首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A small, discrete nucleus at the rostral end of the third ventricle, the anteroventral periventricular nucleus (AVPv), has been reported to be involved in the control of gonadotropin release. Since monoaminergic neurotransmitter systems have also been implicated in this function we used an indirect immunohistochemical approach to examine the distribution of 3 monoaminergic neurotransmitter systems in this nucleus. Sections through the AVPv of both colchicine and non-colchicine-treated adult male and female Sprague-Dawley rats were processed for immunohistofluorescence with antisera directed against tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH), or serotonin (5-HT), and were subsequently counterstained with the fluorescent Nissl stain ethidium bromide. The distributions of TH-, DBH- and 5-HT-immunoreactive neural elements within the AVPv were evaluated and a comparison was made between males and females. In both sexes, few 5-HT-stained fibers were seen within the borders of the AVPv, in contrast to the relatively high 5-HT-stained fiber density of the surrounding region. A dramatic sexual dimorphism was found in the distribution of TH-immunoreactive fibers and cell bodies. Compared to males, the AVPv in the female contained 3-4 times as many TH-stained perikarya, and a 2- to 3-fold greater density of TH-stained fibers. A low to moderate density of DBH-immunoreactive fibers, and no DBH-stained cell bodies, were seen in the nucleus. A clear sex difference was not found in the density of DBH-stained fibers in the AVPv, indicating that the sexual dimorphism in TH-immunoreactive neural elements in this nucleus is due to a greater density of dopaminergic fibers and a greater number of dopaminergic cell bodies in the female. These results suggest that dopamine may participate in the control of gonadotropin secretion at the level of the AVPv.  相似文献   

