首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several genetic mouse models of differential sensitivity to opioids have been used to investigate the mechanisms underlying individual variation in responses to opioids. The CXBK mice are inbred recombinant mice which have a lower level of μ1-opioid receptors than their parental strain. Endomorphin-1 and endomorphin-2 are endogenous opioid peptides that are highly selective for μ-opioid receptors, while β-endorphin, which is also an endogenous opioid peptide, is non-selective for μ-, δ- and putative -opioid receptors. The present study was designed to investigate the effects of these endogenous opioid peptides on G-protein activation by monitoring guanosine-5′-o-(3-[35S]thio)triphosphate binding to pons/medulla membranes of CXBK mice and their parental strain C57BL/6ByJ mice. Endomorphin-1 (0.1–10 μM), endomorphin-2 (0.1–10 μM) and β-endorphin (0.1–10 μM) increased guanosine-5′-o-(3-[35S]thio)triphosphate binding to the pons/medulla membranes from C57BL/6ByJ and CXBK mice in a concentration-dependent manner. However, the increases of guanosine-5′-o-(3-[35S]thio)triphosphate binding induced by either endomorphin-1 or endomorphin-2 in CXBK mice were significantly much lower than those in C57BL/6ByJ mice. However, no significant difference was found in the increases of the guanosine-5′-o-(3-[35S]thio)triphosphate binding induced by β-endorphin in C57BL/6ByJ and CXBK mice. Moreover, whereas the increase of guanosine-5′-o-(3-[35S]thio)triphosphate binding induced by 10 μM endomorphin-1 or endomorphin-2 were almost completely blocked by a μ-opioid receptor antagonist β-funaltrexamine (10 μM) in both strains, the increase of guanosine-5′-o-(3-[35S]thio)triphosphate binding induced by 10 μM β-endorphin was attenuated to approximately 70% of stimulation by co-incubation with 10 μM β-funaltrexamine in both strains. The residual stimulation of [35S]guanosine-5′-o-(3-thio)triphosphate binding by 10 μM β-endorphin in the presence of 10 μM β-funaltrexamine was further attenuated by the addition of putative -opioid receptor partial agonist β-endorphin (1–27) (1 μM) in both strains. Like the endomorphins, the synthetic μ-opioid receptor agonist [ -Ala2,N-MePhe4,Gly-ol5]enkephalin at 10 μM showed lower increases of guanosine-5′-o-(3-[35S]thio)triphosphate binding in CXBK mice than those in C57BL/6ByJ mice. However, there was no strain difference in the stimulation of guanosine-5′-o-(3-[35S]thio)triphosphate binding induced by 10 μM of the selective δ1-opioid receptor agonist [ -Pen2,5]enkephalin, δ2-opioid receptor agonist [ -Ala2]deltorphin II or κ-opioid receptor agonist U50,488H.The results indicate that the G-protein activation by endomorphin-1 and endomorphin-2 in the mouse pons/medulla is mediated by both μ1- and μ2-opioid receptors. Moreover, β-endorphin-induced G-protein activation in the mouse pons/medulla is, in part, mediated by μ2- and putative -, but not by μ1-opioid receptors.  相似文献   

2.
The partial agonistic properties of endogenous mu-opioid peptides endomorphin-1 and endomorphin-2 for G-protein activation were determined in the mouse spinal cord, monitoring the increases in guanosine-5'-o-(3-[35S]thio)triphosphate binding. The G-protein activation induced by endogenous opioid peptide beta-endorphin in the spinal cord was significantly, but partially, attenuated by co-incubation with endomorphin-1 or endomorphin-2. The data indicates that endomorphin-1 and endomorphin-2 are endogenous partial agonists for mu-opioid receptor in the mouse spinal cord.  相似文献   

