首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
King Chung  Fan-Gang Zeng   《Hearing research》2009,250(1-2):27-37
The goal of this study was to investigate whether adaptive microphone directionality could enhance cochlear implant performance. Speech stimuli were created by fitting a digital hearing aid with programmable omnidirectional (OM), fixed directional (FDM), or adaptive directional (ADM) microphones to KEMAR, and recording the hearing aid output in three noise conditions. The first condition simulated a diffused field with noise sources from five stationary locations, whereas the second and third condition represented one or three non-stationary locations in the back hemifield of KEMAR. Speech was always presented to 0° azimuth and the overall signal-to-noise ratio (SNR) was +5 dB in the sound field. Eighteen postlingually deafened cochlear implant users listened to the recorded test materials via the direct audio input of their speech processors. Their speech recognition ability and overall sound quality preferences were assessed and the correlation between the amount of noise reduction and the improvement in speech recognition were calculated. The results indicated that ADM yielded significantly better speech recognition scores and overall sound quality preference than FDM and OM in all three noise conditions and the improvement in speech recognition scores was highly correlated with the amount of noise reduction. Factors influencing the noise level are discussed.  相似文献   

2.
OBJECTIVE: The performance of an adaptive beam-former in a 2-microphone, behind-the-ear hearing aid for speech understanding in noisy environments was evaluated. Physical and perceptual evaluations were carried out. This was the first large-scale test of a wearable real-time implementation of this algorithm. The main perceptual research questions of this study were related to the influence on the noise reduction performance of (1) the spectro-temporal character of the jammer sound, (2) the jammer sound scene, (3) hearing impairment, and (4) the basic microphone configuration in the hearing aid. Four different speech materials were used for the perceptual evaluations. All tests were carried out in an acoustical environment comparable to living room reverberation. DESIGN: The adaptive beamformer was implemented in Audallion, a small, body-worn processor, linked to a Danasound 2-microphone behind-the-ear aid. The strategy was evaluated physically in different acoustical environments. Using speech reception threshold (SRT) measurements, the processing was evaluated perceptually and the different research questions addressed with three groups of subjects. Groups I, II, and III consisted of 10 normal-hearing, 5 hearing-impaired, and 7 normal-hearing persons, respectively. The tests were carried out in three spectro-temporally different jammer sounds (unmodulated and modulated speech weighted noise, multitalker babble) and in three different noise scenarios (single noise source at 90 degrees, noise sources at 90 degrees and 270 degrees relative to speaker position, diffuse noise scene). Two microphone configurations were compared: a device equipped with two omnidirectional microphones and a device equipped with one hardware directional and one omnidirectional microphone. In each of these conditions, the adaptive beamformer and the directional and omnidirectional microphone configurations were tested. RESULTS: The improvement in signal-to-noise ratio from the use of the adaptive beamformer did not depend on the spectro-temporal character of the jammer sounds and the speech materials used, although the absolute levels of the SRTs varied appreciably for different speech-noise combinations. The performance of the adaptive noise reduction depended on the jammer sound scene. CONCLUSIONS: No difference in signal-to-noise ratio improvement was observed between hearing-impaired and normal-hearing listeners, although individual SRT levels may differ. On average, an SRT improvement of 7.7 and 3.9 dB for a single noise source at 90 degrees and 5.9 and 3.4 dB for two noise sources at 90 degrees and 270 degrees was obtained for both normal-hearing and hearing-impaired listeners, using the adaptive beamformer and the directional microphone, respectively, relative to the omnidirectional microphone signal. In diffuse noise, only small improvements were obtained.  相似文献   

