首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to compare 18F-3'-fluoro-3'-deoxy-L-thymidine (FLT) PET with clinical TNM staging, including that by 18F-FDG PET, in patients with non-small cell lung cancer (NSCLC). METHODS: Patients with NSCLC underwent whole-body 18F-FDG PET and whole-body 18F-FLT PET, using a median of 360 MBq of 18F-FDG (range, 160-500 MBq) and a median of 210 MBq of 18F-FLT (range, 130-420 MBq). 18F-FDG PET was performed 90 min after 18F-FDG injection, and 18F-FLT PET was performed 60 min after 18F-FLT injection. Two viewers independently categorized the localization and intensity of tracer uptake for all lesions. All 18F-FDG PET and 18F-FLT PET lesions were compared. Staging with 18F-FLT PET was compared with clinical TNM staging based on the findings of history, physical examination, bronchoscopy, CT, and 18F-FDG PET. From 8 patients, standardized uptake values (SUVs) were calculated. Maximal SUV and mean SUV were calculated. RESULTS: Sixteen patients with stage IB-IV NSCLC and 1 patient with strong suspicion of NSCLC were investigated. Sensitivity on a lesion-by-lesion basis was 80% for the 8 patients who received treatment before 18F-FLT PET and 27% for the 9 patients who did not receive pretreatment, using 18F-FDG PET as the reference standard. Compared with clinical TNM staging, staging by 18F-FLT PET was correct for 8 of 17 patients: 5 of 9 patients in the group with previous therapy and 3 of 8 patients in the group without previous therapy. The maximal SUV of 18F-FLT PET, at a median of 2.7 and range of 0.8-4.5, was significantly lower than that of 18F-FDG PET, which had a median of 8.0 and range of 3.7-18.8 (n = 8; P = 0.012). The mean SUV of 18F-FLT PET, at a median of 2.7 and range of 1.4-3.3, was significantly lower than that of 18F-FDG PET, which had a median of 6.2 and range of 2.8-13.9 (n = 6; P = 0.027). CONCLUSION: 18F-FLT PET is not useful for staging and restaging NSCLC.  相似文献   

2.
18F-FDG PET/CT显像正常腹部消化器官的标准摄取值分析   总被引:6,自引:0,他引:6  
目的分析^18F-脱氧葡萄糖(FDG)PET/CT显像正常腹部消化器官标准摄取值(SUV)的变化范围.方法60例要求行PET/CT检查的健康人,按体重7.77 MBq/kg静脉注射^18F-FDG,PET采集为三维模式,每个床位3 min.对腹部肝、胆囊、脾、胰腺、胃、盲肠、结肠和直肠进行半定量分析,各器官的SUV由横断面测量,准确定位时参考同机CT.结果正常腹部消化器官^18F-FDG摄取有较大差异,其中摄取较高者SUV平均值(SUVavg)依次为直肠、肝、乙状结肠、回盲部和脾、升结肠,SUV最大值(SUVmax)依次为直肠、乙状结肠、肝、回盲部、升结肠、脾.结论PET/CT显像能较好地识别腹部消化器官;熟悉正常腹部消化器官^18F-FDG摄取的差异,对判读图像十分重要.  相似文献   

3.
Characterization of the normal adrenal gland with 18F-FDG PET/CT.   总被引:3,自引:0,他引:3  
Prior studies have documented increased (18)F-FDG adrenal activity in both benign and malignant pathologic conditions. When whole-body PET imaging is performed without CT anatomic coregistration, however, the normal adrenal gland is difficult to recognize. The purpose of this study was to investigate the normal adrenal appearance and standardized uptake value (SUV) using (18)F-FDG PET/CT imaging. METHODS: Twenty patients with lymphoma with normal-appearing adrenal glands on prior CT examination (less than a 5% pretest likelihood of adrenal involvement) were studied. PET/CT imaging was performed 2 h after intravenous administration of (18)F-FDG. Unenhanced CT scans were acquired for attenuation correction and anatomic coregistration. PET images were reconstructed using an ordered-subsets expectation maximization algorithm and were corrected for body weight, dose, and radioactive decay. Ability to confirm visualization of the adrenal glands was determined for (18)F-FDG PET alone and for (18)F-FDG PET/CT by a consensus of 2 readers, and uptake of (18)F-FDG in the adrenal gland was compared with liver activity and scored visually (0 = no visualization, 1 = activity less than in liver, 2 = activity equal to liver activity, and 3 = activity greater than in liver). RESULTS: The 2 readers agreed on visualization of the adrenal glands with PET alone for 2 of 40 (5%) glands. With PET/CT, the readers agreed on visualization of 27 of 40 (68%) adrenal glands. Visual scores for normal adrenal activity ranged from 0 to 3, and maximum SUVs ranged from 0.95 to 2.46. Visual scoring of adrenal activity correlated well with both mean and maximal SUV (mean SUV vs. visual score: slope = 0.96, r = 0.88; maximum SUV vs. visual score: slope = 0.99, r = 0.87). CONCLUSION: PET/CT permits more reliable visualization of normal adrenal glands than does PET alone. Visual assessment of adrenal uptake correlates well with SUV measurement, and readers of PET/CT need to be aware of the wide range of normal adrenal uptake.  相似文献   