2.
The organization of neural inputs to the medial preoptic nucleus of the rat   总被引:5,自引:0,他引:5  
There is general agreement that the medial preoptic nucleus (MPN) receives projections from widespread regions of the brain, although there are significant discrepancies in the literature with regard to certain specific inputs. Therefore, we have reexamined the inputs to this nucleus with both retrograde and anterograde axonal transport techniques. First, injections of the retrograde tracers true blue, SITS, or wheat germ agglutinin were made into the region of the MPN and the distribution of retrogradely labeled cells was charted. Then, autoradiographic material was used to confirm the results of the retrograde studies, to identify the route taken by fibers projecting to the MPN, and to describe the distribution of projections with respect to the three cytoarchitectonic subdivisions of the nucleus. The results indicate that the MPN receives inputs from widely distributed areas in both the forebrain and brainstem, and that these inputs appear to be distributed topographically within the three cytoarchitectonic subdivisions of the nucleus. Direct inputs to the MPN arise from all major areas of the hypothalamus (except for the median and magnocellular preoptic nuclei, the supraoptic and suprachiasmatic nuclei, and the medial and lateral mammillary nuclei). Projections from nuclei within the periventricular zone of the hypothalamus end primarily in the medial part of the MPN, while inputs from the lateral zone are mainly confined to the lateral part of the nucleus, as are projections from the nuclei within the medial zone, except for those from the anterior and ventromedial nuclei, which appear to be more widespread. The MPN receives major inputs from limbic regions including the amygdala, ventral subiculum, and ventral lateral septal nucleus, all of which end preferentially in the lateral part of the MPN. In contrast, the projection from the encapsulated part of the bed nucleus of the stria terminalis appears to end preferentially in the central part of the MPN and in immediately adjacent regions of the medial subdivision. In addition, the MPN may receive relatively sparse inputs from infralimbic and insular cortical areas, the nucleus accumbens, and the substantia innominata. Finally, ascending serotoninergic projections from the raphe nuclei appear to terminate principally in the lateral part of the MPN, whereas inputs from regions containing noradrenergic cell groups are chiefly distributed to the central and medial parts of the nucleus. Other brainstem regions that appear to provide modest inputs include the ventral tegmental area, central tegmental field, periaqueductal gray, pedunculopontine nucleus, and the peripeduncular nucleus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The medial preoptic nucleus (MPN) is a sexually dimorphic complex with three major subdivisions. The cell-dense central (MPNc) and medial (MPNm) subdivisions are larger in male rats, while the cell-sparse lateral subdivision (MPNl) occupies a majority of the nucleus in females. In the present study we evaluated the distribution of possible monoaminergic and peptidergic cells and fibers within the MPN, as well as in adjacent regions of the medial preoptic area of the adult male rat. For this, we used an indirect immunohistochemical method with antisera to serotonin (5HT), dopamine beta-hydroxylase (DBH), tyrosine hydroxylase (TH), neuropeptide Y (NPY), cholecystokinin (CCK), vasoactive intestinal polypeptide (VIP), substance P (SP), neurotensin (NT), corticotropin-releasing factor (CRF), luteotropin-releasing hormone (LRH), somatostatin (SS), thyrotropin-releasing hormone (TRH), oxytocin (OXY), vasopressin (VAS), adrenocorticotropic hormone (1-24; ACTH), alpha-melanocyte-stimulating hormone (alpha-MSH), leucine-enkephalin (L-ENK), and calcitonin gene-related peptide (CGRP). The results suggest that cell bodies and/or fibers crossreacting with all of these putative neurotransmitters are differentially distributed within the MPN. Within the MPNm, the densest plexuses of fibers were stained with antisera to SP and NPY, while moderate densities of fibers were stained with anti-DBH, SS, CCK, CGRP, ACTH, and alpha-MSH, and only a few fibers were stained with anti-5HT, TH, NT, VAS, and L-ENK. Moderate numbers of SP- and L-ENK-immunoreactive cell bodies, and a few SS-, NT-, CRF-, and TRH-stained cell bodies were also found within the MPNm. The MPNc contained a dense plexus of CCK-immunoreactive fibers, as well as a few CRF-immunoreactive fibers. Both fiber types were localized almost exclusively to this subdivision, while most of the others studied here appeared to avoid it selectively. This suggests that there are relatively few inputs to the MPNc, and that they tend to avoid other parts of the nucleus, although moderate densities of DBH- and NPY-immunoreactive fibers were found in both the MPNm and MPNc. The MPNc contained several CCK-immunoreactive cell bodies as well as a moderate number of TRH-stained cell bodies. Both cell types were nearly completely localized to the MPNc. The major inputs to the MPNl studied here appear to be stained with antisera to 5HT and L-ENK, although moderate numbers of NT- and CRF- immunoreactive fibers were also found in this part of the nucleus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Ronald P. Hammer  Jr.   《Brain research》1985,360(1-2):65-74
The opiate receptor content of the sexually dimorphic medial preoptic area (MPOA) was examined in newborn and 5-day-old (D6) male and female rats. A significant increase of [3H]naloxone binding was observed in and around the sexually dimorphic nucleus of the preoptic area (SDN-POA) in D6 female rats, relative to newborn females. Opiate receptor labeling did not increase over this period in males, nor was labeling different between males and females at birth. This dramatic alteration of MPOA opiate receptor content was observed to occur in either sex in the absence of testosterone postnatally; that is, neonatally-castrated males exhibited the same increase of labeling by D6 as did normal females. Conversely, daily postnatal testosterone treatment of females from birth to D6 resulted in the development of male-like MPOA opiate receptor pattern. The sex hormone-dependence of MPOA opiate receptor development is discussed in relation to the sex hormone-dependent ontogeny of SDN-POA structure. The overlap of critical periods for the development of these structural and chemical sexual dimorphisms suggests a role for endogenous opioids in modulating MPOA development.  相似文献   