3.
beta-Endorphin is a non-selective opioid peptide which binds mu-, delta- and putative epsilon (beta-endorphin-sensitive non-mu-, non-delta- and non-kappa(1)-)-opioid receptors. We have previously reported that beta-endorphin-produced G-protein activation is mediated by the stimulation of both mu- and putative epsilon-opioid receptors. The present study was designed to further characterize this putative epsilon-opioid receptor-mediated G-protein activation in the pons/medulla membrane obtained from mice lacking mu-opioid receptor, using a guanosine-5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS)-binding assay. beta-Endorphin and the mu-opioid receptor agonist [D-Ala(2),N-MePhe(4),Gly-ol(5)]enkephalin (DAMGO) increased the [(35)S]GTPgammaS binding in a concentration-dependent manner (0.001-10 microM), and at 10 microM beta-endorphin and DAMGO produced approximately 250 and 120% increases of [(35)S]GTPgammaS binding in the pons/medulla membrane obtained from wild-type mice, respectively. In the pons/medulla membrane obtained from mu-opioid receptor knockout mice, beta-endorphin-stimulated [(35)S]GTPgammaS binding was only partially attenuated and a more than 100% increase by 10 microM beta-endorphin still remained, while DAMGO failed to produce any increase in [(35)S]GTPgammaS binding. The residual increase in [(35)S]GTPgammaS binding by 10 microM beta-endorphin in mu-opioid receptor knockout mice was partially but significantly attenuated by the putative epsilon-opioid receptor partial agonist beta-endorphin (1-27), but not by the delta-opioid receptor antagonist naltrindole or the kappa(1)-receptor antagonist norbinaltorphimine. Furthermore, buprenorphine significantly attenuated the residual increase in [(35)S]GTPgammaS binding by 10 microM beta-endorphin in mu-opioid receptor knockout mice. The present results indicate that beta-endorphin activates G-protein by stimulation of putative epsilon-opioid receptors in the condition lacking the mu-opioid receptor, and buprenorphine acts as an antagonist for putative epsilon-opioid receptors in this condition.  相似文献   

4.
5.
There appear to be different relationships between mu-opioid receptor densities and the acute and neuroadaptive mu-opioid agonist-induced responses of the multiple opioid neuronal systems, including important pons/medulla circuits. The recent success in creating mu-opioid receptor knockout mice allows studies of mu-opioid agonist-induced pharmacological and physiological effects in animals that express no, one or two copies of the mu-opioid receptor gene. We now report that the binding of mu-opioid receptor ligand, [3H][D-Ala2,NHPhe4,Gly-ol]enkephalin to membrane preparations of the pons/medulla was reduced by half in heterozygous mu-opioid receptor knockout mice and eliminated in homozygous mu-opioid receptor knockout mice. The endogenous mu-opioid agonist peptides endomorphin-1 and -2 activate G-proteins in the pons/medulla from wild-type mice in a concentration-dependent fashion, as assessed using [35S]guanosine-5'-o-(3-thio)triphosphate binding. This stimulation was reduced to half of the wild-type levels in heterozygous mice and eliminated in homozygous knockout mice. The intracerebroventricular injection of either endomorphin-1 or endomorphin-2 produced marked antinociception in the hot-plate and tail-flick tests in wild-type mice. These antinociceptive actions were significantly reduced in heterozygous mu-opioid receptor knockout mice, and virtually abolished in homozygous knockout mice. The mu-opioid receptors are the principal molecular targets for endomorphin-induced G-protein activation in the pons/medulla and the antinociception caused by the intracerebroventricular administration of mu-opioid agonists. These data support the notion that there are limited physiological mu-opioid receptor reserves for inducing G-protein activation in the pons/medulla and for the nociceptive modulation induced by the central administration of endomorphin-1 and -2.  相似文献   

6.
Recent clinical studies have demonstrated that when opioids are used to control pain, psychological dependence is not a major problem. In this study, we further investigated the mechanisms that underlie the suppression of opioid reward under neuropathic pain in rodents. Sciatic nerve ligation suppressed a place preference induced by the selective mu-opioid receptor agonist [d-Ala(2), N-MePhe(4), Gly-ol(5)] enkephalin (DAMGO) and reduced both the increase in the level of extracellular dopamine by s.c. morphine in the nucleus accumbens and guanosine-5'-o-(3-[(35)S]thio) triphosphate ([(35)S]GTPgammaS) binding to membranes of the ventral tegmental area (VTA) induced by DAMGO. These effects were eliminated in mice that lacked the beta-endorphin gene. Furthermore, intra-VTA injection of a specific antibody to the endogenous mu-opioid peptide beta-endorphin reversed the suppression of the DAMGO-induced rewarding effect by sciatic nerve ligation in rats. These results provide molecular evidence that nerve injury results in the continuous release of endogenous beta-endorphin to cause the dysfunction of mu-opioid receptors in the VTA. This phenomenon could explain the mechanism that underlies the suppression of opioid reward under a neuropathic pain-like state.  相似文献   

