首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the early stage of angiogenesis, neovascular sprouts are composed primarily of endothelial cells. As they mature, microvessels acquire a coating of mural cells, which are critical for the development and maintenance of a functional vasculature. Though growth factor regulation of mural cell recruitment has been extensively investigated, the intracellular signaling events involved in this process remain poorly understood. Among the intracellular kinases implicated in angiogenesis, the p38 MAPK has been shown to transduce signals critical for vascular remodeling and maturation. The rat aorta model of angiogenesis was used to further investigate the role of this signaling pathway in the recruitment of mural cells during angiogenesis. The p38 MAPK inhibitor SB203580 selectively blocked mural cell recruitment, resulting in the formation of naked endothelial tubes without mural cells. SB203580 inhibited angiopoietin-1-induced mural cell recruitment without influencing angiopoietin-1-stimulated endothelial sprouting. Adenoviral vector-mediated expression of a dominant negative form of p38 MAPK significantly reduced mural cell recruitment, whereas overexpression of a constitutively activated form of MKK6, an upstream activator of p38 MAPK, increased mural cell number. These results indicate that the p38 MAPK signaling pathway plays a critical role in mural cell recruitment during neovascularization and may represent a therapeutic target in angiogenesis-related disorders.  相似文献   

2.
The angiogenic response to injury can be studied by culturing rat or mouse aortic explants in collagen gels. Gene expression studies show that aortic angiogenesis is preceded by an immune reaction with overexpression of Toll-like receptors (TLRs) and TLR-inducible genes. TLR1, 3, and 6 are transiently upregulated at 24 h whereas TLR2, 4, and 8 expression peaks at 24 h but remains elevated during angiogenesis and vascular regression. Expression of TLR5, 7 and 9 steadily increases over time and is highest during vascular regression. Studies with isolated cells show that TLRs are expressed at higher levels in aortic macrophages compared to endothelial or mural cells with the exception of TLR2 and TLR9 which are more abundant in the aortic endothelium. LPS and other TLR ligands dose dependently stimulate angiogenesis and vascular endothelial growth factor production. TLR9 ligands also influence the behavior of nonendothelial cell types by blocking mural cell recruitment and inducing formation of multinucleated giant cells by macrophages. TLR9-induced mural cell depletion is associated with reduced expression of the mural cell recruiting factor PDGFB. The spontaneous angiogenic response of the aortic rings to injury is reduced in cultures from mice deficient in myeloid differentiation primary response 88 (MyD88), a key adapter molecule of TLRs, and following treatment with an inhibitor of the NFκB pathway. These results suggest that the TLR system participates in the angiogenic response of the vessel wall to injury and may play an important role in the regulation of inflammatory angiogenesis in reactive and pathologic processes.  相似文献   

3.
Improved quantification of angiogenesis in the rat aortic ring assay   总被引:7,自引:2,他引:7  
In vitro angiogenesis assays are essential for the identification of potential angiogenic agents and screening for pharmacological inhibitors. Among these assays, the rat aortic ring model developed by Nicosia bridges the gap between in vivo and in vitro models. The quantification of angiogenesis on this system must be applicable to characterise vascular networks of various states of complexity. We present here an improved computer-assisted image analysis which allows: (1) the determination of the aortic ring area and its factor shape; (2) the number of microvessels, the total number of branchings, the maximal microvessel length and the microvessel distribution; (3) the total number of isolated fibroblast-like cells and their distribution. We show that this method is suitable to quantify spontaneous angiogenesis as well as to analyse a complex microvascular network induced by various concentrations of vascular endothelial growth factor (VEGF). In addition, by evaluating a new parameter, the fibroblast-like cell distribution, our results show that: (1) during spontaneous angiogenic response, maximal fibroblast-like cell migration delimits microvascular outgrowth; and (2) the known angiogenic inhibitor Batimastat prevents endothelial cell sprouting without completely blocking fibroblast-like cell migration. Finally, this new method of quantification is of great interest to better understand angiogenesis and to test pro- or anti-angiogenic agents. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Ma J  Wang Q  Fei T  Han JD  Chen YG 《Blood》2007,109(3):987-994
Transforming growth factor-beta (TGF-beta) and its signaling mediators play crucial roles in vascular formation. Our previous microarray analysis identified monocyte chemoattractant protein-1 (MCP-1) as a TGF-beta target gene in endothelial cells (ECs). Here, we report that MCP-1 mediates the angiogenic effect of TGF-beta by recruiting vascular smooth muscle cells (VSMCs) and mesenchymal cells toward ECs. By using a chick chorioallantoic membrane assay, we show that TGF-beta promotes the formation of new blood vessels and this promotion is attenuated when MCP-1 activity is blocked by its neutralizing antibody. Wound healing and transwell assays established that MCP-1 functions as a chemoattractant to stimulate migration of VSMCs and mesenchymal 10T1/2 cells toward ECs. Furthermore, the conditioned media from TGF-beta-treated ECs stimulate VSMC migration, and inhibition of MCP-1 activity attenuates TGF-beta-induced VSMC migration toward ECs. Finally, we found that MCP-1 is a direct gene target of TGF-beta via Smad3/4. Taken together, our findings suggest that MCP-1 mediates TGF-beta-stimulated angiogenesis by enhancing migration of mural cells toward ECs and thus promoting the maturation of new blood vessels.  相似文献   