5.
It is well known that electrolytic lesions in the medial preoptic area (MPOA) and the lateral hypothalamic area (LHA) seriously impair masculine sexual behavior in the rat. We here report that bilateral infusions of the neurotoxin, ibotenic acid (IBO), in the MPOA were as effective as electrolytic lesions in eliminating copulation whereas no behavioral effects were detected following similar infusions in the LHA. Histological examination of MPOA and LHA following IBO exposure revealed extensive degeneration of neuronal cell bodies with little evidence of non-specific damage. Also, immunohistochemical studies suggested that the serotonergic innervation of the MPOA remained largely intact in spite of IBO treatment; similarly, the damage inflicted by IBO in LHA on tyrosine hydroxylase-immunoreactive fibers in the medial forebrain bundle was insignificant. These data suggest that: (i) the functional integrity of MPOA nerve cell bodies is necessary for the expression of sexual behavior, and (ii) disruption of mating produced by electrolytic LHA lesions is due to disruption of medial forebrain bundle fiber systems.Behavioral observations of non-copulating males suggested that the MPOA injury did not interfere with all aspects of their sexual interaction with the estrous female; rather, they appeared specifically unable to perform the reflexive pelvic thrust pattern normally associated with mounting. We here report, however, that the ability to perform mounts with pelvic thrusts was temporarily restored in the vast majority of MPOA-injured males by the i.p. administration of the ergot derivative, lisuride. About 50% of these MPOA-damaged males even ejaculated, often after a low number of intromissions and short ejaculation latencies. On the other hand, injections of naloxone (an opiate receptor antagonist) failed to activate mounting in MPOA- lesioned or castrated rats. On the basis of these findings the possible ways in which steroid hormone-sensitive brain areas might interact with monoamine-containing pathways are discussed.  相似文献   

6.
The medial preoptic nucleus (MPN) is a sexually dimorphic complex composed of 3 distinct cytoarchitectonic subdivisions, and a sexually dimorphic distribution of presumably serotonergic fibers is associated with the lateral part of the nucleus (MPNl). In this study the probable cells of origin for these serotonergic fibers were identified by using a combined fluorescent retrograde tracer and immunofluorescence method. Serotonergic afferents to the MPN appear to arise exclusively from the dorsal raphe nucleus (B7), the median raphe nucleus (B8), and the region adjacent to the medial lemniscus (B9).  相似文献   

7.
Opiate receptor labeling was examined throughout the early postnatal period using autoradiography to localize and quantify [3H]naloxone binding to μ-type opiate receptors in the medial preoptic area (MPOA). This region begins to exhibit sexual dimorphism of volume and dendritic growth shortly after birth. A distinct concentration of opiate receptor labeling appears on postnatal day 3 in females: this labeling is directly associated with the sexually dimorphic nucleus of the preoptic area (SDN-POA). SDN-POA labeling becomes denser through postnatal day 10 in females and the densely labeled area increases in size to encompass and surround the SDN-POA. These changes in opiate receptor labeling occur only in females, since males show relatively uniform labeling across the region throughout the early postnatal period.The critical time of formation of dense MPOA opiate receptor labeling may be related to endogenous MPOA opioid function and to the critical period of dendritic growth of SDN-POA neurons. The timing of these critical periods and their focus in the SDN-POA are coincident. The possible role of MPOA opiate receptors in modulating growth of MPOA neurons is discussed.  相似文献   