4.
Placental transfer and fetal dose estimates have been published for women in early pregnancy and at the end of each trimester for a large number of radiopharmaceuticals. For the case of (18)F-FDG, a dose was given with no information about placental transfer of the radiopharmaceutical. Recent publications have reported quantitative values for maternal and fetal uptake of (18)F-FDG in primates and new values for (18)F-FDG kinetics. In this article, these data are applied to give radiation dose estimates for the fetus at all stages of pregnancy for (18)F-FDG. The recommended values are 2.2 x 10(-2) mGy/MBq in early pregnancy, 2.2 x 10(-2) mGy/MBq at 3-mo gestation, 1.7 x 10(-2) mGy/MBq at 6-mo gestation, and 1.7 x 10(-2) mGy/MBq at 9-mo gestation.  相似文献   

5.

Purpose

Prostate-specific membrane antigen (PSMA), a type-II integral membrane protein highly expressed in prostate cancer, has been extensively used as a target for imaging and therapy. Among the available PET radiotracers, the low molecular weight agents that bind to PSMA are proving particularly effective. We present the dosimetry results for 18F-DCFPyL in nine patients with metastatic prostate cancer.

Methods

Nine patients were imaged using sequential PET/CT scans at approximately 1, 12, 35 and 70 min, and a final PET/CT scan at approximately 120 min after intravenous administration of 321?±?8 MBq (8.7?±?0.2 mCi) of18F-DCFPyL. Time-integrated-activity coefficients were calculated and used as input in OLINDA/EXM software to obtain dose estimates for the majority of the major organs. The absorbed doses (AD) to the eye lens and lacrimal glands were calculated using Monte-Carlo models based on idealized anatomy combined with patient-specific volumes and activity from the PET/CT scans. Monte-Carlo based models were also developed for calculation of the dose to two major salivary glands (parotid and submandibular) using CT-based patient-specific gland volumes.

Results

The highest calculated mean AD per unit administered activity of 18F was found in the lacrimal glands, followed by the submandibular glands, kidneys, urinary bladder wall, and parotid glands. The S-values for the lacrimal glands to the eye lens (0.42 mGy/MBq h), the tear film to the eye lens (1.78 mGy/MBq h) and the lacrimal gland self-dose (574.10 mGy/MBq h) were calculated. Average S-values for the salivary glands were 3.58 mGy/MBq h for the parotid self-dose and 6.78 mGy/MBq h for the submandibular self-dose. The resultant mean effective dose of 18F-DCFPyL was 0.017?±?0.002 mSv/MBq.

Conclusions

18F-DCFPyL dosimetry in nine patients was obtained using novel models for the lacrimal and salivary glands, two organs with potentially dose-limiting uptake for therapy and diagnosis which lacked pre-existing models.
  相似文献   