7.
The G-protein activations induced by kappa-opioid receptor agonists, (-)U50,488H, U69,593 and TRK-820 in the mouse lower midbrain, striatum and limbic forebrain were determined by monitoring guanosine-5'-o-(3-[35S]thio)triphosphate ([35S]GTP gamma S) binding. All kappa-opioid receptor agonists produced approximately 40, 20 and 10% increases of [35S]GTP gamma S binding over baseline in the lower midbrain, striatum and limbic forebrain, respectively. The increases of [35S]GTP gamma S binding induced by kappa-opioid receptor agonists were completely reversed by the selective kappa-opioid receptor antagonist, norbinaltorphimine (norBNI), in all brain regions. The intrinsic activities of kappa-opioid receptor agonists for G-protein activation in brain regions observed in the present study are not correlated with densities of kappa-opioid receptor binding sites from previous reports. The present results suggest that the catalytic efficiency of kappa-opioid receptor-G-protein coupling may be variable in different brain regions.  相似文献   

8.
The aim of the present study was to investigate whether repeated treatment with the mu-opioid receptor antagonist naloxone could affect G-protein activation induced by a selective mu-opioid receptor agonist [D-Ala(2),N-MePhe(4),Gly-ol(5)]enkephalin (DAMGO) in mice lacking the protein kinase Cgamma isoform monitoring guanosine-5'-o-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding. Repeated s.c. administration of naloxone for 7 days resulted in a significant enhancement of the increased [(35)S]GTPgammaS binding by DAMGO to membranes of the spinal cord obtained from mice lacking the protein kinase Cgamma isoform. Furthermore, immunoreactivities of membrane-located protein kinase Cgamma and phosphorylated-protein kinase C in the spinal cord of ICR mice were not altered by repeated naloxone treatment. The present data provide direct evidence that protein kinase Cgamma is not involved in the development of the up-regulation of mu-opioid receptor functions to activate G-proteins in the mouse spinal cord by repeated naloxone treatment.  相似文献   

9.
The agonist-stimulated guanosine 5'-(gamma-[(35)S]thio)triphosphate binding assay was used to anatomically localize receptor-activated G-proteins by autoradiography in post mortem human brain. The optimal conditions for guanosine 5'-(gamma-[(35)S]thio)triphosphate binding to human brain sections were established in post mortem samples of the prefrontal cortex, hippocampus, basal ganglia, brainstem and cerebellar cortex. An excess of GDP (2mM) was required to decrease basal activity and obtain effective stimulation by specific agonists. guanosine 5'-(gamma-[(35)S]Thio)triphosphate binding was increased after stimulation with specific agonists of different G-protein-coupled receptors. They include cannabinoid (WIN55212-2), mu-opioid ([D-Ala(2),N-Me-Phe(4), Gly(5)-ol]enkephalin), serotonin-1A [(+/-)-8-hydroxy-2-(di-n-propylamino)tetralin] and serotonin-1B/1D (sumatriptan), cholinergic muscarinic receptors (carbachol) and alpha(2)-adrenoceptors (UK14304). Such stimulation reached 1458%, 440%, 188%, 219%, 61% and 339%, respectively, over the basal levels. In tissue sections, the use of the above-mentioned agonists (10(-4)M) showed patterns of anatomical distribution similar to those already described by receptor autoradiography, with high densities over the hippocampus (serotonin-1A receptors), cortex (alpha(2)-adrenoceptors) and striatum (mu-opioid receptors). The highest binding levels were reached with the cannabinoid receptor agonist in most of the analysed brain regions. Carbachol produced only moderate stimulation of those same regions. The blockage of agonist-stimulated guanosine 5'-(gamma-[(35)S]thio)triphosphate binding by selective antagonists verified that the effect was receptor mediated.This technique provides a method to identify modifications of the receptor-mediated activation of G-proteins in post mortem human brain with anatomical resolution. It also provides valuable information on the level of drug efficacy in the human species.  相似文献   