8.
The projections of the medial preoptic nucleus (MPN) were examined by making injections of the anterogradely transported lectin Phaseolus vulgaris leucoagglutinin (PHA-L) into the MPN and charting the distribution of labeled fibers. The evidence indicates that the MPN projects extensively to widely distributed regions in both the forebrain and brainstem, most of which also supply inputs to the nucleus. An important neuroendocrine role for the MPN is underscored by its extensive projections to almost all parts of the periventricular zone of the hypothalamus, including the anteroventral periventricular, anterior part of the periventricular, paraventricular (PVH), and arcuate nuclei, and a role in autonomic mechanisms is indicated by projections to such regions as the dorsal and lateral parvicellular parts of the PVH, the lateral parabrachial nucleus, and the nucleus of the solitary tract. Other projections of the MPN suggest participation in the initiation of specific motivated behaviors. For example, inputs to two nuclei of the medial zone of the hypothalamus, the ventromedial and dorsomedial nuclei, may be related to the control of reproductive and ingestive behaviors, respectively, although the possible functional significance of a strong projection to the ventral premammillary nucleus is presently unclear. The execution of these behaviors may involve activation of somatomotor regions via projections to the substantia innominata, zona incerta, ventral tegmental area, and pedunculopontine nucleus. Similarly, inputs to other regions that project directly to the spinal cord, such as the periaqueductal gray, the laterodorsal tegmental nucleus, certain medullary raphe nuclei, and the magnocellular reticular nucleus may also be involved in modulating somatic and/or autonomic reflexes. Finally, the MPN may influence a wide variety of physiological mechanisms and behaviors through its massive projections to areas like the ventral part of the lateral septal nucleus, the bed nucleus of the stria terminalis, the lateral hypothalamic area, the supramammillary nucleus, and the ventral tegmental area, all of which have extensive connections with regions along the medial forebrain bundle. Although the PHA-L method does not allow a clear demonstration of possible differential projections from each subdivision of the MPN, our results suggest that each of them does give rise to a unique pattern of outputs.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The results of preliminary studies suggested that steroid and/or propylthiouracil (PTU) treatment of adult gonadectomized (Gxd) male rats significantly reduced the volume of the sexually dimorphic nucleus of the preoptic area (SDN-POA). Therefore, we designed a study to examine this effect in detail. Groups of adult rats were sham Gxd (intact) or Gxd, then treated with multiple injections of oil (males and females), or estrogen and progesterone (males). Gonadectomized estrogen/progesterone-treated males had a significantly smaller SDN-POA volume, smaller volume of the medial division of the medial preoptic nucleus (MPNm), smaller volume of the anteroventral MPNm (MPNav), and larger volume of the anteroventral periventricular nucleus (AVPv). The volume of the central division of the medial preoptic nucleus (MPNc) or of the suprachiasmatic nucleus was not affected. There were no differences between Gxd estrogen/progesterone-treated males vs the group that received PTU as well, indicating that the PTU treatment was unnecessary. The reduced volume of the SDN-POA was due to a reduced volume of the MPNav and of the portion of the SDN-POA located within the MPNm-exclusive of the MPNav and MPNc. In conclusion, estrogen/progesterone treatment in adulthood caused significant changes in the volume of several medial preoptic structures in two separate groups of Gxd males. Because the steroids produced no significant effects in intact males, testicular hormones appear to "protect" these structures from the effects of the estrogen/progesterone treatment.  相似文献   