6.
18F-FDG PET/CT in the evaluation of adrenal masses.   总被引:4,自引:0,他引:4  
Our purpose was to evaluate the performance of (18)F-FDG PET/CT, using data from both the PET and the unenhanced CT portions of the study, in characterizing adrenal masses in oncology patients. METHODS: One hundred seventy-five adrenal masses in 150 patients referred for (18)F-FDG PET/CT were assessed. Final diagnosis was based on histology (n = 6), imaging follow-up (n = 118) of 6-29 mo (mean, 14 mo), or morphologic imaging criteria (n = 51). Each adrenal mass was characterized by its size; its attenuation on CT, expressed by Hounsfield units (HU); and the intensity of (18)F-FDG uptake, expressed as standardized uptake value (SUV). Receiver operating characteristic curves were drawn to determine the optimal cutoff values of HU and SUV that would best discriminate between benign and malignant masses. RESULTS: When malignant lesions were compared with adenomas, PET data alone using an SUV cutoff of 3.1 yielded a sensitivity, specificity, positive predictive value, and negative predictive value of 98.5%, 92%, 89.3%, 98.9%, respectively. For combined PET/CT data, the sensitivity, specificity, positive predictive value, and negative predictive value were 100%, 98%, 97%, 100%, respectively. Specificity was significantly higher for PET/CT (P < 0.01). Fifty-one of the 175 masses were 1.5 cm or less in diameter. When a cutoff SUV of 3.1 was used for this group, (18)F-FDG PET/CT correctly classified all lesions. CONCLUSION: (18)F-FDG PET/CT improves the performance of (18)F-FDG PET alone in discriminating benign from malignant adrenal lesions in oncology patients.  相似文献   

7.
The purpose of this study was to evaluate the ability of (18)F-FDG PET to identify aortitis and to localize and follow disease activity in patients with Takayasu arteritis. The value of using (18)F-FDG PET coregistered with enhanced CT in determining vascular lesion sites and inflammatory activity was assessed. METHODS: Takayasu arteritis was diagnosed according to the predefined criteria. Eleven patients with Takayasu arteritis in the active stage, 3 patients with Takayasu arteritis in the inactive stage, and 6 healthy subjects underwent (18)F-FDG PET coregistered with enhanced CT and the inflammatory vascular lesion was evaluated by using the standardized uptake value (SUV) of (18)F-FDG accumulation as an index. Two patients with active disease were analyzed by sequential (18)F-FDG PET scans during treatment. RESULTS: The (18)F-FDG PET revealed intense (18)F-FDG accumulation (SUV > or = 2.7) in the vasculature of 2 of the 11 cases in the active stage of Takayasu arteritis. The other 9 patients in the active stage revealed weak (18)F-FDG accumulation (2.3 > or = SUV > or = 1.2). No significant (18)F-FDG accumulation was observed in the patients with inactive disease (SUV < or = 1.2) and 6 control healthy subjects (SUV < 1.3). Given the cutoff SUV is 1.3, the sensitivity of (18)F-FDG PET analysis of Takayasu arteritis is 90.9% and the specificity is 88.8%. (18)F-FDG PET coregistered with enhanced CT localized (18)F-FDG accumulation in the aortic wall in the patients with Takayasu arteritis who had weak (18)F-FDG accumulation that could not otherwise be identified anatomically. Finally, (18)F-FDG accumulation resolved with therapy in 2 active cases. The disappearance of (18)F-FDG accumulation did not coincide with the level of general inflammatory markers. CONCLUSION: The (18)F-FDG PET images coregistered with enhanced CT images showed the distribution and inflammatory activity in the aorta, its branches, and the pulmonary artery in patients with active Takayasu arteritis, even those who had weak (18)F-FDG accumulation. The intensity of accumulation decreased in response to therapy.  相似文献   

8.

Purpose

Molecular imaging using PET and hybrid (PET/CT and PET/MR) modalities nowadays plays a pivotal role in the clinical setting for diagnosis and staging, treatment response monitoring, and radiation therapy treatment planning of a wide range of oncologic malignancies. The developing embryo/fetus presents a high sensitivity to ionizing radiation. Therefore, estimation of the radiation dose delivered to the embryo/fetus and pregnant patients from PET examinations to assess potential radiation risks is highly praised.

Methods

We constructed eight embryo/fetus models at various gestation periods with 25 identified tissues according to reference data recommended by the ICRP publication 89 representing the anatomy of the developing embryo/fetus. The developed embryo/fetus models were integrated into realistic anthropomorphic computational phantoms of the pregnant female and used for estimating, using Monte Carlo calculations, S-values of common positron-emitting radionuclides, organ absorbed dose, and effective dose of a number of positron-emitting labeled radiotracers.