10.
The present study was designed to investigate the motivational effects of the newly discovered endogenous mu-opioid receptor ligands, endomorphin-1 and endomorphin-2, using the conditioned place preference paradigm in mice. The binding properties of these peptides were first examined using an opioid binding assay. In membranes obtained from the mouse whole brain, the binding of [3H][D-Ala2, NMePhe4, Gly(ol)5]enkephalin (DAMGO; mu), but not of [3H][D-Phe2, D-Phe5]enkephalin (DPDPE; delta) or [3H]U69593 (kappa) selectively and concentration-dependently competed with that of endomorphin-1 and endomorphin-2, indicating that both endomorphin-1 and endomorphin-2 are specific ligands for mu-opioid receptors in the brain. Endomorphin-1 (1-30 nmol/mouse) given i.c.v. produced a dose-related place preference. This effect was abolished by pre-treatment with the mu-opioid receptor antagonist beta-funaltrexamine but not the delta-opioid receptor antagonist naltrindole or the kappa-opioid receptor antagonist nor-binaltorphimine. In contrast, endomorphin-2 (5.6 nmol/mouse) produced place aversion. This aversive effect was inhibited by nor-binaltorphimine as well as beta-funaltrexamine, but not by naltrindole. The place aversion produced by endomorphin-2 was also attenuated by pre-treatment with antiserum against the endogenous kappa-opioid receptor ligand dynorphin A (1-17). These findings indicate that endomorphin-1 may produce its rewarding effect via mu-opioid receptors. On the other hand, the aversive effect induced by endomorphin-2 may be associated with the stimulation of endomorphin-1-insensitive mu-opioid receptors and the activation of dynorphinergic systems in the mouse brain.  相似文献   

11.
Mu opioid receptor signaling in morphine sensitization   总被引:3,自引:0,他引:3  
We used a previously reported model of morphine sensitization that elicited a complex behavioral syndrome involving stereotyped and non stereotyped activity. To identify the mechanism of these long-lasting processes, we checked the density of mu opioid receptors, receptor-G-protein coupling and the cyclic AMP (cAMP) cascade. In morphine-sensitized animals mu opioid receptor autoradiography revealed a significant increase in the caudate putamen (30% versus controls), nucleus accumbens shell (16%), prefrontal and frontal cortex (26%), medial thalamus (43%), hypothalamus (200%) and central gray (89%). Concerning morphine's activation of G proteins in the brain, investigated in the guanylyl 5'-[gamma-(35)S]thio]triphosphate ([(35)S]GTPgammaS) binding assay, a significant increase in net [(35)S]GTPgammaS binding was seen in the caudate putamen (39%) and hypothalamus (27%). In the caudate putamen this was due to an increase in the amount of activated G proteins, and in the hypothalamus to a greater affinity of G proteins for guanosine triphosphate (GTP). The main second messenger system linked to the opioid receptor is the cAMP pathway. In the striatum basal cAMP levels were significantly elevated in sensitized animals (70% versus controls) and [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin (DAMGO) significantly inhibited forskolin-stimulated cAMP production in control (30%) but not in sensitized rats. In the hypothalamus no significant changes were observed in basal cAMP levels and DAMGO inhibition.These cellular events induced by morphine pre-exposure could underlie the neuroadaptive processes involved in morphine sensitization.  相似文献   

12.
Opioid receptors are known to couple to G-proteins and to inhibit adenylyl cyclase. Receptor activation of G-proteins can be measured by agonist-stimulated [35S]guanylyl-5'-O-(gamma-thio)-triphosphate (GTP gamma S-) binding in brain sections to localize neuroanatomically functional coupling of receptors to intracellular signal transduction mechanisms. In the present study the selective mu-, delta- and kappa 1-opioid agonists DAMGO ([D-Ala2,N-Me-Phe4, Gly-ol5]-enkephalin), DPDPE ([D-Pen2,5]-enkephalin) and enadoline (CI-977) were used to stimulate [35S]GTP gamma S-binding in human brain sections of frontal cortex and cerebellum. In human frontal cortex mu- and delta- opioid stimulated [35S]GTP gamma S-binding was evenly distributed throughout the gray matter, while kappa(1)-opioid stimulated [35S]GTP gamma S-binding was detected predominantly in lamina V and VI. In the cerebellar cortex stimulated [35S]GTP gamma S-binding revealed functional coupling of mu- and kappa 1-opioid receptors in the molecular layer.  相似文献   