10.
Immunohistochemistry using a calbindin D28k antibody revealed a marked sex difference in neuronal distribution in the central portion of the medial preoptic area in C57BL/6J and ddN strains of mice when the animals were sacrificed on D65 (D1 = the day of birth). Male mice had a distinct ellipsoidal cell aggregate, whereas females lacked such a structure. This sex difference was not observed in Nissl‐stained sections. Co‐localization of calbindin D28k and the neuron‐specific nuclear protein NeuN confrmed that the cells in the aggregate were neurons. The aggregates were larger in males than in females in both strains. When observed on D65, males orchidectomized on D1 had smaller aggregates. However, daily injections of 2 μg estradiol benzoate through D1–D5 as well as a single injection of 100 μg testosterone propionate on D1 enlarged the aggregates in females, but a single injection of 100 μg dihydrotestosterone on D1 had no effect on the female phenotype. Similar endocrine manipulations had no effects in adult animals of both sexes. Thus, the calbindin‐immunoreactive cell aggregates in the preoptic area of C57BL/6J and ddN mice are homologous to the sexually dimorphic nucleus of the rat preoptic area in terms of the morphology and sex steroid‐dependent organization. J. Comp. Neurol. 518:3618–3629, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
The effects of testosterone on the volume and cytoarchitecture of the sexually dimorphic nucleus of the preoptic area (POM) were investigated in male and female Japanese quail. It was confirmed that castration decreases the POM volume in males and that, in gonadectomized birds of both sexes, testosterone increases this volume to values similar to those observed in intact sexually mature males. This suggests that the sex difference in POM volume results from a differential activation by T so that this brain morphological characteristic is not truly differentiated in the organizational sense. This conclusion was extended here by demonstrating that males exposed to a photoperiod simulating long days and that are known to have high plasma levels of testosterone have a larger POM than short-day males that have inactive testes. Detailed morphometric studies of POM neurons revealed a structural heterogeneity within the nucleus. A population of large neurons (cross-sectional area larger than 70-80 microns2) was well represented in the dorsolateral but was almost absent in the medial part of POM. This lateral population of neurons was sensitive to variations of testosterone levels in males but not in females. The cross-sectional area, diameter, and perimeter of the dorsolateral neurons were significantly increased in males exposed to high testosterone levels (intact birds exposed to long days or castrated birds treated with the steroid). These changes were not observed in the medial part of the nucleus. Interestingly, the size of the dorsolateral neurons was not affected by testosterone treatments in females. These results suggest that the swelling of neurons in the lateral POM of males might be responsible for the increase in total volume of the nucleus, which is observed in physiological situations associated with a high testosteronemia. In addition, the sensitivity to testosterone of the dorsolateral neurons in the POM appears to be sexually differentiated. This differential response to testosterone might represent a truly dimorphic feature in the organizational sense and additional studies manipulating the early steroid environment should be performed to test this possibility.  相似文献   

12.
13.
The onset of maternal behavior is characterized by the action of certain hormones, neuropeptides and neurotransmitters and a concomitant increase in the expression of c-Fos in the medial preoptic area (MPOA) but the signaling events that lie between have not been characterized. Because several of these hormones, neuropeptides and neurotransmitters function by activating Ca(2+)/calmodulin (CaM) mediated signaling pathways, many of which can lead to c-Fos expression, the goal of the current work was to identify calmodulin binding proteins (CaMBPs) or specific CaM-dependent phosphoproteins that might be involved. Probing of SDS-PAGE gels of extracts from the hippocampus, parietal cortex, basolateral amygdala and MPOA with recombinant (35)S-VU1-calmodulin (CaM) revealed 30 Ca(2+)-dependent and 4-6 Ca(2+)-independent CaMBPs. Statistically significant maternal behavior-related decreases in four Ca(2+)-dependent CaMBPs ( approximately 31 kDa, 50% decrease; approximately 33 kDa, 32%; approximately 50 kDa, 35%; approximately 60 kDa, 33%) were observed specifically in the MPOA. Numerous proteins were phosphorylated in a Ca(2+) CaM-dependent manner with two (MWs approximately 61 Da, approximately 58 kDa) showing a lack of phosphophorylation only in the MPOA. The selective decrease in CaMBPs coupled with the absence of CaM-dependent phosphoproteins implies that changes in Ca(2+)/CaM-mediated signaling may mediate some of the MPOA-specific processes during the onset of maternal behavior in the rat.  相似文献   