Results

The absorbed dose is nonuniformly distributed in the fetus. The absorbed dose of the kidney and liver of the 8-week-old fetus are about 47.45 % and 44.76 % higher than the average absorbed dose of the fetal total body for all investigated radiotracers. For 18F-FDG, the fetal effective doses are 2.90E-02, 3.09E-02, 1.79E-02, 1.59E-02, 1.47E-02, 1.40E-02, 1.37E-02, and 1.27E-02 mSv/MBq at the 8th, 10th, 15th, 20th, 25th, 30th, 35th, and 38th weeks of gestation, respectively.

Conclusion

The developed pregnant female/fetus models matching the ICRP reference data can be exploited by dedicated software packages for internal and external dose calculations. The generated S-values will be useful to produce new standardized dose estimates to pregnant patients and embryo/fetus from a variety of positron-emitting labeled radiotracers.
  相似文献   

9.
目的 通过与18F-FDG PET/CT显像对比,探讨18 F-FLT PET/CT检测鼻咽癌原发灶和颈部淋巴结转移灶的可行性.方法 12例初治且经病理确诊的鼻咽癌患者(年龄22~62岁)自愿进入该前瞻性临床研究.每位患者先行18F-FDG PET/CT检查,次日行18F-FLF PET/CT检查.至少有2位核医学科和放射科医师阅片,比较18F-FDG PET/CT和18F-FLT PET/CT图像,采用ROI技术计算鼻咽肿瘤、颈部淋巴结转移灶、正常组织对18F-FDG、18F-FLT的SUVmax、SUVmean和MTV.采用非参数Wilcoxon秩和检验比较组间摄取和MTV差异.结果 12例鼻咽癌患者病灶均明显摄取18F-FLT.18F-FLT PET/CT和18F-FDG PET/CT均可准确诊断该组病例,二者对原发灶和淋巴结转移灶的检测结果无明显差别.鼻咽癌病灶的18F-FDG和18F-FLT SUVmax分别为10.7±5.8和6.0±2.4,SUVmean分别为5.8±3.0和3.6±1.5;SUVmax和SUVmean组间差异均有统计学意义(Z=-2.589和-2.353,P均<0.05),而 MTV在18F-FDG和8F-FLT PET/CT 2种显像方法之问的差异无统计学意义(15.9±9.2和18.1±11.1;Z=-0.786,P>0.05).6例有颈部淋巴结转移灶患者的SUVmax、SUVmean和MTV在2种显像方法间差异均无统计学意义(8.5±6.2比6.4±2.5、5.3±4.2比3.8±1.4、6.5 ±4.8比6.0±4.4;Z=-0.734、-0.734和-0.674,P均>0.05).18F-FLT在颞叶摄取(SUVmax 0.7±0.3)明显低于18F-FDG(SUVmax 8.3±2.7;Z=-3.062,P<0.01),其对于原发灶颅内浸润显示较18F-FDG更清晰.结论 18F-FLT PET/CT在鼻咽癌原发灶和淋巴结转移灶的诊断效能与18F-FDG PET/CT相当,对于显示原发灶的颅底附近侵犯更有利,其临床应用值得进一步研究.  相似文献   

10.
目的探讨18F-FDG PET/CT联合320容积CT双入口灌注成像(DI-CTP)肺动脉灌注指数(PPI)对单发性肺结节的鉴别诊断价值。方法搜集经病理证实40例单发性肺结节患者的18F-FDG PET/CT及320排CT灌注成像影像资料(恶性结节24例、良性结节16例),PET/CT以结节18F-FDG摄取值SUV≥2.5为诊断恶性结节阈值,18F-FDG PET/CT联合PPI则在SUV≥2.5诊断阈值的基础上综合PPI<50%判定,并分析SUV与PP均值在良恶性结节间差异性及相关性。结果PET/CT联合PPI正确诊断38例,其中恶性结节22例、良性结节16例,误诊2例。18F-FDG PET/CT联合PPI诊断肺单发结节的敏感性91.6%,特异性100%,准确性95.0%;18F-PDG摄取值SUV在良、恶性结间差异无统计学意义(t=1.66,P>0.05),而PPI均值在良、恶性结节间差异有统计学意义(t=-3.14,P<0.01);SUV与PPI间相关性无统计学意义(r=0.20,P>0.05)。结论18F-FDG PET/CT联合PPI可以提高诊断肺单发肺结节敏感性、特异性和准确性,减少误诊率。  相似文献   