13.
Observations have been made linking the presence of psychosocial factors associated with elevated beta-endorphin concentrations with atherosclerosis. In this study, the authors assume an important role of the stress hormone beta-endorphin in several mechanisms that contribute to a dysbalance of human endothelial and monocytic endothelin (ET)-1 and nitric oxide (NO) release, mediated by mu1-opioid receptors. ET-1 and NO release were quantified via enzyme-linked immunosorbent assay (ELISA) or fluorometrically. mu1-Opioid receptors were identified by polymerase chain reaction (PCR) after stimulation with beta-endorphin. beta-Endorphin significantly increased endothelial and monocytic ET-1 release. The effect was mediated by mu1-opioid receptors and abolished by naloxonazine, a selective mu1-opioid receptor antagonist. In contrast, NO release was decreased under the influence of beta-endorphin. mu1-Opioid receptors on human monocytes and endothelial cells mediated a beta-endorphin-induced stimulation of ET-1 release, whereas NO release was decreased. Thus, the authors hypothesize a role of beta-Endorphin in the pathogenesis of stress-induced endothelial dysfunction through peripherally circulating beta-endorphin, which may offset the balance of vasoactive mediators, leading to an unopposed vasoconstriction. The data may also provide a new concept of mu1-opioid receptor antagonists, preventing beta-endorphin-induced disorders of vascular biology.  相似文献   

14.
Narita M  Miyoshi K  Narita M  Suzuki T 《Neuroscience》2007,144(3):777-782
Chronic ethanol consumption produces a painful peripheral neuropathy. The aim of this study was then to investigate the mechanism underlying the neuropathic pain-like state induced by chronic ethanol treatment in rats. Mechanical hyperalgesia was clearly observed during ethanol consumption and even after ethanol withdrawal, and it lasted for, at least, 14 weeks. At 24 days after ethanol withdrawal, antinociception of morphine was significantly suppressed and the increased guanosine-5'-o-(3-thio) triphosphate ([(35)S]GTPgammaS) binding to membranes of the spinal cord induced by the selective mu-opioid receptor (MOR) agonist, [D-Ala(2),N-MePhe(4),Gly(5)-ol]enkephalin (DAMGO), was significantly decreased under the ethanol-dependent neuropathic pain-like state, whereas the increased [(35)S]GTPgammaS binding to membranes of the spinal cord induced by either the selective delta-opioid receptor (DOR) agonist or kappa-opioid receptor (KOR) agonist was not changed under the ethanol-dependent neuropathic pain-like state. Furthermore, total-MOR immunoreactivity was not changed in the spinal cord of ethanol-fed rats. Under these conditions, immunoblotting showed a robust increase in phosphorylated-cPKC immunoreactivity (p-cPKC-IR) in the spinal cord from chronic ethanol fed-rats, whereas phosphorylated-protein kinase A (PKA), dynamin II and G protein-coupled receptor kinase 2 (GRK2) were not affected in the spinal cord of ethanol-fed rats. These findings suggest that the dysfunction of MOR, but not DOR and KOR, linked to cPKC activation in the spinal cord may be, at least in part, involved in the reduced sensitivity to antinociception induced by morphine under the ethanol-dependent neuropathic pain-like state.  相似文献   

15.
Recombinant-inbred CXBK mice have been used for various studies as putative mu-opioid-receptor deficient mice. However, CXBK mice have never been compared with gene-targeting mice lacking the mu-opioid receptor (muKO) and the K-opioid receptor (kappaKO). Here we report that CXBK mice show distinct behavioural phenotype in opioid-induced analgesia and sedation. Intraperitoneal (i.p.) administration of morphine (3 and 10 mg kg(-1)) induced significantly lower levels of analgesia in CXBK mice than in the control C57BL/6 mice, while higher doses of morphine (30 and 100 mg kg(-1)) induced marked analgesia in CXBK mice. CXBK mice also showed lower analgesia and sedation levels than did C57 mice after i.p. administration of U-50488 (10 and 30 mg kg(-1)). The partial deficiency of sensitivity to morphine and U-50488 of CXBK mice is in sharp contrast to the complete lack of sensitivity to morphine and U-50488 in muKO and kappaKO mice, respectively. Furthermore, CXBK mice showed a lower threshold for nociceptive stimuli when they were not given an opioid, suggesting that CXBK mice could have alterations in the genes related to the nociceptive threshold. These unique behavioural phenotypes of CXBK mice suggest unique genetic alterations in CXBK mice.  相似文献   