5.
6.
Cell-cell communication is essential for coordinating physiological responses in multicellular organisms and is required for various developmental processes, including cell migration, differentiation, and fusion. To facilitate communication, functional differences are usually required between interacting cells, which can be established either genetically or developmentally. However, genetically identical cells in the same developmental state are also capable of communicating, but must avoid self-stimulation. We hypothesized that such cells must alternate their physiological state between signal sending and receiving to allow recognition and behavioral changes. To test this hypothesis, we studied cell communication in the filamentous fungus Neurospora crassa, a simple and experimentally amenable model system. In N. crassa, germinating asexual spores (germlings) of identical genotype chemotropically sense others in close proximity, show attraction-mediated directed growth, and ultimately undergo cell fusion. Here, we report that two proteins required for cell fusion, a MAP kinase (MAK-2) and a protein of unknown molecular function (SO), exhibit rapid oscillatory recruitment to the plasma membranes of interacting germlings undergoing chemotropic interactions via directed growth. Using an inhibitable MAK-2 variant, we show that MAK-2 kinase activity is required both for chemotropic interactions and for oscillation of MAK-2 and SO to opposing cell tips. Thus, N. crassa germlings undergoing chemotropic interactions rapidly alternate between two different physiological states, associated with signal delivery and response. Such spatiotemporal coordination of signaling allows genetically identical and developmentally equivalent cells to avoid self-stimulation and to coordinate their behavior to achieve the beneficial physiological outcome of cell fusion.  相似文献   

7.
Pulmonary fibrosis is a progressive disease with unknown etiology that is characterized by extensive remodeling of the lung parenchyma, ultimately resulting in respiratory failure. Lymphatic vessels have been implicated with the development of pulmonary fibrosis, but the role of the lymphatic vasculature in the pathogenesis of pulmonary fibrosis remains enigmatic. Here we show in a murine model of pulmonary fibrosis that lymphatic vessels exhibit ectopic mural coverage and that this occurs early during the disease. The abnormal lymphatic vascular patterning in fibrotic lungs was driven by expression of platelet-derived growth factor B (PDGF-B) in lymphatic endothelial cells and signaling through platelet-derived growth factor receptor (PDGFR)-β in associated mural cells. Because of impaired lymphatic drainage, aberrant mural cell coverage fostered the accumulation of fibrogenic molecules and the attraction of fibroblasts to the perilymphatic space. Pharmacologic inhibition of the PDGF-B/PDGFR-β signaling axis disrupted the association of mural cells and lymphatic vessels, improved lymphatic drainage of the lung, and prevented the attraction of fibroblasts to the perilymphatic space. Our results implicate aberrant mural cell recruitment to lymphatic vessels in the pathogenesis of pulmonary fibrosis and that the drainage capacity of pulmonary lymphatics is a critical mediator of fibroproliferative changes.  相似文献   