11.
Osteomyelitis complicates up to one third of diabetic foot infections, is often due to direct contamination from a soft-tissue lesion, and represents a clinical challenge. Early diagnosis is important since antibiotic therapy can be curative and may prevent amputation. The present study assessed the role of PET/CT using 18F-FDG for the diagnosis of diabetic foot osteomyelitis. METHODS: Fourteen diabetic patients (10 men and 4 women; age range, 29-70 y) with 18 clinically suspected sites of infection underwent PET/CT after the injection of 185-370 MBq of 18F-FDG for suspected osteomyelitis complicating diabetic foot disease. PET, CT, and hybrid images were independently evaluated for the diagnosis and localization of an infectious process. Additional data provided by PET/CT for localization of infection in the bone or soft tissues were recorded. The final diagnosis was based on histopathologic findings and bacteriologic assays obtained at surgery or at clinical and imaging follow-up. RESULTS: PET detected 14 foci of increased 18F-FDG uptake suspected as infection in 10 patients. PET/CT correctly localized 8 foci in 4 patients to bone, indicating osteomyelitis. PET/CT correctly excluded osteomyelitis in 5 foci in 5 patients, with the abnormal 18F-FDG uptake limited to infected soft tissues only. One site of mildly increased focal 18F-FDG uptake was localized by PET/CT to diabetic osteoarthropathy changes demonstrated on CT. Four patients showed no abnormally increased 18F-FDG uptake and no further evidence of an infectious process on clinical and imaging follow-up. CONCLUSION: 18F-FDG PET can be used for diagnosis of diabetes-related infection. The precise anatomic localization of increased 18F-FDG uptake provided by PET/CT enables accurate differentiation between osteomyelitis and soft-tissue infection.  相似文献   

12.
In this retrospective study, we investigated whether the (18)F-FDG uptake pattern and CT findings improved the accuracy over the standardized uptake value (SUV) for differentiating benign from malignant focal thyroid lesions incidentally found on (18)F-FDG PET/CT. We also defined the prevalence of these lesions and their risk for cancer. METHODS: (18)F-FDG PET/CT was performed on 1,763 subjects without a previous history of thyroid cancer from May 2003 to June 2004. Two nuclear medicine physicians and 1 radiologist interpreted PET/CT images, concentrating on the presence of focal thyroid lesions, the maximum SUV of the thyroid lesion, the pattern of background thyroid (18)F-FDG uptake, and the CT attenuation pattern of the thyroid lesion. RESULTS: The prevalence of focal thyroid lesions on PET/CT was 4.0% (70/1,763). Diagnostic confirmation was done on 44 subjects by ultrasonography (US)-guided fine-needle aspiration (n = 29) or US with clinical follow-up (n = 15). Among 49 focal thyroid lesions in these 44 subjects, 18 focal thyroid lesions of 17 subjects were histologically proven to be malignant (papillary cancer in 16, metastasis from esophageal cancer in 1, non-Hodgkin's lymphoma in 1). Therefore, the cancer risk of focal thyroid lesions was 36.7% on a lesion-by-lesion basis or 38.6% on a subject-by-subject basis. The maximum SUV of malignant thyroid lesions was significantly higher than that of benign lesions (6.7 +/- 5.5 vs. 10.7 +/- 7.8; P < 0.05). When only the maximum SUV was applied to differentiate benign from malignant focal thyroid lesions for the receiver-operating-characteristic curve analysis, the area under the curve (AUC) of PET was 0.701. All 16 focal thyroid lesions with very low attenuation or nonlocalization on CT images, or with accompanying diffusely increased thyroid (18)F-FDG uptake, were benign. When those lesions were regarded as benign lesions, irrespective of the maximum SUV, the AUC of PET/CT was significantly improved to 0.878 (P < 0.01). CONCLUSION: Focal thyroid lesions incidentally found on (18)F-FDG PET/CT have a high risk of thyroid malignancy. Image interpretation that includes (18)F-FDG uptake and the CT attenuation pattern, along with the SUV, significantly improves the accuracy of PET/CT for differentiating benign from malignant focal thyroid lesions.  相似文献   