3.
Luts H  Maj JB  Soede W  Wouters J 《Ear and hearing》2004,25(5):411-420
OBJECTIVE: To evaluate the improvement in speech intelligibility in noise obtained with an assistive real-time fixed endfire array of bidirectional microphones in comparison with an omnidirectional hearing aid microphone in a realistic environment. DESIGN: The microphone array was evaluated physically in anechoic and reverberant conditions. Perceptual tests of speech intelligibility in noise were carried out in a reverberant room, with two types of noise and six different noise scenarios with single and multiple noise sources. Ten normal-hearing subjects and 10 hearing aid users participated. The speech reception threshold for sentences was measured in each test setting for the omnidirectional microphone of the hearing aid and for the hearing aid in combination with the array with one and three active microphones. In addition, the extra improvement of five active array microphones, relative to three, was determined in another group of 10 normal-hearing listeners. RESULTS: Improvements in speech intelligibility in noise obtained with the array relative to an omnidirectional microphone depend on noise scenario and subject group. Improvements up to 12 dB for normal-hearing and 9 dB for hearing-impaired listeners were obtained with three active array microphones relative to an omnidirectional microphone for one noise source at 90 degrees . For three uncorrelated noise sources at 90 degrees, 180 degrees, and 270 degrees, improvements of approximately 9 dB and 6 dB were obtained for normal-hearing and hearing-impaired listeners, respectively. Even with a single noise source at 45 degrees, benefits of 4 dB were achieved in both subject groups. Five active microphones in the array can provide an additional improvement at 45 degrees of approximately 1 dB, relative to the three-microphone configuration for normal-hearing listeners. CONCLUSIONS: These improvements in signal-to-noise ratio can be of great benefit for hearing aid users, who have difficulties with speech understanding in noisy environments.  相似文献   

4.
Omnidirectional, supercardioid, and adaptive directional microphones (ADM) were evaluated in combination with the ADRO amplification scheme for eight participants with moderate sloping hearing losses. The ADM produced better speech perception scores than the other two microphones in all noise conditions. Participants performed the Hearing in Noise Test sentences at -4.5 dB SNR or better, which is similar to the level achievable with normal hearing. The Speech, Spatial and Qualities of Hearing Scale indicated no disadvantages of using the ADM relative to the omnidirectional microphone in real-life situations. The ADM was preferred over the omnidirectional microphone in 54% of situations, compared to 17% preferences for the omnidirectional microphone, and 29% no preference. The combination of the ADM to improve SNR, and ADRO to keep the signal output comfortable and audible provided near-normal hearing performance for people with moderate hearing loss. The ADM is the recommended microphone configuration for ADRO hearing aids.  相似文献   

5.
In this study, two types of hearing aids were used. Both aids had the same frequency characteristics for frontal sound, but one employed an omnidirectional microphone and the other a directional microphone. The frequency characteristics of both hearing aids were measured for five azimuths on KEMAR and in situ in 12 normal-hearing subjects. For these subjects we also determined the speech reception threshold (SRT) with background noise in two rooms with different reverberation times. The direction of the speech stimuli was always frontal; the direction of the noise was varied. Additionally, directional hearing was measured with short noise bursts from eight loudspeakers surrounding the subject. In the less reverberant room, sounds coming from behind were less amplified by the hearing aid with the directional microphone than by the one with the omnidirectional microphone. In this room the monaural SRT values were largely determined by the level of the background noise. For the directional hearing aids there was an extra binaural advantage which depended on the direction of the background noise. Only for low-frequency noise bursts was directional hearing better with directional hearing aids. In the more reverberant room, no distinct differences between the frequency characteristics of the two hearing aid types were measured. However, a systematic difference between monaural SRT values measured through the two hearing aids was found. This difference was independent of noise azimuth. In conclusion, hearing aid(s) with a directional microphone showed no disadvantages and clear advantages under specific conditions.  相似文献   

6.
Abstract

To evaluate whether speech recognition in noise differs according to whether a wireless remote microphone is connected to just the cochlear implant (CI) or to both the CI and to the hearing aid (HA) in bimodal CI users. The second aim was to evaluate the additional benefit of the directional microphone mode compared with the omnidirectional microphone mode of the wireless microphone. This prospective study measured Speech Recognition Thresholds (SRT) in babble noise in a ‘within-subjects repeated measures design’ for different listening conditions. Eighteen postlingually deafened adult bimodal CI users. No difference in speech recognition in noise in the bimodal listening condition was found between the wireless microphone connected to the CI only and to both the CI and the HA. An improvement of 4.1?dB was found for switching from the omnidirectional microphone mode to the directional mode in the CI only condition. The use of a wireless microphone improved speech recognition in noise for bimodal CI users. The use of the directional microphone mode led to a substantial additional improvement of speech perception in noise for situations with one target signal.  相似文献   