8.
Notch is a critical regulator of angiogenesis, vascular differentiation, and vascular integrity. We investigated whether Notch signaling affects macrophage function during retinal angiogenesis in mice. Retinal macrophage recruitment and localization in mice with myeloid-specific loss of Notch1 was altered, as these macrophages failed to localize at the leading edge of the vascular plexus and at vascular branchpoints. Furthermore, these retinas were characterized by elongated endothelial cell sprouts that failed to anastomose with neighboring sprouts. Using Notch reporter mice, we demonstrate that retinal macrophages localize between Dll4-positive tip cells and at vascular branchpoints, and that these macrophages had activated Notch signaling. Taken together, these data demonstrate that Notch signaling in macrophages is important for their localization and interaction with endothelial cells during sprouting angiogenesis.  相似文献   

9.
10.
Bone marrow (BM)-derived cells are thought to participate in the growth of blood vessels during postnatal vascular regeneration and tumor growth, a process previously attributed to stem and precursor cells differentiating to endothelial cells. We used multichannel laser scanning confocal microscopy of whole-mounted tissues to study angiogenesis in chimeric mice created by reconstituting C57BL mice with genetically marked syngeneic BM. We show that BM-derived endothelial cells do not significantly contribute to tumor- or cytokine-induced neoangiogenesis. Instead, BM-derived periendothelial vascular mural cells were persistently detected at sites of tumor- or vascular endothelial growth factor-induced angiogenesis. Subpopulations of these cells expressed the pericyte-specific NG2 proteoglycan, or the hematopoietic markers CD11b and CD45, but did not detectably express the smooth muscle markers smooth muscle alpha-actin or desmin. Thus, the major contribution of the BM to angiogenic processes is not endothelial, but may come from progenitors for periendothelial vascular mural and hematopoietic effector cells.  相似文献   

11.
Although several CXC chemokines have been shown to induce angiogenesis and play roles in tumor growth, to date, no member of the CC chemokine family has been reported to play a direct role in angiogenesis. Here we report that the CC chemokine, monocyte chemotactic protein 1 (MCP-1), induced chemotaxis of human endothelial cells at nanomolar concentrations. This chemotactic response was inhibited by a monoclonal antibody to MCP-1. MCP-1 also induced the formation of blood vessels in vivo as assessed by the chick chorioallantoic membrane and the matrigel plug assays. As expected, the angiogenic response induced by MCP-1 was accompanied by an inflammatory response. With the use of a rat aortic sprouting assay in the absence of leukocytic infiltrates, we ruled out the possibility that the angiogenic effect of MCP-1 depended on leukocyte products. Moreover, the direct effect of MCP-1 on angiogenesis was consistent with the expression of CCR2, the receptor for MCP-1, on endothelial cells. Assessment of supernatant from a human breast carcinoma cell line demonstrated the production of MCP-1. Treatment of immunodeficient mice bearing human breast carcinoma cells with a neutralizing antibody to MCP-1 resulted in significant increases in survival and inhibition of the growth of lung micrometastases. Taken together, our data indicate that MCP-1 can act as a direct mediator of angiogenesis. As a chemokine that is abundantly produced by some tumors, it can also directly contribute to tumor progression. Therefore, therapy employing antagonists of MCP-1 in combination with other inhibitors of angiogenesis may achieve more comprehensive inhibition of tumor growth.  相似文献   

12.
Endothelial cell migration during angiogenesis   总被引:2,自引:0,他引:2  
Endothelial cell migration is essential to angiogenesis. This motile process is directionally regulated by chemotactic, haptotactic, and mechanotactic stimuli and further involves degradation of the extracellular matrix to enable progression of the migrating cells. It requires the activation of several signaling pathways that converge on cytoskeletal remodeling. Then, it follows a series of events in which the endothelial cells extend, contract, and throw their rear toward the front and progress forward. The aim of this review is to give an integrative view of the signaling mechanisms that govern endothelial cell migration in the context of angiogenesis.  相似文献   