13.
Detection of cholangiocarcinoma in extrahepatic bile duct strictures is a continuing challenge in clinical practice because brush cytology taken at endoscopic retrograde cholangiography has an average sensitivity of 50%. The aim of this study was to evaluate the effectiveness of dual-modality PET/CT using (18)F-FDG for noninvasive differentiation of extrahepatic bile duct strictures. METHODS: Twenty-two PET/CT studies were performed on 20 patients (10 women, 10 men; mean age +/- SD, 63 +/- 14 y) with extrahepatic bile duct strictures on endoscopic retrograde cholangiography. PET imaging was started 101 +/- 22 min after injection of 369 +/- 48 MBq of 18F-FDG. Blood glucose was 100 +/- 20 mg/dL. PET images were reconstructed iteratively with attenuation correction based on a rescaling of the CT image. CT was performed within 1 min before the PET study, with the patient in the same position. CT was used to place a volume of interest 5 cm in diameter at the liver hilus for quantitative evaluation of PET images by means of standardized uptake values (SUVs). RESULTS: Final diagnosis was histologically proven cholangiocarcinoma in 14 cases and benign causes of strictures in 8 cases without evidence of malignancy during a follow-up of 18 +/- 3 mo. All patients with cholangiocarcinoma presented with focal increased uptake in the liver hilus with an SUV of 6.8 +/- 3.3 (range, 3.9-15.8), compared with 2.9 +/- 0.3 (range, 2.5-3.3) in patients with benign causes of strictures (P = 0.003). There was a clear cutoff SUV of 3.6 for detection of malignancy in the liver hilus. CONCLUSION: 18F-FDG PET/CT provided high accuracy for noninvasive detection of perihilar cholangiocarcinoma in extrahepatic bile duct strictures.  相似文献   

14.
PET/CT检查中18F-FDG所致辐射剂量的研究   总被引:2,自引:0,他引:2  
目的 研究在PET/CT检查中18F脱氧葡萄糖(FDG)所致的辐射剂量,使辐射防护更优化.方法 单纯随机法选取30名受检者,记录注射18F-FDG的活度;用451P-DE-DI型电离室巡测仪测量受检者的外照射剂量当量率;在职业人员的不同部位佩戴热释光个人剂量计(TLD),测其累积剂量当量,对有关数据分别进行曲线拟合和直线回归分析.结果 30名受检者注射18F-FDG活度为(432.9±51.8)MBq,有效剂量为(8.23±0.99)mSv;剂量当量率与距离和时间的相关系数(r)值分别为-0.994和-0.988,数据拟合后分别为乘幂曲线和指数曲线;职业人员不同部位TLD所测年累积剂量当量均小于相应的年剂量限值.结论 PET/CT检查中(432.9±51.8)MBq18F-FDG对受检者造成的剂量当量负担较小,但医师在申请检查时应综合考虑受检者的有效剂量;注射18F-FDG后的受检者为活动的辐射源,应从距离防护和时间防护方面对他们的活动稍加约束,减少对其他人员的照射;从医疗照射最优化的角度还可较大程度降低注射18F-FDG的活度.  相似文献   

15.
Comparison of 18F-FLT PET and 18F-FDG PET in esophageal cancer.   总被引:7,自引:0,他引:7  
18F-FDG PET has gained acceptance for staging of esophageal cancer. However, FDG is not tumor specific and false-positive results may occur by accumulation of FDG in benign tissue. The tracer 18F-fluoro-3'-deoxy-3'-L-fluorothymidine (18F-FLT) might not have these drawbacks. The aim of this study was to investigate the feasibility of 18F-FLT PET for the detection and staging of esophageal cancer and to compare 18F-FLT PET with 18F-FDG PET. Furthermore, the correlation between 18F-FLT and 18F-FDG uptake and proliferation of the tumor was investigated. METHODS: Ten patients with biopsy-proven cancer of the esophagus or gastroesophageal junction were staged with CT, endoscopic ultrasonography, and ultrasound of the neck. In addition, all patients underwent a whole-body 18F-FLT PET and 18F-FDG PET. Standardized uptake values were compared with proliferation expressed by Ki-67 positivity. RESULTS: 18F-FDG PET was able to detect all esophageal cancers, whereas 18F-FLT PET visualized the tumor in 8 of 10 patients. Both 18F-FDG PET and 18F-FLT PET detected lymph node metastases in 2 of 8 patients. 18F-FDG PET detected 1 cervical lymph node that was missed on 18F-FLT PET, whereas 18F-FDG PET showed uptake in benign lesions in 2 patients. The uptake of 18F-FDG (median standardized uptake value [SUV(mean)], 6.0) was significantly higher than 18F-FLT (median SUV(mean), 3.4). Neither 18F-FDG maximum SUV (SUV(max)) nor 18F-FLT SUV(max) correlated with Ki-67 expression in the linear regression analysis. CONCLUSION: In this study, uptake of 18F-FDG in esophageal cancer is significantly higher compared with 18F-FLT uptake. 18F-FLT scans show more false-negative findings and fewer false-positive findings than do 18F-FDG scans. Uptake of 18F-FDG or 18F-FLT did not correlate with proliferation.  相似文献   