7.
This investigation assessed the extent to which listeners’ preferences for hearing aid microphone polar patterns vary across listening environments, and whether normal-hearing and inexperienced and experienced hearing-impaired listeners differ in such preferences. Paired-comparison judgments of speech clarity (i.e. subjective speech intelligibility) were made monaurally for recordings of speech in noise processed by a commercially available hearing aid programmed with an omnidirectional and two directional polar patterns (cardioid and hypercardioid). Testing environments included a sound-treated room, a living room, and a classroom. Polar-pattern preferences were highly reliable and agreed closely across all three groups of listeners. All groups preferred listening in the sound-treated room over listening in the living room, and preferred listening in the living room over listening in the classroom. Each group preferred the directional patterns to the omnidirectional pattern in all room conditions. We observed no differences in preference judgments between the two directional patterns or between hearing-impaired listeners’ extent of amplification experience. Overall, findings indicate that listeners perceived qualitative benefits from microphones having directional polar patterns.  相似文献   

8.
This investigation assessed the extent to which listeners' preferences for hearing aid microphone polar patterns vary across listening environments, and whether normal-hearing and inexperienced and experienced hearing-impaired listeners differ in such preferences. Paired-comparison judgments of speech clarity (i.e. subjective speech intelligibility) were made monaurally for recordings of speech in noise processed by a commercially available hearing aid programmed with an omnidirectional and two directional polar patterns (cardioid and hypercardioid). Testing environments included a sound-treated room, a living room, and a classroom. Polar-pattern preferences were highly reliable and agreed closely across all three groups of listeners. All groups preferred listening in the sound-treated room over listening in the living room, and preferred listening in the living room over listening in the classroom. Each group preferred the directional patterns to the omnidirectional pattern in all room conditions. We observed no differences in preference judgments between the two directional patterns or between hearing-impaired listeners' extent of amplification experience. Overall, findings indicate that listeners perceived qualitative benefits from microphones having directional polar patterns.  相似文献   

9.
IntroductionSingle cochlear implantation usually provides substantial speech intelligibility benefits but bilaterally deaf, unilaterally implanted subjects will continue to experience limitations due to the head shadow effect, like single-sided deaf individuals. In the treatment of individuals with single-sided deafness one option is contralateral routing of signal (CROS) devices, which constitute a non-surgical intervention of the second ear in unilaterally implanted individuals.MethodTwelve experienced adult cochlear implant users with Naída Q70 processor and the CROS device used in combination participated in the study. For the study 3 conditions were provided: cochlear implant only, omnidirectional microphone mode (CROS deactivated); cochlear implant plus CROS activated, omnidirectional microphone mode and cochlear implant plus CROS activated, UltraZoom mode. Speech reception thresholds were determined in quiet and noise. Subjective feedback regarding the practical usability of the CROS device and the perceived benefit were collected.ResultsThere was a 27.6% improvement in speech understanding in quiet and 32.5% improvement in noise when CROS device was activated. Using advanced directional microphones, a statistically significant benefit of 35% was obtained. The responses to the questionnaires revealed that the subjects perceived benefit in their everyday lives when using the CROS device with their cochlear implants.ConclusionThe investigated CROS device used by unilateral CI recipients in cases where bilateral implantation is not an option provides both subjective and objective speech recognition benefit when the signal is directed to the CROS device. Unfavourable conditions where speech is presented from the cochlear implant side and noise from the CROS side or diffusely were not included in this evaluation since the CROS device adds additional noise and performance is expected to decrease as has previously been shown.  相似文献   