16.
The nucleus ambiguus is an area containing cardiac vagal neurons, from which originates most of the parasympathetic control regulating heart rate and cardiac function. GABAergic pathways to these neurons have recently been described, yet modulation of this GABAergic input and its impact upon cardiac vagal neurons is unknown. The nucleus ambiguus has been shown to contain mu-opioid receptors and endomorphin-1 and endomorphin-2, the endogenous peptide ligands for the mu-receptor, whilst microinjections of opioids in the ambiguus area evoke bradycardia. The present study therefore examined the effects of endomorphin-1, endomorphin-2 and DAMGO (a synthetic, mu-selective agonist) on spontaneous GABAergic IPSCs in cardiac parasympathetic neurons. Only endomorphin-2 (100 microM) produced a significant inhibition, of both the frequency (-22.8%) and the amplitude (-30.5%) of the spontaneous IPSCs in cardiac vagal neurons. The inhibitory effects of endomorphin-2 were blocked by naloxonazine (10 microM), a selective mu(1) receptor antagonist. Naloxonazine alone (10 microM) had a potentiating effect on the frequency of the GABAergic IPSCs (+161.43%) but not on the amplitude, indicating that GABA release to cardiac vagal neurons may be under tonic control of opioids acting at the mu(1) receptor. Endomorphin-2 did not reduce the responses evoked by exogenous application of GABA. These results indicate that endomorphin-2 acts on mu(1) receptors located on precedent neurons to decrease GABAergic input to cardiac vagal neurons located in the nucleus ambiguus. The subsequent increase in parasympathetic outflow to the heart may be one mechanism by which mu-selective opioids act to induce bradycardia.  相似文献   

17.
Autoradiography was used to investigate the presence of opioid receptors in soleus, extensor digitorum longus (EDL) and diaphragm muscles in two strains (C57BL/6J and C57BL/10) of mice which can inherit muscular dystrophy. Binding sites for two radiolabelled opioid ligands [125I]beta-endorphin and [3H]naloxone, were seen in a few muscle fibres in the normal mice. However, a significantly greater number of fibres exhibited the binding sites in the dystrophic individuals of both strains. The binding sites were not restricted to the endplate regions but were present over the entire surface in these fibres.  相似文献   

18.
The role of endogenous opioid systems in the analgesic response to exogenous opiates remains controversial. We previously reported that mice lacking the peptide neurotransmitter beta-endorphin, although unable to produce opioid-mediated stress-induced antinociception, nevertheless displayed intact antinociception after systemic administration of the exogenous opiate morphine. Morphine administered by a peripheral route can activate opioid receptors in both the spinal cord and brain. However, beta-endorphin neuronal projections are confined predominantly to supraspinal nociceptive nuclei. Therefore, we questioned whether the absence of beta-endorphin would differentially affect antinociceptive responses depending on the route of opiate administration. Time- and dose-response curves were obtained in beta-endorphin-deficient and matched wild-type C57BL/6 congenic control mice using the tail-immersion/withdrawal assay. Null mutant mice were found to be more sensitive to supraspinal (i.c.v.) injection of the micro-opioid receptor-selective agonists, morphine and D-Ala(2)-MePhe(4)-Gly-ol(5) enkephalin. In contrast, the mutant mice were less sensitive to spinal (i.t.) injection of these same drugs. Quantitative receptor autoradiography revealed no differences between genotypes in the density of mu, delta, or kappa opioid receptor binding sites in either the spinal cord or pain-relevant supraspinal areas.Thus we report that the absence of a putative endogenous ligand for the mu-opioid receptor results in opposite changes in morphine sensitivity between discrete areas of the nervous system, which are not simply caused by changes in opioid receptor expression.  相似文献   