16.
This study was designed to evaluate the radiation dosimetry in human subjects for a new radiopharmaceutical, N-(3-(18)F-fluoropropyl)-2beta-carbomethoxy-3beta-(4-iodophenyl)nortropane ((18)F-FPCIT). The goal was to determine a limiting dose consistent with accepted guidelines for use in clinical studies and to compare the radiation burden with other agents such as (123)I-FPCIT, (18)F-fluorodopa, and (18)F-FDG. METHODS: Dynamic PET scans of the urinary bladder were obtained in 6 subjects; 2 subjects had brain scans and 5 subjects had scans of the thorax or abdomen. Regions of interest were placed over composite images of each organ for which activity was visualized to generate time-activity curves. Doses were calculated from residence times using the MIRDOSE3 program. RESULTS: The critical organ for dosimetry is the urinary bladder wall with a dose of 0.0586 +/- 0.0164 mGy/MBq. The dose comes primarily (97.2%) from activity in the urinary bladder contents. The dose is lower than any of the other agents used commonly in PET to assess dopaminergic function. The effective dose equivalent (0.0120 mGy/MBq) is also lower than comparable compounds. CONCLUSION: (18)F-FPCIT has favorable dosimetry when compared with other agents used to study dopaminergic function. Doses as high as 853 MBq (23 mCi) may be given to adult patients and remain within accepted guidelines.  相似文献   

17.
PURPOSE: The concentration of F-FDG in the bone marrow is usually low. One common cause of high uptake is due to bone marrow stimulating drugs administered in conjunction with chemotherapy or radiation therapy. It has been hypothesized that the sequestration of F-FDG to the bone marrow may reduce the standardized uptake value (SUV) of a tumour. We tested this hypothesis by quantifying total F-FDG uptake in the bone marrow of patients with visibly enhanced bone marrow uptake and computing its effect on tumour SUV. METHODS: Total F-FDG in bone marrow was measured in two groups of PET/CT studies: one (n=19) with visibly enhanced bone marrow, the other (n=5), a baseline group with 'normal' levels of uptake. To measure the F-FDG in bone marrow, the entire skeleton in the CT was segmented from surrounding tissue, and the resulting volume applied to the PET image. Using kinetic analysis we show that the predicted correction factor to tumour SUV is given by (1-q0/Q)/(1-q/Q), where Q is the injected dose, and q and q0 are enhanced and baseline bone marrow uptake (MBq). RESULTS: The enhanced bone marrow uptake averaged 8.9+/-3.2% of injected dose (15.2% max) vs. 4.2+/-0.4% (4.6% max) at baseline. This resulted in a predicted artificial decrease in tumour SUV of up to 11.5% (4.9+/-4.3%, on average). CONCLUSION: Enhanced bone marrow uptake is predicted to reduce tumour SUVs by as much as 11.5% in our patient group and is a potential confounding factor in using SUV for monitoring tumour response to therapy.  相似文献   