10.
11.
OBJECTIVE: Understanding the potential benefits and limitations of directional hearing aids across a wide range of listening environments is important when counseling persons with hearing loss regarding realistic expectations for these devices. The purpose of this study was to examine the impact of speaker-to-listener distance on directional benefit in two reverberant environments, in which the dominate noise sources were placed close to the hearing aid wearer. In addition, speech transmission index (STI) measures made in the test environments were compared to measured sentence recognition to determine if performance was predictable across changes in distance, reverberation and microphone mode. DESIGN: The aided sentence recognition, in noise, for fourteen adult participants with symmetrical sensorineural hearing impairment was measured in six environmental conditions in both directional and omnidirectional modes. A single room, containing four uncorrelated noise sources served as the test environment. The room was modified to exhibit either low (RT60 = 0.3 sec) or moderate (RT60 = 0.9 sec) levels of reverberation. Sentence recognition was measured in both reverberant environments at three different speech loudspeaker-to-listener distances (1.2 m, 2.4 m, and 4.8 m). STI measures also were made in each of the 12 listening conditions (2 microphone modes x 3 distances x 2 reverberation environments). RESULTS: A decrease in directional benefit was measured with increasing distance in the moderate reverberation condition. Although reduced, directional benefit was still present in the moderately reverberant environment at the farthest speech speaker-to-listener distance tested in this experiment. A similar decrease with increasing speaker-to-listener distance was not measured in the low reverberation condition. The pattern of average sentence recognition results across varying distances and two different reverberation times agreed with the pattern of STI values measured under the same conditions. CONCLUSIONS: Although these data support increased directional benefit in noise for reduced speaker-to-listener distance, some benefit was still obtained by listeners when listening beyond "effective" critical distance under conditions of low (300 msec) to moderate (900 msec) reverberation. It is assumed that the directional benefit was due to the reduction of the direct sound energy from the noise sources near the listener. The use of aided STI values for the prediction of average word recognition across listening conditions that differ in reverberation, microphone directivity, and speaker-to-listener distance also was supported.  相似文献   

12.
OBJECTIVE: The benefits of directional processing in hearing aids are well documented in laboratory settings. Likewise, substantial research has shown that speech understanding is optimized in many settings when listening binaurally. Although these findings suggest that speech understanding would be optimized by using bilateral directional technology (e.g., a symmetric directional fitting), recent research suggests similar performance with an asymmetrical fitting (directional in one ear and omnidirectional in the other). The purpose of this study was to explore the benefits of using bilateral directional processing, as opposed to an asymmetric fitting, in environments where the primary speech and noise sources come from different directions. DESIGN: Sixteen older adults with mild-to-severe sensorineural hearing loss (SNHL) were recruited for the study. Aided sentence recognition using the Hearing in Noise Test (HINT) was assessed in a moderately reverberant room, in three different speech and noise conditions in which the locations of the speech and noise sources were varied. In each speech and noise condition, speech understanding was assessed in four different microphone modes (bilateral omnidirectional mode; bilateral directional mode; directional mode left and omnidirectional mode right; omnidirectional mode left and directional mode right). The benefits and limitations of bilateral directional processing were assessed by comparing HINT thresholds across the various symmetric and asymmetric microphone processing conditions. RESULTS: Study results revealed directional benefit varied based on microphone mode symmetry (i.e., symmetric versus asymmetric directional processing) and the specific speech and noise configuration. In noise configurations in which the speech was located in the front of the listener and the noise was located to the side or surrounded the listener, maximum directional benefit (approximately 3.3 dB) was observed with the symmetric directional fitting. HINT thresholds obtained when using bilateral directional processing were approximately 1.4 dB better than when an asymmetric fitting (directional processing in only one ear) was used. When speech was located on the side of the listener, the use of directional processing on the ear near the speech significantly reduced speech understanding. CONCLUSIONS: Although directional benefit is present in asymmetric fittings, the use of bilateral directional processing optimizes speech understanding in noise conditions in which the speech comes from in front of the listener and the noise sources are located to the side of or surround the listener. In situations in which the speech is located to the side of the listener, the use of directional processing on the ear adjacent to the speaker is likely to reduce speech audibility and thus degrade speech understanding.  相似文献   