19.
《Neuroscience》1999,90(4):1265-1279
[35S]Guanosine 5′-(γ-thio)triphosphate autoradiography is a novel technique to detect receptor-dependent activation of G-proteins in brain tissue sections. While an increasing number of reports using this approach are beginning to appear, little effort has been directed to the identification of factors responsible for the heterogeneously distributed [35S]guanosine 5′-(γ-thio)triphosphate signal in basal conditions. The present study demonstrates that endogenously formed adenosine generates a widespread and prominent adenosine A1 receptor-dependent signal in basal conditions using this technique. Treatment of rat brain tissue sections with the A1-selective antagonist 8-cyclopentyl-1,3-dipropylxanthine dose-dependently (ec50<10 nM) suppressed basal [35S]guanosine 5′-(γ-thio)triphosphate binding in a region-specific manner, an effect fully mimicked by the adenosine-depleting enzyme adenosine deaminase, and less so by the A1 antagonist cirsimarin and by caffeine. That adenosine was continuously formed during the incubation is supported by the constant requirements of adenosine deaminase in order to suppress basal radioligand binding and further by the fact that low micromolar concentrations of adenine nucleotides evoked only adenosine-mimicking and fully 8-cyclopentyl-1,3-dipropylxanthine-sensitive binding responses. In the presence of adenosine deaminase, all responses to adenine nucleotides were abolished, indicating that prior conversion to adenosine was required. Upon stimulation, this technique selectively detected A1 receptor-activated G-proteins, as the non-selective agonists adenosine and 2-chloroadenosine and the A1-selective agonist N6-p-sulfophenyladenosine all evoked only 8-cyclopentyl-1,3-dipropylxanthine-sensitive responses in identical gray matter areas, and also in several white matter areas such as the corpus callosum, anterior commissure, optic tract and cerebellar white matter. Dose–response studies revealed region-specific differences in the magnitude of A1 receptor-stimulated G-protein activation, with the highest response (nine-fold over basal) detectable in the hippocampus. No response to the A2A-selective agonist 2-[(2-aminoethylamino)carbonylethylphenylethylamino]-5′-N-ethylcarboxamidoadenosine or the A3-selective agonist 2-chloro-N6-(3-iodobenzyl)-adenosine-5′-N-methyluronamide was detected in any region.These data reveal that a significant amount of noise inherent to [35S]guanosine 5′-(γ-thio)triphosphate autoradiography can be eliminated by removal of the adenosine signal, a step likely facilitating detection of responses to other receptors. Furthermore, the data establish [35S]guanosine 5′-(γ-thio)triphosphate autoradiography as a novel and selective approach to directly assess A1 receptor–G-protein coupling in anatomically defined regions of the central nervous system.  相似文献   

20.
Agonist-stimulated [35S]GTPgammaS binding allows the visualization of receptor-activated G-proteins, thus revealing the anatomical localization of functional receptor activity. In the present study, agonist-stimulated [35S]GTPgammaS binding was used to demonstrate mu and kappa1 opioid-stimulated [35S]GTPgammaS binding in tissue sections and membranes from cynomolgus monkey brain using DAMGO and U50,488H, respectively. Concentrations of agonists required to produce maximal stimulation of [35S]GTPgammaS binding were determined in membranes from the frontal poles of the brain. Receptor specificity was verified in both membranes and sections by inhibiting agonist-stimulated [35S]GTPgammaS binding with the appropriate antagonist. Mu opioid-stimulated [35S]GTPgammaS binding was high in areas including the amygdala, ventral striatum, caudate, putamen, medial thalamus and hypothalamus. Dense mu-stimulated [35S]GTPgammaS binding was also found in brainstem nuclei including the interpeduncular nucleus, parabrachial nucleus and nucleus of the solitary tract. Kappa1 opioid-stimulated [35S]GTPgammaS binding was high in limbic and association cortex, ventral striatum, caudate, putamen, globus pallidus, claustrum, amygdala, hypothalamus and substantia nigra. These results demonstrate the applicability of [35S]GTPgammaS autoradiography to examine receptor-activated G-proteins in the primate brain and reveal functional mu and kappa1 opioid receptor activity that may contribute to the reported central nervous system effects of opiates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号