14.
Fluorescent dye retrograde tracing was combined with steroid hormone autoradiography to study the midbrain projections of the estrogen-concentrating neurons in the preoptic region of the rat brain. Microinjections of the dyes DAPI, true blue, or a mixture of DAPI and primuline were made into the ventral tegmental area and into the midbrain central gray of ovariectomized, adrenalectomized 2-3-month-old female rats; 3 or 4 days later these animals were injected with [3H]estradiol; the brains were then processed for autoradiography. After exposures of from 3 to 12 months, the autoradiograms were developed and examined for reduced silver grains under cell nuclei (indicating binding of [3H]estradiol) and retrogradely transported fluorescent dye in the cytoplasm (indicating an efferent projection to the midbrain). Numerous [3H]estradiol-concentrating neurons in the medial preoptic region were found to send their axons to the medial midbrain. The largest numbers of estrogen target neurons that were afferent to the ventral tegmental area and to the midbrain central gray were found in the medial preoptic nucleus, in the surrounding medial preoptic area, and in the ventral bed nucleus of the stria terminalis. Double-labeled neurons were also identified in the preoptic suprachiasmatic area, in the lateral preoptic area, and in the rostral anterior hypothalamic area. Thus, a subset of the gonadal steroid target cells of the preoptic region have long projections to the medial midbrain, and a subset of the medial preoptic neurons that project to the ventral tegmental area and to the midbrain central gray concentrate estrogen. Behaviors (for example, maternal behavior, male copulatory behavior, and wheel-running) that are regulated by estrogen action in the medial preoptic region may be controlled by the direct estrogen-sensitive pathway to the medial midbrain revealed in this study.  相似文献   

15.
The posterodorsal preoptic nucleus (PdPN) and the lateral part of the posterodorsal medial amygdala (MeApd) express Fos with ejaculation in male gerbils. Ejaculation-activated cells participate in the PdPN and MeApd projections to each other and to the sexually dimorphic preoptic area (SDA), but those projections involve less than 20% of the activated PdPN cells and less than 50% of the activated MeApd cells. To identify other potential targets of ejaculation-activated cells, we traced PdPN and lateral MeApd outputs using biotinylated dextran amine. The principal part of the bed nucleus of the stria terminalis (BSTpr) and the anteroventral periventricular nucleus (AVPv) were labeled from both sites and were injected with Fluoro-Gold to determine whether PdPN and lateral MeApd cells that express Fos with ejaculation would be retrogradely labeled. Fluoro-Gold was also applied to the dorsomedial hypothalamus (DMH) and retrorubral field (RRF) because such injections label PdPN cells in rats. The PdPN-DMH projection is minimal in gerbils, involving few, if any, ejaculation-related cells. Ejaculation-activated PdPN cells project to the AVPv (43%), dorsal BSTpr (30%), and RRF (12%). Those in the lateral MeApd project to the dorsal BSTpr (43%) and AVPv (18%). When these percentages are combined with those for ejaculation-activated cells involved in the PdPN and lateral MeApd projections to each other and to the medial SDA, the totals reach 100%. Thus, every PdPN and MeApd cell activated with ejaculation may participate in one of these projections. Similar projections may contribute to the similar behavioral effects of the PdPN and MeApd.  相似文献   

16.
Previous studies in rats have demonstrated that large lesions in the medial preoptic area (MPOA) disrupt all aspects of maternal behavior. In the present study, small bilateral electrolytic lesions in the MPOA of lactating females abolished nest building and retrieving components of maternal behavior while crouching and nursing were unaffected. Animals which failed to show retrieval and nest building behaviors tended to have a greater area of lesion within the more dorsal part of the MPOA. Although the dorsal MPOA may play a role in the maintenance of the active components of maternal behavior, i.e. nest building and retrieving, another critical factor in determining which components of maternal behavior are disrupted may be the size of the lesion. As one increases the area of damaged tissue there is also an accompanying increase in the components of maternal behavior which are disrupted. No correlation was found between damage to the Sexually Dimorphic Nucleus of the preoptic area and retrieving and nest building.  相似文献   