13.
OBJECTIVE: Hearing instruments with adaptive directional microphone systems attempt to maximize speech-to-noise ratio (SNR) and thereby improve speech recognition in noisy backgrounds. When instruments with adaptive systems are fitted bilaterally, there is the potential for adverse effects as they operate independently and may give confusing cues or disturbing effects. The present study compared speech recognition performance in 16 listeners fitted bilaterally with the Phonak Claro hearing instrument using omni-directional, fixed directional, and adaptive directional microphone settings as well as mixed microphone settings (an omni-directional microphone on one side and an adaptive directional microphone on the other). DESIGN: Under anechoic conditions, speech was always presented from a loudspeaker directly in front of the listener (0 degree azimuth) whereas noise was presented from one or two loudspeakers arranged either symmetrically (0, 180, 90 + 270 degrees) or asymmetrically (170 + 240 degrees and 120 + 190 degrees) in the horizontal plane. Adaptive sentence recognition in noise measurement was supplemented by quality ratings. RESULTS: With symmetrical omni-directional settings (Omni/Omni), performance was poorer than a control group of 14 listeners with normal hearing tested unaided: Aided listeners required 4.3 dB more favorable SNR for criterion performance. In all loudspeaker arrangements in which directional characteristics could be exploited, performance with symmetrical adaptive microphones (Adapt/Adapt) was similar to the control group. The mixed microphone settings did not appear to confer any particular disadvantage for speech recognition from their asymmetric nature, always giving scores significantly better than Omni/Omni. Quality rating scores were consistent with speech recognition performance, showing benefits in terms of clarity and comfort for the Adapt/Adapt and Fixed/Fixed microphone conditions over the Omni/Omni and mixed microphone conditions wherever directional characteristics could be used. Similarly, the mixed microphone conditions were rated more comfortable and quieter for the noise than Omni/Omni. CONCLUSIONS: It is concluded that bilateral hearing instruments with adaptive directional microphones confer benefits in terms of speech recognition in noise and sound quality. Independence of the two adaptive control systems does not appear to cause untoward effects.  相似文献   

14.
15.
The effectiveness of adaptive directional processing for improvement of speech recognition in comparison to non-adaptive directional and omni-directional processing was examined across four listening environments intended to simulate those found in the real world. The test environment was a single, moderately reverberant room with four loudspeaker configurations: three with fixed discrete noise source positions and one with a single panning noise source. Sentence materials from the Hearing in Noise Test (HINT) and Connected Speech Test (CST) were selected as test materials. Speech recognition across all listening conditions was evaluated for 20 listeners fitted binaurally with Phonak Claro behind-the-ear (BTE) style hearing aids. Results indicated improved speech recognition performance with adaptive and non-adaptive directional processing over that measured with the omnidirectional processing across all four listening conditions. While the magnitudes of directional benefit provided to subjects listening in adaptive and fixed directional modes were similar in some listening environments, a significant speech recognition advantage was measured for the adaptive mode in specific conditions. The advantage for adaptive over fixed directional processing was most prominent when a competing noise was presented from the listener's sides (both fixed and panning noise conditions), and was partially predictable from electroacoustically measured directional pattern data.  相似文献   

16.
OBJECTIVES: Studies have shown that listener preferences for omnidirectional (OMNI) or directional (DIR) processing in hearing aids depend largely on the characteristics of the listening environment, including the relative locations of the listener, signal sources, and noise sources; and whether reverberation is present. Many modern hearing aids incorporate algorithms to switch automatically between microphone modes based on an analysis of the acoustic environment. Little work has been done, however, to evaluate these devices with respect to user preferences, or to compare the outputs of different signal processing algorithms directly to make informed choices between the different microphone modes. This study describes a strategy for automatically switching between DIR and OMNI microphone modes based on a direct comparison between acoustic speech signals processed by DIR and OMNI algorithms in the same listening environment. In addition, data are shown regarding how a decision to choose one microphone mode over another might change as a function of speech to noise ratio (SNR) and spatial orientation of the listener. DESIGN: Speech and noise signals were presented at a variety of SNR's and in different spatial orientations relative to a listener's head. Monaural recordings, made in both OMNI and DIR microphone processing modes, were analyzed using a model of auditory processing that highlights the spectral and temporal dynamics of speech. Differences between OMNI and DIR processing were expressed in terms of a modified spectrotemporal modulation index (mSTMI) developed specifically for this hearing aid application. Differences in mSTMI values were compared with intelligibility measures and user preference judgments made under the same listening conditions. RESULTS: A comparison between the results of the mSTMI analyses and behavioral data (intelligibility and preference judgments) showed excellent agreement, especially in stationary noise backgrounds. In addition, the mSTMI was found to be sensitive to changes in SNR as well as spatial orientation of the listener relative to signal and noise sources. Subsequent mSTMI analyses on hearing aid recordings obtained from real-life environments with more than one talker and modulated noise backgrounds also showed promise for predicting the preferred microphone setting in varied and complex listening environments.  相似文献   

