated [35S]GTPgammaS binding to whole-hemisphere brain sections. [35S]GTPgammaS binding was stimulated by the mixed 5-HT1A/1B/1D agonist L 694247 (10 microm) in human brain regions enriched in 5-HT1A binding sites [e.g. hippocampus (132-137%), superficial layers of the neocortex (37-61%), and cingulate and entorhinal cortex (34 and 32%, respectively)]. L 694247 caused virtually no stimulation in regions with 5-HT1B/1D receptors, such as substantia nigra, caudate nucleus and putamen. Similar results were obtained with monkey brain sections. The L 694247-mediated [35S]GTPgammaS-binding responses in human and monkey brain sections were antagonized by the selective, silent 5-HT1A antagonist WAY 100635 (10 microm). The 5-HT1B inverse agonist SB 224289 (10 microm) did not affect the [35S]GTPgammaS-binding response of L 694247. The distribution pattern of the [35S]GTPgammaS-binding response and the antagonist profile suggest the L 694247-induced response in human and monkey brain is mediated by 5-HT1A receptors. A weak stimulation of [35S]GTPgammaS binding was also observed in human hippocampus with either 10 microm 8-OH-DPAT (25 +/- 4%) or naratriptan (42 +/- 2%) compared with that obtained with L 694247. In conclusion, G-protein activation by 5-HT1A receptors can be measured in human and monkey brain sections. L 694247 appears to possess higher efficacy at 5-HT1A receptors compared with 8-OH-DPAT and naratriptan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号