17.
18.
The aim of the investigation was to find out the role of noradrenergic (NE) terminals of the medial preoptic area (mPOA), in the regulation of sleep-wakefulness. Studies were conducted on free-moving adult male rats with chronically implanted cannulae in the mPOA. Sleep-wakefulness was assessed on the basis of EEG, EMG, and EOG recordings along with behavioral observations. Lesioning of catecholamine terminals (with 6-hydroxydopamine) in the mPOA produced an increase in quiet wakefulness. Prevention of NE fiber destruction, by pretreating the rats with imipramine, prevented this effect. This demonstrated that the increased quiet wakefulness produced by 6-OHDA was the result of NE fiber destruction. Changes in sleep-wakefulness were also assessed after microinjection of NE into the mPOA, in normal and ventral noradrenergic bundle (VNA)-lesioned rats. NE administration induced sleep in VNA-lesioned rats, and arousal in normal rats. The findings suggest that the NE terminals in the mPOA, projecting via VNA, play a role in the induction of sleep.  相似文献   

19.
The medial preoptic nucleus (MPN) of the medial preoptic area (MPOA) and the medial amygdala are two brain regions in which male rat sexual behavior increased Fos-like immunoreactivity (Fos-Li). Dopamine is released in the MPOA during male rat sexual behavior and facilitates copulation. Psychostimulants, which increase dopamine levels, induce Fos-Li in the striatum through D1 receptors. We examined whether copulation-induced Fos-Li in the MPN was also mediated through D1 receptors. In Experiment 1, sexually inexperienced male rats that received the D1 antagonist Schering 39166 prior to their first sexual experience had fewer Fos-Li cells in the MPN than did those that received vehicle. In Experiment 2, no significant effect of the D1 antagonist was observed on copulation-induced Fos-Li in male rats that had received repeated sexual experiences prior to the drug test day. Sexual experience increases copulatory efficiency; the mechanisms by which this improvement occurs are unclear. In Experiment 3, copulation by highly experienced male rats led to greater Fos-Li in the MPN than did copulation by sexually naive males. Although there were no differences between groups in amygdala Fos-Li in these studies, in several groups Fos-Li in the medial amygdala was positively correlated with the post-ejaculatory interval. These experiments indicate that (1) stimulation of D1 receptors may contribute to the transient copulation-induced increase in Fos-Li in the MPN, and (2) repeated sexual experiences enhanced copulation-induced Fos-Li in the MPN, which may represent a marker of altered responsiveness of neurons in the MPN to sexual or conditioned stimuli.  相似文献   

20.
Brain aromatase has been considered to be an important clue in elucidating the actions of androgen on brain sexual differentiation. Using highly specific anti-P450arom antiserum, the regional and subcellular distributions were immunohistochemically evaluated in the preoptic, strial, and amygdaloid regions of developing rat brains. Aromatase-immunoreactive (AROM-I) neurons were classified into three groups. The first, in which immunostaining occurs only during certain pre- or neonatal days (E16–P2), included the anterior medial preoptic nucleus, the periventricular preoptic nucleus, neurons associated with the strial part of the preoptic area, and the rostral portion of the medial preoptic nucleus. The second is a striking AROM-I cell group in the “medial preopticoamygdaloid neuronal arc,” which extends from the medial preoptic nucleus to the principal nucleus of the bed nucleus of the stria terminals and the posterodorsal part of the medial amygdaloid nucleus. The AROM-I neurons appeared by E16, reaching a peak in staining intensity between E18 and P2 and diminishing after the perinatal stage. After P14, a third group of AROM-I neurons emerged in the lateral septal nucleus, the oval nucleus of the bed nucleus of the stria terminalis, and the central amygdaloid nucleus. The second group was thought to be the major aromatization center in developing rat brains, while the center might partly shift to the third group of neurons after the late infantile stage. The distribution and developmental patterns were basically similar in males and females, suggesting that the neonatally prominent aromatase is not induced by male-specific androgen surges occurring around birth. On immunoelectron microscopy, subneuronal aromatase was predominantly localized on the nuclear membrane and endoplasmic reticulum, which appeared to be appropriate for the efficient conversion of androgen into estrogen just prior to blinding to the nuclear receptors. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号