17.
In this study speech intelligibility in background noise was evaluated with 10 binaural hearing-aid users for hearing aids with one omnidirectional microphone and a hearing aid with a two-microphone configuration (enabling an omnidirectional as well as a directional mode). Signal-to-noise ratio (SNR) measurements were carried out for three different types of background noise (speech-weighted noise, traffic noise and restaurant noise) and two kinds of speech material (bisyllabic word lists and sentences). The average SNR improvement of the directional microphone configuration relative to the omnidirectional one was 3.4 dB for noise presented from 90 degrees azimuth. This improvement was independent of the specific type of noise and speech material, indicating that one speech-in-noise condition may yield enough relevant information in the evaluation of directional microphones and speech understanding in noise.  相似文献   

18.
In this study, the performance of 48 listeners with normal hearing was compared to the performance of 46 listeners with documented hearing loss. Various conditions of directional and omnidirectional hearing aid use were studied. The results indicated that when the noise around a listener was stationary, a first- or second-order directional microphone allowed a group of hearing-impaired listeners with mild-to-moderate, bilateral, sensorineural hearing loss to perform similarly to normal hearing listeners on a speech-in-noise task (i.e., they required the same signal-to-noise ratio to achieve 50% understanding). When the noise source was moving around the listener, only the second-order (three-microphone) system set to an adaptive directional response (where the polar pattern changes due to the change in noise location) allowed a group of hearing-impaired individuals with mild-to-moderate sensorineural hearing loss to perform similarly to young, normal-hearing individuals.  相似文献   

19.
Hearing aids currently available on the market with both omnidirectional and directional microphone modes often have reduced amplification in the low frequencies when in directional microphone mode due to better phase matching. The effects of this low-frequency gain reduction for individuals with hearing loss in the low frequencies was of primary interest. Changes in sound quality for quiet listening environments following gain compensation in the low frequencies was of secondary interest. Thirty participants were fit with bilateral in-the-ear hearing aids, which were programmed in three ways while in directional microphone mode: no-gain compensation, adaptive-gain compensation, and full-gain compensation. All participants were tested with speech in noise tasks. Participants also made sound quality judgments based on monaural recordings made from the hearing aid. Results support a need for gain compensation for individuals with low-frequency hearing loss of greater than 40 dB HL.  相似文献   

20.
This study examined speech intelligibility and preferences for omnidirectional and directional microphone hearing aid processing across a range of signal-to-noise ratios (SNRs). A primary motivation for the study was to determine whether SNR might be used to represent distance between talker and listener in automatic directionality algorithms based on scene analysis. Participants were current hearing aid users who either had experience with omnidirectional microphone hearing aids only or with manually switchable omnidirectional/directional hearing aids. Using IEEE/Harvard sentences from a front loudspeaker and speech-shaped noise from three loudspeakers located behind and to the sides of the listener, the directional advantage (DA) was obtained at 11 SNRs ranging from -15 dB to +15 dB in 3 dB steps. Preferences for the two microphone modes at each of the 11 SNRs were also obtained using concatenated IEEE sentences presented in the speech-shaped noise. Results revealed that a DA was observed across a broad range of SNRs, although directional processing provided the greatest benefit within a narrower range of SNRs. Mean data suggested that microphone preferences were determined largely by the DA, such that the greater the benefit to speech intelligibility provided by the directional microphones, the more likely the listeners were to prefer that processing mode. However, inspection of the individual data revealed that highly predictive relationships did not exist for most individual participants. Few preferences for omnidirectional processing were observed. Overall, the results did not support the use of SNR to estimate the effects of distance between talker and listener in automatic directionality algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号