13.
14.
15.
Calcific aortic valve stenosis (AS), the main heart valve disease in the elderly, is characterized by extensive remodeling of the extracellular matrix. Matrix metalloproteinases (MMPs) are upregulated in calcific AS and might modulate matrix remodeling. The regulatory mechanisms are unclear. As recent studies have suggested that calcific AS might result from an inflammatory process involving leukocyte invasion and activation, the present study aimed to elucidate the role of the pro-inflammatory cytokine interleukin (IL)-1β on MMP expression and cell proliferation in human aortic valves. Immunohistochemistry for leukocytes, IL-1β and MMP-1 was performed on aortic valves with (n=6) and without (n=6) calcification obtained at valve replacement or autopsy. Stenotic valves showed marked leukocyte infiltration and associated expression of IL-1β and MMP-1. In control valves only scattered leukocytes, low staining for MMP-1 and no staining for IL-1β were present. Double-label immunostaining localized IL-1β expression mainly to leukocytes and MMP-1 expression to myofibroblasts. Stimulation of cultured human aortic valve myofibroblasts with IL-1β lead to a time-dependently increased expression of MMP-1 and MMP-2 by Western blotting and zymography, whereas MMP-9 remained unchanged. Cell proliferation was increased by IL-1β as determined by bromodesoxyuridine incorporation. Thus, IL-1β may regulate remodeling of the extracellular matrix in calcific AS.  相似文献   

16.
17.
Summary While mural thrombus accompanied by an abdominal aortic aneurysm (AAA) is not rare, the growth rate of such a thrombus has not yet been adequately documented. We present here a very rare case of a 62-year-old female patient with an AAA in whom the mural thrombus in the aneurysm grew very rapidly over a short period. We could follow the growth of the mural thrombus in the AAA by two-dimensional (2-D) abdominal echography. Patients with an AAA must be closely monitored by this technique which is able to detect the presence of the thrombus and allow evaluation of its growth.  相似文献   

18.
19.
Selective targeting of endothelial cells in tumor vessels requires delineation of key molecular events in formation and survival of blood vessels within the tumor microenvironment. To this end, proteins transiently up-regulated during vessel morphogenesis were screened for their potential as targets in antiangiogenic tumor therapy. The molecular chaperone alphaB-crystallin was identified as specifically induced with regard to expression level, modification by serine phosphorylation, and subcellular localization during tubular morphogenesis of endothelial cells. Small interfering RNA-mediated knockdown of alphaB-crystallin expression did not affect endothelial proliferation but led to attenuated tubular morphogenesis, early activation of proapoptotic caspase-3, and increased apoptosis. alphaB-crystallin was expressed in a subset of human tumor vessels but not in normal capillaries. Tumors grown in alphaB-crystallin(-/-) mice were significantly less vascularized than wild-type tumors and displayed increased areas of apoptosis/necrosis. Importantly, tumor vessels in alphaB-crystallin(-/-) mice were leaky and showed signs of caspase-3 activation and extensive apoptosis. Ultrastructural analyses showed defective vessels partially devoid of endothelial lining. These data strongly implicate alphaB-crystallin as an important regulator of tubular morphogenesis and survival of endothelial cell during tumor angiogenesis. Hereby we identify the small heat shock protein family as a novel class of angiogenic modulators.  相似文献   

20.
Thrombospondin-1 is a multifunctional protein interacting with several cell surface receptors including integrins. We found that it is a ligand for alpha9beta1 integrin, and has an integrin binding site within its N-terminal domain (NoC1). Interaction of thrombospondin-1 and its recombinant NoC1 domain with alpha9beta1 integrin was confirmed in ELISA and cell adhesion assays. Binding of NoC1 to cells expressing alpha9beta1 integrin activated signaling proteins such as Erk1/2 and paxillin. Blocking of this integrin by monoclonal antibody and the met-leu-asp-disintegrin inhibited dermal human microvascular endothelial cell proliferation and NoC1-induced migration of these cells. Immunohistochemical studies revealed that alpha9beta1 is expressed on microvascular endothelium in several organs including skin, lung, heart and brain. NoC1 induced neovascularization in an experimental quail chorioallantoic membrane system and Matrigel plug formation assay in mice. This proangiogenic activity of NoC1 in vivo was inhibited by alpha9beta1 inhibitors. In summary, our results revealed that alpha9beta1 integrin expressed on microvascular endothelial cells interacts with thrombospondin-1, and this interaction is involved in modulation of angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号