18.
OBJECTIVE: The standardized uptake value (SUV) is a relative measure of tracer uptake in tissue used in (18)F-FDG PET. However, the quality of ordered subset expectation maximization (OS-EM) images is sensitive to the number of iterations, because a large number of iterations leads to images with checkerboard noise. The main advantage of data acquisition in the three-dimensional (3D) mode is the high sensitivity to better exploit the intrinsic spatial resolution and the lower injection dose given to patients. In the 3D mode, the scatter fraction is higher, and, for a given administered dose, the random fraction is higher than that in the two-dimensional mode, which implies that correction methods need to be more accurate. Moreover, in clinical oncology (18)F-FDG PET studies, patients have a wide variety of body shapes and sizes, which may impact image statistics. Consequently, it is necessary to make constant the acquisition (true) counts. The purpose of this study was to optimize injection dose and acquisition time in consideration of body mass index (BMI) for 3D whole-body (18)F-FDG PET. METHODS: A dedicated PET scanner, SIEMENS ECAT EXACT HR(+), was used to scan images of clinical data. The injection dose for BMI of <14-19, 19-22, 22-25, and 25< (kg/m(2)) were, 92.5 MBq, 111.0 MBq, 129.5 MBq, and 148.0 MBq, respectively. The emission scan time per bed position for BMI of <14-19, 19-22, 22-25, and >25 (kg/m(2)) were, 120, 120, 180, and 240 sec, respectively. A total of 20 patient subjects were evaluated as to true counts per bin (T/bin) of sinogram data and measured activity concentrations for the region of interest in the liver section. RESULTS: T/bin was stable using an optimized protocol that took into consideration the BMI for any type of body morphology. The overall coefficient of variation was 7.27% for radioactivity concentration. Additionally, Gaussian filtering (8 mm FWHM) after reconstruction by the OS-EM method provided stable SUV values even when the iteration number was increased 30 times over. CONCLUSION: Optimization of injection dose and acquisition time indicated that BMI was a clinically useful acquisition protocol for 3D whole-body (18)F-FDG PET.  相似文献   

19.
Current internal radiation dosimetry models for the small intestine, and for most walled organs, lack the ability to account for the activity uptake in the intestinal wall. In existing models the cross-dose from nearby loops of the small intestine is not taken into consideration. The aim of this investigation was to develop a general model for calculating the absorbed dose to the radiation-sensitive cells in the small intestinal mucosa from radionuclides located in the small intestinal wall or contents. METHODS: A model was developed for calculation of the self-dose and cross-dose from activity in the intestinal wall or contents. The small intestine was modeled as a cylinder with 2 different wall thicknesses and with an infinite length. Calculations were performed for various mucus thicknesses. S values were calculated using the EGS4 Monte Carlo simulation package with the PRESTA algorithm and the simulation results were integrated over the depth of the radiosensitive cells. The cross-organ dose was calculated by summing the dose contributions from other intestinal segments. Calculations of S values for self-dose and cross-dose were made for monoenergetic electrons, 0.050-10 MeV, and for the radionuclides (99m)Tc, (111)In, (131)I, (67)Ga, (90)Y, and (211)At. RESULTS: The self-dose S value from activity located in the small intestinal wall is considerably greater than the S values for self-dose from the contents and the cross-dose from wall and contents except for high electron energies. For all radionuclides investigated and for electrons 0.10-0.20 MeV and 8-10 MeV in energy, the cross-dose from activity in the contents is higher than the self-dose from the contents. The mucus thickness affects the S value when the activity is located in the contents. CONCLUSION: A dosimetric model for the small intestine was developed that takes into consideration the localization of the radiopharmaceutical in the intestinal wall or in the contents. It also calculates the contribution from self-dose and cross-dose. With this model, more accurate calculations of absorbed dose to radiation-sensitive cells in the intestine are possible.  相似文献   

20.
Purpose Good knowledge of physiological 18F-fluorodeoxglucose (18F-FDG) uptake in the healthy population is of great importance for the correct interpretation of 18F-FDG positron emission tomography (PET) images of pathological processes. The purpose of this study was to investigate the physiological 18F-FDG uptake in the ovaries and uterus of healthy female volunteers.Methods One hundred and 33 healthy females, 78 of whom were premenopausal (age 37.2±6.9 years) and 55 postmenopausal (age 55.0±2.7 years), were examined using whole-body 18F-FDG PET and pelvic magnetic resonance (MR) imaging. Focal 18F-FDG uptake in the ovaries and uterus was evaluated visually and using standardised uptake value (SUVs). Anatomical and morphological information was obtained from MR images.Results Distinct ovarian 18F-FDG uptake with an SUV of 3.9±0.7 was observed in 26 premenopausal women out of 32 examined during the late follicular to early luteal phase of the menstrual cycle. Eighteen of the 32 women also showed focal 18F-FDG uptake in the endometrium, with an SUV of 3.3±0.3. On the other hand, all nine women in the first 3 days of the menstrual cycle demonstrated intense 18F-FDG uptake in the endometrium, with an SUV of 4.6±1.0. No physiological 18F-FDG uptake was observed in the ovaries or uterus of any postmenopausal women.Conclusion In women of reproductive age, 18F-FDG imaging should preferably be done within a week before or a few days after the menstrual flow phase to avoid any misinterpretation of pelvic 18F-FDG PET images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号